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ABSTRACT 

 

Background: Chronic kidney disease of uncertain etiology (CKDu) has been found at high 

frequency in several lowland agricultural areas. Whether CKDu occurs in other countries with 

large agricultural populations remains uncertain, primarily due to lack of systematic data on 

kidney function. Hemoglobin (Hgb) levels are an ancillary marker for kidney dysfunction. We 

estimate the causal effect of agricultural work on Hgb level in men. A causal effect may indicate 

the presence of CKDu. 

 

Methods: We use Demographic and Health Surveys (DHS) data from seven African and Asian 

countries to estimate the causal effect of agricultural work on altitude-adjusted Hgb levels after 

adjusting for seven measured confounders. To assess potential bias due to unmeasured 

socioeconomic differences, we use multiple control groups that differ in non-agricultural 

occupation. We conduct sensitivity analyses to assess the robustness of our causal conclusions to 

unmeasured confounding. 

 

Results: Data were available for 41,180 agricultural workers and 55,705 non-agricultural 

workers. On average, Hgb levels were 0.09 g/dL lower among agricultural workers compared to 

matched controls. Significant effects were observed in Ethiopia, India, Lesotho, and Senegal, 

with effects from 0.07 to 0.30 g/dL lower hemoglobin among agricultural workers.   

 

Conclusions: We find evidence that men engaged in agricultural work in four of the seven 

countries studied have modestly lower Hgb levels compared with comparable men. Since 

underlying kidney disease could be a potential explanation for this finding, our data support 

consideration to integrating kidney function assessments within DHS surveys and other 

population-based surveys. 
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INTRODUCTION 

 

A kidney disease of uncertain etiology has been found to be occurring at high frequency in 

several lowland agricultural areas of the world including Meso-America and Sri Lanka, where it 

is now recognized as a leading cause of death.1,2,3 Whether this disease (CKDu) also occurs in 

other countries with large agricultural populations remains uncertain, primarily due to lack of 

systematic data on kidney function. 

 

On a population-wide level, lacking data on serum creatinine assessments, hemoglobin (Hgb) 

levels could be an ancillary marker for presence of kidney dysfunction. Hgb is measured in 

several surveys that reach populations residing in low- and middle-income countries.4,5 Although 

the prevalence of frank anemia (i.e., Hgb < 13 g/dL in men and < 12 g/dL in women) is 

relatively low even at moderate levels of kidney dysfunction, Hgb levels start to drop early in the 

disease course.6 In an analysis from the third National Health and Nutrition Examination Survey, 

Astor et al. observed a decline in median Hgb levels starting at estimated glomerular filtration 

rate (eGFR) below 60 ml/min/1.73m2. Hsu et al. reported a signal starting at earlier stages of 

kidney dysfunction; for example, estimated Hgb were -0.2 g/dL lower among men with eGFR 

60-70 compared with men with eGFR > 80 ml/min/1.73m2.7  In a meta-analysis evaluating data 

from over 250,000 persons with and without CKD, both the CKD and healthy cohorts 

demonstrated a continuous and negative relationship between eGFR and hemoglobin, starting at 

eGFR<60 ml/min/1.73m2.8 Finally, systemic illness including chronic kidney disease is the more 

likely cause of anemia among middle-aged persons, especially among men (as opposed to iron 

deficiency in young children and child-bearing age women).9 Thus, differentially low Hgb levels 

in our population of interest could imply the need for further investigation into kidney 

dysfunction as a potential cause. 

 

The Demographic and Health Surveys (DHS) are nationally-representative household surveys 

primarily conducted in low- and middle-income countries that collect data on several health and 

sociodemographic indicators.6 Since Hgb levels are systematically measured in the DHS, we 

sought to evaluate their association with occupation, with the hypothesis that Hgb levels would 

be lower among men working in agriculture than among men working in other occupations after 

accounting for age, and nutritional and wealth indices. Such a finding is potentially indicative of 

an under-recognized higher prevalence of kidney dysfunction among agricultural workers, and 

would support rationale for integrating systematic screening for kidney disease by occupation in 

future DHS surveys as well as other national or regional disease surveillance systems. 
 

 

METHODS 

 

Study population 
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We obtained from the Integrated Public Use Microdata Series’ recoding of the Demographic and 

Health Surveys (IPUMS-DHS) the standard DHS survey data for our analysis. Standard DHS 

surveys, which are usually conducted in various developing countries every five years, collect 

comparative data on population, health, and nutrition.10 We picked one standard DHS survey per 

country using IPUMS-DHS, as IPUMS-DHS recodes some DHS variables across different 

surveys to make sure important data are consistent across years and surveys.11 We used three 

criteria to select country samples: (1) availability of Hgb levels; (2) availability of data on seven 

a priori identified potential confounders of hemoglobin and occupation (see Supplementary 

Materials Section 1 for details on the seven measured confounders); (3) samples collected in the 

most recent year the DHS was conducted for the country were preferred. The final selected DHS 

samples were from six African countries and one Asian country (surveys were conducted in 

different years, between 2010 and 2016), including Ethiopia in 2016, Lesotho in 2014, Namibia 

in 2013, Senegal in 2010, Uganda in 2016, Zimbabwe in 2015, and India in 2015. 

 

Since most agricultural workers live in rural areas, we included only men from rural areas in our 

analytic sample. We exclude all men whose occupation or Hgb level were missing. A flow 

diagram of inclusion criteria and data pre-processing steps is available in Section 2 of the 

Supplementary Materials. In all, our analytic sample contained 41,180 agricultural workers and 

55,705 non-agricultural workers, whose ages ranged between 15 and 64 at the time of the 

surveys. 

 

Data extraction 

 

We extracted data on male workers’ age, body mass index, wealth index, education level, marital 

status, religion, occupation, degree of cluster rurality, and altitude-adjusted Hgb. DHS adjusted 

its measured Hgb of male workers for altitudes higher than 1,000 meters since oxygen is less 

available as altitude increases so effective hemoglobin count is lowered (see Supplementary 

Materials Section 1 for details on the adjustment).12 The agricultural worker category coded by 

IPUMS-DHS includes farmers, either self-employed or employee, as well as fishermen, 

foresters, breeders, and hunters.13 Non-agricultural workers consist of the following occupations 

– professional, managerial, clerical, sales, manual labor, household, domestic services, and other 

non-agricultural occupations – as well as those not working. 

 

Matching 

 

Agricultural workers and non-agricultural workers may differ substantially in the seven 

measured confounders (age, body mass index, wealth index, education, marital status, religion, 

and degree of cluster rurality) and these confounders may affect Hgb. Consequently, a direct 

comparison of the average Hgb levels of the agricultural workers and nonagricultural workers 

may be biased. To address this potential bias, we constructed matched sets of agricultural 

workers and non-agricultural rural workers who are similar on the measured confounders. We 

then compared Hgb levels within these matched sets of comparable agricultural and 

nonagricultural workers. To construct the matched sets, we implemented optimal full 

matching14,15 using the R package “optmatch”16 for every DHS country sample. Each matched 

set contained either one agricultural worker and multiple non-agricultural workers, or multiple 

agricultural workers and one non-agricultural workers. The full matching method imposes a 
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propensity score caliper17 and minimizes the rank-based Mahalanobis distance18 between 

matched male workers with similar propensity scores. 

 

To evaluate whether the agricultural workers and controls were balanced on the measured 

confounders within matched sets, we calculated the standardized differences before matching 

and after matching. The standardized difference of a confounder before matching is the 

difference between the means of the confounder for the agricultural workers vs. controls (non-

agricultural workers) in within group pooled standard deviation units while the standardized 

difference after matching is the weighted average of the difference in means within matched sets 

between the agricultural workers and controls in the same within group pooled standard 

deviation units as before matching where the weighting is by the number of agricultural workers 

in the matched set.18 The goal was to achieve adequate balances over the seven measured 

confounders, by making the standardized differences between the agricultural workers and 

controls on the seven measured confounders below 0.2 after matching.19 In terms of a normal 

distribution, 95% of the distribution is contained in a range of ±2 standard deviations, so a 

standardized difference of 0.2 is only 5% of the distribution, a small quantity, that can easily be 

removed by model based adjustments.20,21    

 

Control Groups 

 

One potential bias for the study is that agricultural workers might have worse socioeconomic 

status in ways that were not fully captured by the seven measured confounders and this 

unmeasured socioeconomic status might affect Hgb. To assess potential bias from an 

unmeasured confounder, Campbell18,22 suggested constructing two control groups that 

systematically vary the unmeasured confounder and examining whether the control groups have 

different outcomes after controlling for measured confounders. We considered two control 

groups of men – (i) men who had professional, managerial, clerical, and sales occupations and 

(ii) men who had other non-agricultural occupations (manual labor, household, and domestic 

services, other and not working). Control group (i) had higher measured wealth and education 

(mean wealth quintile = 3.32; proportion with higher than secondary education = 31.4%) than 

control group (ii) (mean wealth quintile = 2.65; proportion with higher than secondary education 

= 9.7%) and likely higher unmeasured aspects of socioeconomic status, which could affect the 

outcome of interest – altitude-adjusted Hgb.  Control group (ii) has higher measured wealth and 

education than agricultural workers (mean wealth quintile = 2.39; proportion with higher than 

secondary education = 4.7%) but is closer to agricultural workers than to control group (i). We 

call control group (i) the better-off controls and control group (ii) the worse-off controls. A 

detailed summary of wealth index and education level by occupation is in Section 3 of the 

Supplementary Materials.18  To check the comparability of alternative control groups, we 

implemented four separate full matchings over the seven measured confounders for the following 

four comparisons: agricultural vs. all controls, agricultural vs. better-off controls, agricultural vs. 

worse-off controls, and worse-off vs. better-off. 

 

Permutation Inference 

 

To estimate the treatment effect of agricultural occupation on the outcome, altitude-adjusted Hgb 

levels, we conducted permutation inferences on the matched DHS samples. The tested null 
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hypothesis was that agricultural occupation would have no effect on men’s Hgb levels, and the 

alternative hypothesis was that agricultural occupation would lower men’s Hgb levels. To further 

reduce the bias for estimating the treatment effect due to measured confounding, we combined 

the techniques of permutation test and covariance adjustment – regressing men’s Hgb levels on 

the measured confounders and then conducting permutation tests on the residuals from matched 

sets.20,21 Specifically, we used Huber’s m-statistics for matched sets to calculate both the lower 

bounds and the upper bounds for the one-sided p-values23 (using the “senfm” function with 

default parameters in the R package “sensitivityfull”24) and the 95% upper confidence bound  

under the additive treatment effect model. We first conducted permutation tests for the overall 

effect on the whole matched sample. Then we tested country-specific effects for the seven 

matched DHS samples individually. We adjusted upper-bounded p-values from testing for the 

whole matched sample and the seven matched DHS samples to control the false discovery rate 

using the Benjamini-Hochberg approach.25,26 To check if the alternative control groups were 

comparable (to test for bias from unmeasured aspects of socioeconomic status as described 

above), we estimated the treatment effects of occupation on altitude-adjusted Hgb levels in each 

of the four comparisons (agricultural vs. all controls, agricultural vs. better-off controls, 

agricultural vs. worse-off controls, and worse-off vs. better-off.). Testing for the four 

comparisons followed an ordered hypothesis testing procedure which controls the familywise 

error rate for multiple testing at level .05.27 

 

Sensitivity Analysis 

 

The permutation inference results of our primary analysis assume there are no unmeasured 

confounders. We assessed how sensitive the results of our primary analysis were to violations of 

the no unmeasured confounding assumption. Using Huber’s m-statistics, we conducted 

sensitivity analyses first on the whole sample and then on each DHS country sample that was 

identified with statistically significant effects (p-value < 0.05) using the approach introduced by 

Rosenbaum.19 In the sensitivity analysis, we consider different possible values of the sensitivity 

parameter Γ which is, for two participants with the same measured confounders, the maximum 

the odds ratio for being an agricultural worker could be for one participant compared to the other 

because of unmeasured confounding variables. For example, if the unmeasured confounding 

consisted of HIV status, Γ would be the odds ratio that a person with HIV would be an 

agricultural worker compared to a person with the same measured confounders (i.e., age, BMI, 

education, marital status, religion, and wealth quintile) who does not have HIV.  If Γ = 1, then 

there is no unmeasured confounding while the more Γ departs from 1, the more unmeasured 

confounding there is. We cannot know Γ since it is determined by unobserved variables, but we 

can consider different possible Γ, compute both a lower bound and an upper bound for the p-

value that tests whether there is a treatment effect if that Γ were true, and continue until the p-

value upper bound is greater than 0.05 to determine the sensitivity value, the maximum amount 

of unmeasured confounding there could be and still obtain a significant effect of treatment. The 

larger the sensitivity value is, the more robust the study’s conclusions are to unmeasured 

confounding. We performed the sensitivity analysis using the R package “sensitivityfull”.  
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RESULTS 

 

Descriptive Statistics 

 

Table 1 summarizes the seven measured confounders among agricultural and non-agricultural 

workers in rural areas. In our study population, agricultural workers tended to be older and have 

slightly lower body mass index than non-agricultural workers. They were more likely to be 

married, have lower educational attainment, and fall in the bottom two wealth quintiles than non-

agricultural workers. Figure 1 displays the altitude-adjusted Hgb levels for both the agricultural 

and all control workers across seven DHS country samples before full matching. Altitude-

adjusted Hgb levels varied significantly by country. The median altitude-adjusted Hgb levels 

across all samples’ treated and all control groups were between 13.5 and 15.1 g/dL. 

 
TABLE 1. Mean of the seven measured confounders. Except for age, BMI, and degree of cluster rurality, we 

report the count (percentage) of agricultural and non-agricultural workers in each category. For age, BMI, and 

degree of cluster rurality, we report the mean (standard deviation). 

 

Correlate Agricultural Workers  

(n = 41180) 

Non-agricultural Workers  

(n = 55705) 

Age (years) 34.32 (11.04) 29.20 (10.99) 

BMI (kg/m^2) 20.99 (3.31) 21.20 (3.62) 

Degree of Cluster Rurality (%) 61.74 (23.75) 28.28 (23.01) 

Sample (n(%))   

  Ethiopia 2016 5829 (14.2) 2320 ( 4.2) 

  India 2015 29706 (72.1) 44542 (80.0) 

  Lesotho 2014 605 ( 1.5) 550 ( 1.0) 

  Namibia 2013 367 ( 0.9) 1727 ( 3.1) 

  Senegal 2010 1327 ( 3.2) 1187 ( 2.1) 

  Uganda 2016 2129 ( 5.2) 1908 ( 3.4) 

  Zimbabwe 2015 1217 ( 3.0) 3471 ( 6.2) 

Education (n(%))   

  None 10374 (25.2) 6402 (11.5) 

  Primary school 11087 (26.9) 9469 (17.0) 

  Secondary school 17778 (43.2) 32180 (57.8) 

  Higher education 1941 ( 4.7) 7654 (13.7) 

Marital Status (n(%))   

  Never married 9562 (23.2) 25170 (45.2) 

  Married/partnered 30578 (74.3) 29522 (53.0) 

  Formerly married 1040 ( 2.5) 1013 ( 1.8) 

Religion (n(%))   

  No religion 403 ( 1.0) 897 ( 1.6) 

  Muslim 6171 (15.0) 8547 (15.3) 

  Christian 9653 (23.4) 10063 (18.1) 

  Buddhist 563 ( 1.4) 644 ( 1.2) 

  Hindu 23151 (56.2) 33609 (60.3) 

  Jewish 1 ( 0.0) 5 ( 0.0) 

  Traditional 107 ( 0.3) 107 ( 0.2) 

  Other (Specified) 581 ( 1.4) 1114 ( 2.0) 

  Other 550 ( 1.3) 719 ( 1.3) 

Wealth quintile (n(%))   

  1st quintile 12025 (29.2) 11245 (20.2) 

  2nd quintile 11880 (28.8) 13519 (24.3) 
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  3rd quintile 9176 (22.3) 13875 (24.9) 

  4th quintile 5598 (13.6) 10716 (19.2) 

  5th quintile 2501 ( 6.1) 6350 (11.4) 

 

 

 

 
FIGURE. 1: Boxplots for altitude-adjusted Hgb (g/dL) by DHS samples. 

 

 

Result of Matching 

 

We calculated the standardized differences before and after matching for agricultural workers vs. 

all controls from seven DHS country samples respectively (Section 4 of the Supplementary 

Materials). Before matching, the absolute values of the standardized differences for most 

confounders were larger than 0.2 for most country samples, which indicates that the two groups 

were not adequately balanced. After matching, all the absolute values of the standardized 

differences were reduced below 0.2, suggesting adequate balances on the seven confounders was 

achieved. Matching for the comparisons of the agricultural workers vs. each control group and 

the comparison of control groups also achieved adequate balances. 

 

Effect of Agricultural Work 

 

Main results for estimating the treatment effects of agricultural occupation on altitude-adjusted 

Hgb are in Table 2. We calculated the 95% confidence intervals and p-values for testing the null 

hypothesis of no treatment effect for all country samples and after matching agricultural workers 
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with all controls. From Table 2, in our whole dataset after adjusting for potential confounding, 

we estimated the average effect of agricultural work on adjusted hemoglobin levels is -0.09 g/dL 

with a 95% upper confidence bound (UCB) of -0.06 g/dL. Among the seven countries’ samples, 

four countries had statistically significant (false-discovery-rate-adjusted p-value < 0.05) effects – 

Ethiopia (-0.13 g/dL; 95% UCB: -0.04 g/dL), India (-0.07 g/dL; 95% UCB: -0.04 g/dL), Lesotho 

(-0.30 g/dL; 95% UCB: -0.08 g/dL), and Senegal (-0.16 g/dL; 95% UCB: -0.02 g/dL). 

 
TABLE 2. Estimated effects of agricultural work on altitude-adjusted Hgb (g/dL) after matching agricultural 

workers with all controls by DHS samples. Point estimate (PE) of effect and 95% upper confidence bound (UCB). 

Single asterisks if the false discovery rate adjusted p-value upper bound is <0.05 and double asterisk if the false 

discovery rate adjusted p-value upper bound is <0.001.   

 

DHS Sample Number of 

Agricultural 

Workers 

Number of 

All Control 

Workers 

Hemoglobin 

Difference 

PE (95% UCB) 

Whole DHS Sample 41180 55705 -0.09 (-0.06) ** 

Ethiopia 2016 5829 2320 -0.13 (-0.04) * 

India 2015 29706 44542 -0.07 (-0.04) ** 

Lesotho 2014 605 550 -0.30 (-0.08) * 

Namibia 2013 367 1727 0.06 (0.28) 

Senegal 2010 1327 1187 -0.16 (-0.02) * 

Uganda 2016 2129 1908 -0.07 (0.04) 

Zimbabwe 2015 1220 3482 -0.04 (0.06) 

 

 

Test for Hidden Bias 

 

Table 3 shows the estimated treatment effects of agricultural occupations vs. occupations in 

multiple control groups and better-off occupations vs. worse-off occupations on male workers’ 

adjusted Hgb levels. Overall, agricultural workers had lower altitude-adjusted Hgb levels than 

each control group. All effects were significant using the ordered testing procedure. Agricultural 

workers had a more negative estimated average effect vs. better-off controls (-0.16 g/dL) than 

worse-off controls (-0.09 g/dL). The worse-off controls had significantly lower altitude-adjusted 

Hgb than the better-off controls (-0.08 g/dL; 95% UCB: -0.04 g/dL).  

 
TABLE 3. Estimated effects of agricultural work on altitude-adjusted Hgb (g/dL) after matching agricultural 

workers with all controls by treated and multiple controls for the whole DHS sample. Point estimate (PE) of 

effect and 95% % upper confidence bound (UCB). Single asterisk if the adjusted p-value upper bound (from 

ordered testing)  < 0.05, and two asterisks if the adjusted p-value upper bound < 0.001. 

 

 

Treated vs. Control Number of 

Treated 

Workers 

Number of 

Control 

Workers 

Hemoglobin 

Difference 

PE (95% UCB) 

Male agricultural workers  

vs. All Controls 

41180 55705 -0.09 (-0.06) ** 

Male agricultural workers  

vs. Better-off Controls 

41180 

 

10322 

 

-0.16 (-0.12) ** 

Male agricultural workers  

vs. Worse-off Controls 

41180 

 

45383 

 

-0.09 (-0.06) ** 

Worse-off Controls  45383 10322 -0.08 (-0.04) ** 
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vs. Better-off Controls  

 

 

Result of Sensitivity Analysis 

 

From Table 2, the whole sample consisted of all seven selected DHS samples and samples 

including Ethiopia, India, Lesotho, Senegal, and Uganda were respectively identified with 

statistically significant treatment effects. The result of sensitivity analysis for these samples is in 

Section 5 of the Supplementary Materials. For the whole sample, the sensitivity value of Γ to 

reach p-value upper bound 0.05 was 1.08. This means that if there were an unmeasured 

confounder that increases the odds of being an agricultural worker by 7%, we still have evidence 

(p-value upper bound < 0.05) that being an agricultural worker causes a reduction in Hgb. For 

the four country samples, the sensitivity values Γ to reach p-value upper bound 0.05 were 

between 1.03 and 1.10. Lesotho had the highest sensitivity value (1.10), and Senegal had the 

lowest sensitivity value (1.03). 

 

 

DISCUSSION 

 

In this study of rural men participating in DHS surveys in six African and one Asian country, we 

found a consistent and modest effect of agricultural work on Hgb, indicating that agricultural 

workers have lower Hgb levels than other men residing in rural areas. This effect held up when a 

quasi-experimental device – multiple control groups – was used to examine concerns about 

unmeasured confounding. Since kidney dysfunction may be one potential explanation for our 

finding, we posit that our data provide rationale for systematic surveys of kidney function by 

occupation, especially in countries with large proportions of populations engaged in agricultural 

work. 

 

Our observed effect size is modest (Hgb lower by ~ 0.1 g/dL among agricultural workers versus 

other rural men), but it is concordant with effect sizes described in prior studies among persons 

with mild kidney dysfunction.6,7,8,9 We expect participation in DHS to be subject to survivor bias, 

and thus few, if any, persons who develop advanced kidney disease and substantial anemia, are 

likely present in our analytic cohort. Furthermore, our findings were robust to consideration of 

multiple control groups of occupations that tend to have higher and lower socioeconomic status, 

and a modest amount of unmeasured confounding. 

 

Hgb level is an admittedly imperfect surrogate marker of kidney dysfunction. That said, few 

population-based data exist on kidney function and incidence of kidney dysfunction in 

agricultural communities. Even among the best described hotspots of “CKDu”, systematic 

surveys of prevalence and incidence of kidney dysfunction are lacking. Without better mapping 

of affected regions and populations, identification – and prevention – of risk factors for 

development of kidney dysfunction in marginalized populations is unlikely. The International 

Society of Nephrology has put forth a simple minimal data set inclusive of serum creatinine and 

urine dipsticks to assist with integration of kidney function in population surveys.28 
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Laudable investigative efforts have focused on the best-described hotspots of CKDu in Sri Lanka 

and in Mesoamerican countries.2,3,29,30,31 However, the cause of CKDu remains unclear for many 

reasons, including due to the potentially long lag between exposure and disease, lack of 

advanced research infrastructure, and political unrest. If a broader link between agricultural work 

and CKDu is confirmed – as has been suggested as plausible by at least two studies from the US 

as well32,33 – this could increase the desirability of in-depth investigations into cause. Our 

analysis is an attempt to evaluate the possibility of this broader link, using available data, and 

supports further direct investigations of kidney function by occupation. 

 

The limitations of our study include limited data on confounders of the relationship between 

occupation and hemoglobin including water quality or HIV status. Either the DHS did not 

measure these factors or there were too many missing values for the sample surveys we selected. 

In addition, since the DHS did not separately categorize 16,798 skilled and unskilled manual 

laborers, we were not able to put them into different alternative control groups for the four 

comparisons. However the two primary confounders we expected to influence the relationship 

between occupation and hemoglobin levels were nutrition and socioeconomic status. We 

accounted for these major confounders using body mass index, marital status, and religion 

(which can influence diet) for the former, and wealth index, educational level, and degree of 

rurality for the latter. Furthermore, our matching procedure resulted in near perfectly balanced 

distribution of these confounders among the agricultural workers and their non-agricultural 

worker counterparts.  

 

We recommend that DHS and other population-based surveys add measurements about 

agricultural workers’ kidney function assessments in their future standard surveys for African 

and Asian countries. Further studies are warranted investigating the link between agricultural 

work and kidney dysfunction in the four countries – Ethiopia, India, Lesotho, and Senegal – 

where we did find evidence of lower Hgb among agricultural workers.  
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