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Abstract 14 

Background: We recently showed that seasonal patterns of COVID-19 incidence and Influenza-Like 15 

Illnesses incidence are highly similar, in a country in the temperate climate zone, such as the 16 

Netherlands (latitude: 52oN). We hypothesize that in The Netherlands the same environmental factors 17 

and mobility trends that are associated with the seasonality of flu-like illnesses are predictors of 18 

COVID-19 seasonality as well. 19 

Methods: We used meteorological, pollen/hay fever and mobility data from the Netherlands with its 20 

17.4 million inhabitants. For the reproduction number of COVID-19 (Rt), we used data from the Dutch 21 

State Institute for Public Health. This Rt metric is a daily estimate that is based on positive COVID-19 22 
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tests in the Netherlands in hospitals and municipalities. For all datasets we selected the overlapping 23 

period of COVID-19 and the first allergy season: from February 17, 2020 till September 21, 2020 24 

(total number of measurements: n = 218), the end of pollen season. Backward stepwise multiple linear 25 

regression was used to develop an environmental prediction model of the Rt of COVID-19. Next, we 26 

studied whether adding mobility trends to an environmental model improved the predictive power.  27 

Results: By means of stepwise backward multiple linear regression four highly significant (p value < 28 

0.01) predictive factors are selected in our combined model: temperature, solar radiation, hay fever 29 

incidence, and mobility to indoor recreation locations. Our combined model explains 87.5% of the 30 

variance of Rt of COVID-19 and has a good and highly significant fit: F(4, 213) = 374.2, p-value < 31 

0.00001. The combined model had a better overall predictive performance compared to a solely 32 

environmental model, which still explains 77.3% of the variance of Rt, and a good and highly 33 

significant fit: F(4, 213) = 181.3, p < 0.00001. 34 

Conclusions: We conclude that the combined mobility and environmental model can adequately 35 

predict the seasonality of COVID-19 in a country with a temperate climate like the Netherlands. In 36 

this model higher solar radiation, higher temperature and hay fever are related to lower COVID-19 37 

reproduction, and mobility to indoor recreation locations with increased COVID-19 spread.  38 

Keywords 39 

COVID-19 reproduction number, seasonality, solar radiation, allergens, allergies, mobility, 40 

temperature 41 

Highlights 42 

• The seasonality of COVID-19 can be well-explained by environmental factors and mobility. 43 

• A combined model explains 87.5% of the variance of the reproduction number of COVID-19 44 

• Inhibitors of the reproduction number of COVID-19 are higher solar radiation, and seasonal 45 

allergens/allergies. 46 
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• Mobility, especially to indoor recreation locations, increases the reproduction number of 47 

COVID-19. 48 

• Temperature has no direct effect on the reproduction number of COVID-19, but affects 49 

mobility and seasonal allergens. 50 

• Adding mobility trends to an environmental model improves the predictive value regarding 51 

the reproduction number of COVID-19. 52 

 53 

1. Introduction 54 

COVID-19 appears to be subject to multi-wave seasonality [1, 2], comparable to other respiratory viral 55 

infections and pandemics since time immemorial [3, 4]. It is observed that the COVID-19 community 56 

outbreaks have a pattern that is similar to those of other seasonal respiratory viruses [5, 6, 7, 8], 57 

whereby the seasonal dips coincide with allergy season in regions in the temperate climate zone [9, 10, 58 

11]. The same factors that drive the seasonality of flu-like illnesses, appear to drive COVID-19 59 

seasonality: solar radiation including ultraviolet (UV) light, temperature, relative or specific humidity, 60 

seasonal allergens (pollens) and allergies, and behavior. Regarding behavior, mobility data show the 61 

beneficial effect of restrictive measures on the effective reproduction number (Rt) of COVID-19 [12, 62 

13, 14], but the seasonal aspects of mobility are often overlooked. For example, during nice weather 63 

people spend more time outdoors. For flu-like illnesses, we previously showed that a compound 64 

predictor of solar radiation and seasonal allergens is highly significant though moderately strong 65 

r(222) = −0.48 (p < 0.001) [9]. It is unclear why environmental factors, such as higher solar radiation, 66 

a higher level of seasonal allergens (pollens) and subsequently hay fever are consistently associated 67 

with a lower Rt of COVID-19, and, thus possibly associated to COVID-19 seasonality as well. 68 

Exposure to solar radiation might be associated with better COVID-19 outcomes [15], and daylight is 69 

understood to regulate melatonin levels, and subsequently circadian (lung) immunity [16].  Further, 70 

increased UV light levels are associated with a more rapid degradation of SARS-CoV-2 particles [17], 71 

although the clinical relevance of this effect is debatable. 72 
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Upon the observation that allergic diseases are associated with lower rates of COVID-19 73 

hospitalizations [18, 19], several pathophysiological explanations are provided, such as a lower 74 

expression of membrane-bound angiotensin-converting enzyme 2 (ACE-2) [20, 21], higher eosinophil 75 

counts [22, 23, 24], a reduced risk of a cytokine storm and hyper-inflammation [25], and T cell-76 

mediated immune responses to allergens which might be effective against COVID-19 as well [26]. On 77 

the other hand, a recent international epidemiological study reported a positive correlation between 78 

pollen concentrations and COVID-19 incidence [27]. As another study, from Spain, could not confirm 79 

the latter finding [28], this is still a matter of considerable debate. 80 

Further, we noticed that an estimate of Rt discriminates better between independent variables than 81 

incidence metrics [9], as it appears to be a more volatile or sensitive metric, includes incubation time 82 

lags, and is corrected for test bias and independent of seasonality. The reproduction number has also 83 

become the standard in predictive modelling for COVID-19.. 84 

Our hypothesis is that a model, combining both environmental factors and mobility trends, improves 85 

the prediction of the seasonality of COVID-19 compared to each factor alone. Therefore, the main 86 

objective of this study is to explore a model, including both environmental factors and mobility trends 87 

of people, to improve the prediction of the reproduction number for COVID-19 during spring season 88 

which coincides with the low-season of flu-like respiratory diseases in a country in the temperate 89 

climate zone such as the Netherlands (latitude: 52oN). 90 

 91 

2. Methods 92 

2.1 Data 93 

2.1.1 Reproduction Number for COVID-19 94 

For the observations of Rt, we used the respective dataset from the Dutch State Institute for Public 95 

Health (Rijksinstitutuut voor Volksgezondheid en Milieu; RIVM) [29] from February 17, 2020 till 96 

September 21, 2020. RIVM uses a standard method to calculate the Rt metric on the basis of the input 97 
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data described below [31]. RIVM’s Rt metric is a daily estimate that is based on positive COVID-19 98 

tests in the Netherlands in hospitals from national intensive care foundation (NICE) and from RIVM’s 99 

own institutes in municipalities (GGD). When the first symptomatic day of a COVID-19 infected 100 

person is not known, RIVM estimates this date. Further, RIVM assumes an average 4 days delay 101 

period between infection and first symptoms, and estimate the mean incubation period to be 6.4 days 102 

(95% confidence interval (CI): 5.6-7.7) [30].  103 

2.1.2 Meteorological data 104 

Regarding meteorological data, we used datasets from the Royal Dutch Meteorological Institute [32] 105 

from February 17, 2020 till September 21, 2020. The downloaded daily data included global solar 106 

radiation in J/cm2, mean relative atmospheric humidity (% RH), and average temperature in degrees 107 

Celsius. For comparison, and given their effects on pollen distribution, we also added precipitation 108 

duration in 0.1 hour, precipitation amount in 0.1 mm, mean wind speed, minimum and maximum 109 

temperatures in degrees Celsius, mean dew point temperature in degrees Celsius, and sunshine 110 

duration in 0.1 hour. Additionally, we calculated the wind chill temperature per day. These datasets 111 

were obtained from the KNMI’s centrally located De Bilt weather station. De Bilt is traditionally 112 

chosen as it provides an approximation of modal meteorological parameters in the Netherlands, which 113 

is a small country. Furthermore, all major population centers in the Netherlands, which account for 114 

around 70% of the total Dutch population, are within a radius of only 60 kilometers from De Bilt. We 115 

therefore assumed in this study that the measurements from De Bilt are sufficiently representative for 116 

the meteorological conditions typically experienced by the Dutch population.  117 

2.1.3 Mobility data 118 

We used Google mobility data for relative trends regarding visits to different types of locations in the 119 

Netherlands [33] for the same period from February 17, 2020 till September 21, 2020. These location 120 

types are: Residential, Workplaces, Indoor Recreation (called retail & recreation by Google, which 121 

includes restaurants, cafes, retail, shopping centers, theme parks, museums, libraries, and movie 122 

theaters), Outdoor Recreation (called Parks by Google, and including places such as national parks, 123 
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public beaches, marinas, dog parks, plazas, and public gardens), and Transit Stations (places such as 124 

public transport hubs such as subway, bus, and train stations). For comparison, as these are less 125 

affected by lockdowns, we also included mobility trends for grocery & pharmacy (places such as 126 

grocery markets, food warehouses, farmers markets, specialty food shops, drug stores, and 127 

pharmacies). 128 

2.1.4 Seasonal allergens and allergies 129 

For hay fever (allergic rhinitis) we used the data from Nivel [34], for the same period, about weekly 130 

incidence reports at primary medical care level, per 100,000 citizens in the Netherlands. Primary 131 

medical care is the day-to-day, first-line healthcare given by local healthcare practitioners to their 132 

registered clients as typical for the Netherlands. The hay fever incidence metric is a weekly average 133 

based on a representative group of 40 primary care units, and calculated using the number of hay fever 134 

reports per primary care unit divided by the number of patients registered at that unit. This is then 135 

averaged for all primary care units and then extrapolated to the complete population. We used 136 

interpolation to generate a daily data set. 137 

For comparison, we included daily mean pollen concentrations based on the data from two Dutch 138 

pollen stations: Elkerliek Ziekenhuis in Helmond (latitude 51.487059, longitude 5.662036) [35], and 139 

Leiden University Medical Center in Leiden (latitude 52.166309, longitude 4.477315) [36]. The mean 140 

pollen concentration is measured in grains/m3, whereby we used the daily totals for the 42 types of 141 

pollen particles for which by both stations the numbers are counted and averaged per day per 1 m3 of 142 

air. The common Burkard spore trap is used by these stations. It was noticed before that a metric 143 

including all available allergenic particle types, lower allergenic or higher allergenic, correlates 144 

stronger with the incidence or Rt of COVID-19, than a metric only based on higher allergenic particle 145 

types [9, 11]. 146 

 147 

2.2 Data sets consolidation 148 
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For all datasets we have selected the same overlapping period of COVID-19 and the first full allergy 149 

season [ 8], during 2020. The overlapping period runs therefore from February 17, 2020 till September 150 

21, 2020 (n = 218 days), when the total pollen concentrations structurally drop below 10 grains/m3 as 151 

an indication for the end of pollen season. 152 

For sensitivity analyses, we also extended the datasets to periods till June 10, 2021 (n = 480 days). 153 

For mobility datasets the clearly intra-week patterns required a 7 days moving average to reduce noise. 154 

Therefore, for reasons of consistency, we calculated 7 days moving averages for all other variables as 155 

well.  156 

2.3 Statistical analysis 157 

Variables are presented with their sample sizes (n), means (M), and standard deviations (SD). We 158 

calculated correlation coefficients to assess the strength and direction of relations of each independent 159 

variable with Rt, and with each other.  160 

 161 

Stepwise backward multiple linear regression for all independent variables on Rt was used to keep 162 

only candidate predictors that are significant (p < 0.05) in the model and remove insignificant 163 

predictors. Next, we removed predictors that were multicollinear as defined below. With the remaining 164 

independent variables the F-value, standard deviations and errors, degrees of freedom (DF), and 165 

significance level, are calculated to test the goodness of fit hypothesis for our predictive model for Rt. 166 

Further, the multiple R, Multiple R squared (R2) and adjusted R2 correlation coefficients are calculated 167 

to estimate the predictive power of our model. Additionally, the algebraic equation to predict Rt is 168 

determined, which is just to be understood as an empirical formula. Per independent variable the 169 

(standard) coefficient, standard error, t-stat and its 95% CI, probability, and the variance inflation 170 

factor value (VIF) are calculated.  171 

Further, as linear regression assumes normality of the residuals, we applied the Shapiro-Wilk test and 172 

to test the homoscedasticity requirement – homogeneity of variance of residuals– the White test is 173 
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applied. To analyze multicollinearity we used a VIF value of 2.5 as a threshold. Additionally, the  174 

priori power is calculated of each predictor alone and compared with the full model. Although the 175 

independent variable Rt assumes time lags, we also studied the autocorrelations of residuals, whereby 176 

we interpret an autocorrelation beyond a time lag of 7 days as an indication that our model probably 177 

might miss a key predictor. Finally, we created calibration plots to visually review the fit of the model. 178 

 179 

For selected independent variables with a p value < 0.05 and VIF score < 2.5, standard log10, square 180 

root and quadratic (^2) data transformations are applied to reduce non-linearity in relations between 181 

variables which helps to reduce skewness, and, especially, meet the normality and homoscedasticity 182 

requirement. Such data transformations do not change the nature and direction of relations between 183 

independent variables and Rt. In case of the relative mobility trend data we added a constant before 184 

such data transformations to avoid loss of data because of negative numbers. For other variables that 185 

was not necessary as they only included positive numbers. 186 

We reported the results in APA style, adapted to journal requirements, and applied the TRIPOD 187 

guidelines in so far applicable 188 

All statistical analyses were done with  Stats Kingdom 2021, which we benchmarked on R version 3.5. 189 

 190 

3. Results 191 

3.1 Variables and their correlations 192 

The sample sizes (N), means, and SDs of the independent variables as used in our multiple linear 193 

regression models are summarized in Table 1. The values are given for the data sets after applied data 194 

transformations.  195 

During the allergy season, the factors that negatively correlate with Rt, are in order of strength: hay 196 

fever (r(218) = -0.65, p < 0.00001), solar radiation (r(218) = -0.63, p < 0.00001), pollen (r(218) = -197 

0.62, p < 0.00001), and temperature (r(218) = -0.12, p = 0.085). Positively correlated to Rt are relative 198 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 20, 2021. ; https://doi.org/10.1101/2021.09.15.21263648doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.15.21263648
http://creativecommons.org/licenses/by-nd/4.0/


Page 9 
 

humidity (r(218) = 0.55, p < 0.00001) and the related dew point temperature (r(218) = 0.12, p = 199 

0.082). Further, higher relative humidity is associated with rain or fog, and thus reduced solar 200 

radiation and lower temperature. Temperature and solar radiation are associated as well, although only 201 

moderately strong: r(218) = 0.39, p < .00001). 202 

Pollen and hay fever are, as to be expected, associated: r(218) = 0.50, p < .00001), although 203 

moderately strong. We did not add allergenicity weights to different pollen particles, and the pollen 204 

stations do not cover all types of allergenic particles such as, for example, mold spores. Therefore, 205 

having both data sets next to each other has added value, at least for our environmental model. 206 

Solar radiation is an important factor as it has, during allergy season, stimulating effects on pollen 207 

(r(218) = 0.40, p < .00001) and subsequently hay fever (r(218) = 0.40, p < .00001), in addition to its 208 

associations with temperature and Rt. 209 

 210 

The mobility places that are correlated with Rt are Indoor Recreation (n(218) = 0.761, p < .00001), 211 

Residential (n(218) = -0.684, p < .00001), Transit Stations (r(218) = 0.563, p < .00001), Workplaces 212 

(r(218) = 0.532, p < .00001), Grocery & Pharmacy (r(218) = 0.472, p < .00001), and, not significantly, 213 

Outdoor Recreation (r(218) = -0.048, p = 0.5). Indoor Recreation and Residential are most strongly 214 

inverse correlated: r(218) = -0.817, p < .00001), and thus highly collinear (p > 0.8). Indoor Recreation 215 

has moderately strong positive correlations with all other mobility variables, and should therefore seen 216 

as a representant of a cluster.  217 

Temperature and dew point temperature had a high correlation of r(218) = 0.84 (p < 0.00001), and 218 

appear thus to be collinear. These variables although they have, standalone, no significant correlation 219 

with Rt, still play a role in our combined and environmental model, probably because of their indirect 220 

effects on mobility and pollen maturation and dispersion, with their opposite associations with Rt. 221 

 222 

3.2 Outcomes combined model 223 
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After several iterations with stepwise backward multiple linear regression, four independent variables 224 

were selected from the combined pool of environmental and mobility variables that are both 225 

significant (p < 0.05) and have a VIF value below 2.5. These selected predictors are: temperature, 226 

solar radiation, hay fever, and Indoor Recreation (see Table 2). From the mobility datasets, residential 227 

was significant as well but was deselected based on its very high multicollinearity with all other 228 

mobility variables, homoscedasticity concerns and lowered explanatory power. In other words, staying 229 

at home has a beneficial effect, but, does not explain at which out-of-home location most COVID-19 230 

infections occur. Without the hay fever data, the pollen data would have been significant, but using 231 

only the pollen data led to homoscedasticity concerns, which were fully mitigated when using the hay 232 

fever data instead. 233 

On the basis of the multiple linear regression test, we can reject the null-hypothesis (H0) that our 234 

combined predictive model with the four selected factors does not provide a good fit: F(4, 213) = 374.2, p 235 

< 0.00001. R2 equals 0.875, which means that our predictors explain 87.5% of the variance of Rt. The 236 

adjusted R square equals 0.873, and the coefficient of multiple correlation (R) equals 0.936. A simple 237 

Pearson correlation between our model’s predicted and the observed values for Rt is equally strong 238 

and highly significant: r(218) = 0.996, p < .00001. It means that there is a strong, and highly 239 

significant, relationship between our combined model’s predicted and the observed Rt of COVID-19 240 

(see Fig. 1 and Fig. 2). 241 

The combined predictive model’s regression formula looks as follows: 242 

𝑅̂𝑡 = (0.804 + 0.00385 √𝑀𝑅 − 0.132 log10 𝐻𝐹 − 0.0637 log10 𝑆𝐼 − 0.000561 𝑇2)
2
 243 

Where 𝑅̂𝑡 is the predicted effective reproduction number for COVID-19, MR is the indexed mobility 244 

trend data for Indoor Recreation locations to which the mobility constant of 60,000 is added, HF is the 245 

hay fever incidence per 100K citizens, SI is the mean global solar radiation in J/cm2, and T is the mean 246 

temperature in degrees Celsius.. In our dataset, the transformed variables only contain positive 247 

numbers.  248 

3.3 Statistical outcomes environmental model 249 
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For the environmental model we excluded mobility data.  Again the solar radiation and hay fever  250 

were selected as predictor of Rt. The pollen metric added explanatory power, and dew point 251 

temperature was selected at the expense of its collinear, temperature (see Table 3). Relative humidity 252 

was again deselected as an insignificant predictor. 253 

On the basis of the multiple linear regression test, we can reject the H0 that our environmental 254 

predictive model with the four selected factors does not provide a good fit: F(4, 213) = 181.3, p < 255 

0.00001, and R2 equals 0.773, which means that our environmental predictors explain 77.3% of the 256 

variance of Rt. The adjusted R2equals 0.769, and the coefficient of multiple correlation (R) equals 257 

0.879. It means that there is a very strong direct and highly significant relation between our 258 

environmental model’s predicted and the observed reproduction numbers of COVID-19.  259 

The environmental model’s regression formula looks as follows: 260 

 261 

𝑅̂𝑡 = (3.00 − 0.0587 log10 𝑆𝐴 − 0.592 log10 𝑆𝐼 + 0.00674 𝑇𝑑 − 0.000262 𝐻𝐹)2 262 

 263 

Where Rt is the predicted reproduction number for COVID-19, SA is average seasonal allergens or 264 

pollen concentrations in particles/m3, SI is the 7 days moving average of global solar (ir)radiation in 265 

J/cm2, Td is the average dew temperature in degrees Celsius, and HF is the hay fever incidence per 266 

100K citizens. In our dataset, the transformed variables only contain positive numbers. 267 

 268 

4. Discussion 269 

The predictive power of the combined environmental-mobility model including solar radiation, hay 270 

fever, temperature and visits to Indoor Recreation locations (87.5%) surpasses the  environmental 271 

model (77.3%) with more than 10%. Furthermore, the improved accuracy of the combined model 272 

shows that adding mobility trends not only helps to control the environmental model for lockdown 273 

effects, but also clearly improves it by helping to show the importance of seasonal behavior better. For 274 
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example, nice weather (sun shine, warm, low humidity) in The Netherlands is related to higher pollen 275 

concentrations, and more visits to crowded non-residential locations where social distancing is hard to 276 

apply. The latter is in turn associated with increased COVID-19 infections. Interestingly, increased 277 

visits to Outdoor Recreation locations are not associated with an increase in COVID-19 infections 278 

(Rt). This finding suggests that outdoor transmission of SARS-CoV-2 is far less likely than indoor 279 

transmission, and that restrictive policies that limit visiting Outdoor Recreation locations have less 280 

added value. 281 

Although, overall, the environmental model is weaker than the combined model, it is still somewhat 282 

better at the onset of COVID-19 during February and March 2020. This is probably explained by the 283 

exclusion of ski holiday locations abroad, in Italy and Austria, where many of the first patients 284 

contracted COVID-19, which leads to an underestimation of both the Indoor Recreation and Outdoor 285 

Recreation trend. On the other hand, the combined model is somewhat better in July when lockdown 286 

restrictions were relaxed and people were less strict, which is caught well by the mobility trends 287 

variable. Both models are almost equally strong in predicting the seasonal decline in March/April, 288 

which indicates that the relative importance of restrictive measures was probably not the main driver 289 

of that particular decline, but the seasonality effect was. 290 

 291 

Of the non-residential locations, especially Indoor Recreation is by far the best predictor of increasing 292 

COVID-19 infections (Rt), which makes sense as social distancing in busy shopping locations, bars, 293 

discos and other such locations, is hard to maintain. Especially, when the seasonality effects are offset 294 

by relaxed lockdown measures and social distancing discipline. Even more, if people are under the 295 

influence of alcohol and party drugs in crowded party locations, social distancing becomes a distant 296 

reality. Additionally, the strong inverse correlation of Residential with Rt, shows that staying at home, 297 

because of lockdown measures, is effective. That all other indoor locations have a positive correlation 298 

with Rt, shows basically the same: when lockdown measures are relaxed, infection rates increase as 299 

people will meet more other people.  300 
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 301 

The single effect of high temperature on Rt appears to be not significant. The role of temperature can 302 

be understood only when its associations with other variables such as mobility trends and pollen 303 

maturation and dispersion are taken into account. Humidity in general, relative or specific (Td), 304 

appears to be positively associated to COVID-19 reproduction, as it is associated with a reduced solar 305 

radiation and seasonal allergens, and more traffic to indoor locations which are associated with an 306 

increase in infections. Even despite observations that, indoors, very dry air, with a low absolute 307 

humidity, might favor SARS-CoV-2 transmission, which is likely caused by increased aerosolisation 308 

of infectious aqueous particles. Finally, although we assume that day length is associated to solar 309 

radiation, it might still be interesting to look if this solar-related variable could add something to the 310 

predictive power of our models. 311 

 312 

Methodological concerns 313 

Test bias, especially for new viruses such as COVID-19, is a major methodological challenge. The 314 

approach to use more reliable metrics such as the number of hospitalizations to generate the Rt metric 315 

appears to be a good method to reduce test bias. But, the change of methodology in June 2020, when 316 

more test stations were included with their fluctuating test capacities, most likely led to the 317 

introduction of test bias in the Rt metric. Such reliability concerns may have reduced the predictive 318 

power of our combined and environmental model. 319 

The usefulness of the pollen concentration metric might be improved by taking into account the 320 

allergenicity per particle type. The allergenicity classification is available, but it is not on a ratio scale 321 

and there are discussions about the accuracy of this classification. Furthermore, other allergenic 322 

particles like mold spores, are hardly ever covered by European pollen stations because of budget 323 

constraints. 324 
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We observed that the Indoor Recreation and Outdoor Recreation metric might need to be expanded to 325 

holiday locations in foreign countries. Unfortunately, that is something that is currently not possible 326 

via the Google Mobility datasets. 327 

In our research we precluded the period of intensive vaccination from January 2021 onward. On the 328 

other hand, if the protective immunity would be short-lasting, we might still be confronted with 329 

resurgences of COVID-19 [37], and it would be of interest to test the predictive models for such 330 

events. It is likely that new waves, will be less intense and short-lived given longer lasting B-cell and 331 

T-cell memory of people that have been infected or are vaccinated already. Therefore, it might be 332 

good to control for herd immunity levels when testing the predictive models for subsequent allergy 333 

seasons. 334 

Additionally, it might be of interest to differentiate Rt per virus variant, given that genetic drift 335 

typically leads to more contagious but less deadly variants, that somewhat change the dynamics of 336 

COVID-19. 337 

Finally, testing the predictive models for a wider geographical scope would be of interest, but would 338 

require metrics that are not widely available such as a standardized metrics for Rt, hay fever incidence, 339 

and pollen datasets. 340 

Conclusion 341 

The combined, mobility and environmental, model explains 87.5% of the variance of Rt of COVID-19 342 

during spring season in a country in the temperate climate zone like the Netherlands, and provides a 343 

very good fit (F(4, 213) = 374.2, p < 0.00001), as the predicted and observed Rt correlate strongly and 344 

highly significantly. The significant predictors in the combined model are temperature, solar radiation, 345 

hay fever incidence, and the Indoor Recreation trend. The environmental factors are inversely 346 

associated with Rt, On the other hand, more visits to Indoor Recreation locations is associated with 347 

more infections (Rt). This seems to be the best mobility predictor for the effects of lockdown measures 348 

on the spread (Rt) of COVID-19. On the other side of the spectrum, moving to Outdoor Recreation 349 
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locations is not significantly associated with changes in Rt, and including such locations in lockdown 350 

regimes appears to be ineffective. 351 

The solely environmental model, is around 10% less powerful than the combined model. Nevertheless, 352 

the environmental model shows that pollen concentrations and dew point temperature as a collinear of 353 

temperature, have an added explanatory value. Further, there are short periods in which the 354 

environmental model beats the combined model.  355 
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 464 

FIGURES AND TABLES 465 

Table 1: overview means (M), standard deviations (SDs) and skewness values 466 

Variable N Mean SD 

Hay Fever 218 131 73.8 

Log10(Hay Fever) 218 2.06 0.215 

Log10(Pollen) 218 1.84 0.464 

Log10(Solar Radiation)  218 3.15 0.273 
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Log10(Solar Radiation7dma) 218 3.18 0.198 

Temperature2 218 221 142 

Dew point temperature 218 8.56 5.70 

Sqrt(Mobility: Indoor recreation) 218 214 35.8 

Sqrt(Rt) 218 1.03 0.163 

Table 1: Overview of mean (M), and standard deviation (SD) per independent variable as used in the 467 

multiple linear regression models. The function Sqrt returns the square root of the variable. 468 

 469 

Table 2: multiple linear regression for mobility and environmental predictors 470 

 
Coeff. SE t-stat lower 

t0.025(213) 

upper 

t0.975(213) 

Stand. 

Coeff. 

p VIF 

b 0.804 0.0961 8.37 0.615 0.994 0 <0.00001   

Sqrt(Mobility: Indoor 

recreation) 

0.00385 0.000174 22.1 0.0035 0.00419 0.842 <0.00001 2.48 

Log10(Hay Fever) -0.132 0.0241 -5.46 -0.179 -0.084 -0.173 <0.00001 1.72 

Log10(Solar Radiation) -0.0637 0.0201 -3.17 -0.103 -0.024 -0.106 0.00177 1.93 

Temperature2 -0.000561 0.0000401 -14.0 -0.00063 -0.000482 -0.489 <0.00001 2.09 

 471 

Table 2: Overview of outcomes per predictor after multiple linear regression for both mobility and 472 

environmental variables. Selection of predictors is based on being (highly) significant and having 473 

multicollinearity (VIF) score below 2.5. The function Sqrt returns the square root of the variable. 474 

Table 3: multiple linear regression for environmental predictors only 475 

 476 
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  Coeff. SE t-stat lower 

t0.025(213) 

upper 

t0.975(213) 

Stand. 

Coeff. 

p VIF 

b 3.00 0.100 30.0 2.80 3.19 0 <0.00001   

Log10(Pollen) -0.0587 0.0144 -4.08 -0.0870 -0.0303 -0.167 0.0000633 1.56 

Log10(Solar radiation 

7dma) 

-0.592 0.0370 -16.0 -0.664 -0.519 -0.717 <0.00001 1.89 

Dew point temperature 0.00674 0.00109 6.19 0.00459 0.00888 0.235 <0.00001 1.35 

Hay fever -0.000262 0.0000903 -2.91 -0.000440 -0.0000844 -0.118 0.00405 1.56 

Table 3: Overview of outcomes per selected environmental predictor after multiple linear regression. 477 

Selection of predictors is based on being (highly) significant and having multicollinearity (VIF) score 478 

below 2.5. 479 

 480 

 481 

Figure 1: scatter diagram predicted versus observed reproduction number 482 

 483 
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Fig. 1: The combined mobility and environmental model is superior as its predictions (𝑅̂𝑡) explain 484 

87.5% of the variance of the observed reproduction number of COVID-19 (Rt) during allergy season. 485 

 486 

Figure 2. Time series predicted versus observed reproduction number COVID-19 487 

 488 

Fig. 2. The time series of the predicted (𝑅̂𝑡) versus the observed reproduction number of COVID-19 489 

(Rt) in the Netherlands show the very good fit of both the combined and environmental model during 490 

allergy season in the Netherlands. However, the Combined Model predicts Rt even better. The 491 

seasonality effect in March is visible in both model. 492 
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