
Accurately Estimating Total COVID-19 Infections using
Information Theory

Jiaming Cui1, Arash Haddadan2, A S M Ahsan-Ul Haque3, Jilles Vreeken4, Bijaya
Adhikari5, Anil Vullikanti2,3, and B. Aditya Prakash1,*

1College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, US
2Biocomplexity Institute, University of Virginia, Charlottesville, VA 22904, US

3Department of Computer Science, University of Virginia, Charlottesville, VA 22904, US
4CISPA Helmholtz Center for Information Security, Saarbrücken 66123, Germany

5Department of Computer Science, The University of Iowa, Iowa City, IA 52242, US

Abstract

One of the most significant challenges in the early combat against COVID-19 was the dif-
ficulty in estimating the true magnitude of infections. Unreported infections drove up disease
spread in numerous regions, made it very hard to accurately estimate the infectivity of the
pathogen, therewith hampering our ability to react effectively. Despite the use of surveillance-
based methods such as serological studies, identifying the true magnitude is still challenging
today. This paper proposes an information theoretic approach for accurately estimating the
number of total infections. Our approach is built on top of Ordinary Differential Equations
(ODE) based models, which are commonly used in epidemiology and for estimating such infec-
tions. We show how we can help such models to better compute the number of total infections
and identify the parameterization by which we need the fewest bits to describe the observed
dynamics of reported infections. Our experiments show that our approach leads to not only
substantially better estimates of the number of total infections but also better forecasts of infec-
tions than standard model calibration based methods. We additionally show how our learned
parameterization helps in modeling more accurate what-if scenarios with non-pharmaceutical
interventions. Our results support earlier findings that most COVID-19 infections were un-
reported and non-pharmaceutical interventions indeed helped to mitigate the spread of the
outbreak. Our approach provides a general method for improving epidemic modeling which is
applicable broadly.

*To whom correspondence should be addressed. E-mail: badityap@cc.gatech.edu



Introduction

The COVID-19 pandemic has emerged as one of the most formidable public health challenges in
recent history. By Nov 1, 2022, there were already more than 98 million reported infections and
1.07 million deaths in the United States alone. Worldwide, the reported infections summed to 636
million with at least 6.61 million deaths [19]. The devastating effects of COVID-19 extends to the
economy as well. For example, in the US, the unemployment rate peaked at 15.8 percent in April
2020 [6], and US GDP contracted at a 3.5% annualized rate for 2020 [1]. Similar economic impacts
have been observed worldwide.

One of the most significant challenges in the early combat against COVID-19 was estimating
the number of total infections. A significant number of COVID-19 infections were unreported, due
to various factors such as the lack of testing and asymptomatic infections [13, 11, 57, 55, 39]. The
inability in estimating these unreported infections allowed them to drive up disease transmission
in many regions. For example, phylogenetic studies revealed that COVID-19 had locally spread
in Washington state before early 2020, when active community surveillance was implemented [14].
There were only 23 reported infections in five major U.S. cities by March 1, 2020, but it has been
estimated that there were in fact more than 28,000 total infections by then [5]. Similar trends
were observed in other countries, such as in Italy, Germany, and the UK [60]. Despite having
more advanced surveillance techniques such as serological studies, estimating the total number of
infections continues to be a challenge for COVID-19 response even today [8, 30].

An accurate estimation of the number of total infections is a fundamental epidemiological ques-
tion and critical for pandemic planning and response. Not withstanding its importance, there is
not even a commonly agreed upon metric. One proposal is the case ascertainment rate, which is
defined as the ratio of reported symptomatic infections to the actual number of symptomatic infec-
tions [52]. Another popular proposal is the reported rate αreported, which is defined as the ratio of
reported infections to total infections [46]. This definition includes asymptomatic infections, which
are known to contribute substantially to community transmission [58, 41]. In this paper, we focus
on this particular measure.

However, estimating the reported rate is challenging, and as a result all current methods have
their limitations. One of the most effective current methods to identify the reported rate in a region
is through large-scale serological studies [56, 26, 64]. These surveys use blood tests to identify the
prevalence of antibodies against SARS-CoV-2 in a large population. The CDC COVID Data Tracker
portal [2, 26] summarizes the results of serological studies conducted by commercial laboratories
at a national level as well as at 10 specific sites. For example, the estimated reported rate was at
most 0.1 in Minneapolis and South Florida as of April 2020. This means that there were at least 10
times more total infections than reported infections. While serological studies can give an accurate
estimation, they are expensive and are not sustainable in the long run [4]. Furthermore, it is also
challenging to obtain real-time data using such studies since there are unavoidable delays between
sample collection and laboratory tests [2, 26]. Additional difficulties include sampling biases that
make it necessary to use carefully designed heuristics to account for them [9]. Other methods include
exploiting existing surveillance systems of related diseases like influenza, and using them to estimate
symptomatic infections [40]. However, this can also be unreliable and requires ad-hoc corrections
to account for the similarities between COVID-19 and influenza symptoms.

In the face of these challenges, data scientists and epidemiologists have devoted much time and
effort to estimate the reported rate αreported through epidemiological models OM. By now, there
exist carefully constructed models that capture the transmission dynamics of COVID-19 well [39,
52, 12, 50, 36, 38, 61, 25, 33, 62, 63, 17, 43]. In general, an epidemiological model OM has a
set of parameters Θ that we estimate from observed data using a so-called calibration procedure,
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Figure 1: Overview of our problem and methodology. (A) We visualize the idea of reported
rates using the iceberg. The visible portion above water are the reported infections, which is
only a fraction of the whole iceberg representing total infections. Light green corresponds to the
unreported infections estimated by typical current practice used by researchers (182 in this example).
We call it as the basic approach, or BaseInfer. In contrast, dark green corresponds to the more
accurate and much larger 301 unreported infections found by our approach MdlInfer. (B) The
usual practice is to calibrate an epidemiological model to reported data and compute the reported
rate from the resultant parameterizaion of the model. Here, an SEIR-style model with explicit
compartments for reported-vs-unreported infection is shown in the figure as an example. (C) Our
new approach MdlInfer instead aims to compute a more accurate reported rate by finding a ‘best’
parameterization for the same epidemiological model (i.e., SEIR-style model in this example) using
a principled information theoretic formulation - two-part ‘sender-receiver’ framework. Assume that
a hypothetical Sender S wants to transmit the reported infections as the Data to a Receiver R in
the cheapest way possible. Hence S will find/solve for the best D∗, intuitively, the Model that
takes the fewest number of bits to encode the Data. Using D∗, we can find the best Θ∗ by exploring
a smaller search space.

Calibrate. In practice, the data we use for calibration can be the time series of the number
of reported infections, which we call Dreported. To estimate the number of total infections, these
models often explicitly include reported rate αreported as one of their parameters, or include multiple
parameters that jointly account for it. There are many calibration procedures commonly used in
literature, such as RMSE-based [23] or Bayesian approaches [33, 25].

We call the above general methodology the basic approach to estimate the reported rate, or
BaseInfer for short. It takes the epidemiological model OM, a calibration procedure Calibrate,
and observed data Dreported as input. The output of BaseInfer is then a baseline parameteriza-
tion Θ̂ and, by extension, an estimated reported rate α̂reported. Calibrating a parameterization is
generally a complex, high-demensional problem, since Θ̂ consists of multiple interacting parameters.
To make matters worse, there exist many possible parameterizations that show similar performance
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(e.g. in RMSE, likelihood) yet correspond to vastly different reported rates. BaseInfer cannot
select between these competing parameterizations in a principled way: the parameterization Θ̂ it
results in may or may not overfit the reported infections and may or may not predict future in-
fections well. One method for selecting them is to take a Bayesian approach. That is, we choose
a prior distribution, and then select the best parameterization that maximizes the posterior prob-
ability. Choosing such a prior, however, is ad-hoc and does not generalize well across different
models OM. As we will see in the experimental evaluation, minor differences in estimates of re-
ported rates can indeed lead to very different forecasts of future trends and therewith intervention
policy recommendations.

Instead, we propose a new information theory-based approach named MdlInfer. It takes the
same input as BaseInfer, but uses a principled approach to determine the best parameterization
Θ∗. It is based on the following central intuition: Suppose an oracle also gives us the time series of
the number of total infections D in additional to the already known reported number of infections
Dreported, and we are asked to describe Dreported as succinctly as possible. As we know both D
and Dreported, it is trivial to estimate α′

reported. If we know D and α′
reported, it is trivial to describe

Dreported, as it is simply D× α′
reported plus a little bit of noise. Now to most succinctly describe D,

we have to calibrate OM to obtain Θ′. The only things we now have to describe are Θ′, α′
reported,

the (small) errors that OM makes in predicting D, and the (small) errors that we make predicting
Dreported using D and α′

reported. In practice, we are of course not given D, but the key idea of
this paper is to estimate D as a latent variable such that we can most succinctly describe (most
accurately reconstruct) the dynamics of Dreported.

In practice, we need both a way of measuring how well a latent Model (i.e., D and its cor-
responding α′

reported) describes the Data (i.e., reported infections Dreported), as well as a way to
find the best such Model. To do so, the Minimum Description Length (MDL) principle provides
a statistically sound approach. MDL has been widely used for numerous optimization problems
ranging from network summarization [34], causality inference [16], and failure detection in critical
infrastructures [10]. MDL has also previously been used for some epidemiological problems, mainly
in inferring patient-zero and associated infections in cascades over contact networks [49]. However,
we are the first to propose an MDL-based approach on top of ODE-based epidemiological models,
which are harder to formulate and optimize.

Specifically, we use two-part MDL (aka sender-receiver framework) consisting of hypothetical
actors S and R: Sender S has the Data and wants to transmit it to receiver R using as few bits as
possible [24]. Hence, sender S searches for the best possible Model, which minimizes the overall
cost of encoding and transmitting both the Model and the Data given the Model. Following
the convention in information theory, we use L(Model) to denote the number of bits required to
encode the Model; and L(Data|Model) to denote the number of bits required to encode the
Data, Dreported, given the Model. The overall objective of our optimization problem is to infer
an optimal Model∗, which minimizes L(Model) + L(Data|Model). To put MDL to practice
for our problem, we carefully design our MDL cost to minimize the discrepancy in fitting Dreported.
This cost ensures the generalizability of our learned D∗ and α∗

reported - it can avoid overfitting on
Dreported and predict the future reported infections well. Our later experiments exactly show this.
Our approach, MdlInfer, can be applied to any ODE model since two-part MDL does not assume
about the nature of the Data or the Model.

We compare MdlInfer and BaseInfer using two different ODE-based epidemiological models:
SAPHIRE [25] and SEIR + HD [33] as OM. Following their literature [25, 33], we use Markov Chain
Monte Carlo (MCMC) as the calibration procedure Calibrate for SAPHIRE and iterated filtering
(IF) for SEIR + HD, both of with are Bayesian approaches[29]. Both these epidemiological models
have previously been shown to perform well in fitting reported infections and provided insight
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that was beneficial for the COVID-19 response. SAPHIRE focuses on two key features of the
outbreak: high covertness and high transmissibility that drove the outbreak of COVID-19 in Wuhan.
SEIR + HD investigates how non-pharmaceutical interventions like social distancing will be needed
to maintain epidemic control. These models are broadly representative to show that MdlInfer
gives consistent performance across multiple epidemiological models with different dynamics. The
experiments clearly show that our proposed MDL-based approach MdlInfer performs superior to
the state of the art. To illustrate, we give an example in Fig. 1. By March 11, 2020, the Minneapolis
Metro Area had only 16 COVID-19 reported infections. BaseInfer estimated 182 total infections,
which are colored as light green in the iceberg. On the other hand, our MdlInfer gives an estimate
of 301 total infections shown below the sea level, which is closer to the total infections estimated from
serological studies [26, 2]. Additionally, MdlInfer also leads to better fits and future projections
on reported infections. We also demonstrate that MdlInfer can aid policy making by analyzing
counter-factual non-pharmaceutical interventions, while inaccurate BaseInfer estimates lead to
wrong non-pharmaceutical intervention conclusions.

Results

Next, we present our empirical findings on a large set of experiments in different geographical regions
and time periods. We choose 8 regions and periods based on the severity of the outbreak and the
availability of serological studies and symptomatic surveillance data. In each region, we divide the
timeline into two time periods: (i) observed period, when only the number of reported infections
are available, and both BaseInfer and MdlInfer are used to learn the baseline parameterization
(BaseParam) Θ̂ and MDL parameterization (MdlParam) Θ∗, and (ii) forecast period, where we
evaluate the forecasts generated by the parameterizations learned in the observed period. To handle
the time-varying reported rates, we divide the observed period into multiple sub-periods and learn
different reported rates for each sub-period separately.

(A) Estimating total infections: MdlInfer estimates total infections more accurately
than BaseInfer

Here, we use the point estimates of the total infections calculated from serological studies as the
ground truth (black dots shown in Fig. 2). We call it SeroStudyTinf . We also plot MdlInfer’s
estimation of total infections, MdlParamTinf , in the same figure (red curve). To compare the
performance of MdlInfer and BaseInfer with SeroStudyTinf , we use the cumulative value
of estimated total infections. Note that values from the serological studies are not directly com-
parable with the total infections because of the lag between antibodies becoming detectable and
infections being reported [2, 26]. In Fig. 2, we have already accounted for this lag following CDC
study guidelines [2, 26] (See Methods section for details). The vertical black lines shows a 95%
confidence interval for SeroStudyTinf . The blue curve represents total infections estimated by
BaseInfer, BaseParamTinf . As seen in the figure, MdlParamTinf falls within the confidence
interval of the estimates given by serological studies. Significantly, in Fig. 2B and Fig. 2F for
South Florida, BaseInfer for SAPHIRE model [25] overestimates the total infections, while for
SEIR + HD model underestimates the total infections. However, MdlInfer consistently estimates
the total infections correctly. This observation shows that as needed, MdlParamTinf can improve
upon the BaseParamTinf in either direction (i.e., by increasing or decreasing the total infections).
Note that the MdlParamTinf curves from both models are closer to the SeroStudyTinf even
when the BaseParamTinf curves are different. The results of better accuracy in spite of various
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Figure 2: MdlInfer (red) gives a closer estimation of total infections to serological
studies (black) than BaseInfer (blue) on various geographical regions and time pe-
riods. Note that both approaches try to fit the serological studies without being informed with
them. (A)-(H) The red and blue curves represent MdlInfer’s estimation of total infections,
MdlParamTinf , and BaseInfer’s estimation of total infections, BaseParamTinf , respectively.
The black point estimates and confidence intervals represent the total infections estimated by sero-
logical studies [2, 26], SeroStudyTinf . (A)-(D) use SAPHIRE model and (E)-(H) use SEIR + HD
model. (I)-(J) The performance metric, ρTinf , comparing MdlParamTinf against BaseParamTinf

in fitting serological studies is shown for each region. (I) is for SAPHIRE model in (A)-(D), and (J)
is for SEIR + HD model in (E)-(H). Here, the values of ρTinf are 1.20, 5.47, 7.21, and 1.79 in (I),
and 2.62 ,1.22, 6.39, and 1.58 in (J). Note that ρTinf larger than 1 means that MdlParamTinf is
closer to SeroStudyTinf than BaseParamTinf . We show more experiments in the Supplementary
Information.

geographical regions and time periods show that MdlInfer is consistently able to estimate total
infections more accurately.

To quantify the performance gap between the two approaches, we first compute the root mean
squared error (RMSE) between SeroStudyTinf and BaseParamTinf . We also compute the same
between SeroStudyTinf and MdlParamTinf . We then compute the ratio, ρTinf , of the two RMSE
errors as Rmse(BaseParamTinf ,SeroStudyTinf)

Rmse(MdlParamTinf ,SeroStudyTinf)
. Note that the values of ρTinf being greater than 1 implies

that the MdlParamTinf is closer to SeroStudyTinf estimates than BaseParamTinf . In Fig. 2I
and Fig. 2J, we plot ρTinf . Overall, the ρTinf values are greater than 1 in Fig. 2I and Fig. 2J, which
indicates that MdlInfer performs better than BaseInfer. Note that even when the value of ρTinf

is 1.20 for Fig. 2A, the improvement made by MdlParamTinf over BaseParamTinf in terms of
RMSE is about 12091. Hence, one can conclude that MdlInfer is indeed superior to BaseInfer,
when it comes to estimating total infections. We show more experiments in the Supplementary
Information.
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Figure 3: MdlInfer (red) gives a closer estimation of reported infections (black) than
BaseInfer (blue) on various geographical regions and time periods. We use the re-
ported infections in the observed period as inputs and try to forecast the future reported infec-
tions (forecast period). (A)-(H) The vertical grey dash line divides the observed period (left) and
forecast period (right). The red and blue curves represent MdlInfer’s estimation of reported
infections, MdlParamRinf , and BaseInfer’s estimation of reported infections, BaseParamRinf ,
respectively. The black plus symbols represent the reported infections collected by the New York
Times (NYT-Rinf). (A)-(D) use SAPHIRE model and (E)-(H) use SEIR + HD model. (I)-(J)
The performance metric, ρRinf , comparing MdlParamRinf against BaseParamRinf in fitting re-
ported infections is shown for each region. (I) is for SAPHIRE model in (A)-(D), and (J) is for
SEIR + HD model in (E)-(H). Note that ρRinf larger than 1 means that MdlParamRinf is closer to
NYT-Rinf than BaseParamRinf . We show more experiments in the Supplementary Information.

(B) Estimating reported infections: MdlInfer leads to better fit and projection than
BaseInfer at different stages of the COVID-19 epidemic

Here, we first use the observed period to learn the parameterizations. We then forecast the future
reported infections (i.e., forecast periods), which were not accessible to the model while training.
The results are summarized in Fig. 3. In Fig. 3A to Fig. 3H, the vertical grey dash line divides
the observed and forecast period. The black plus symbols represent reported infections collected
by the New York Times, NYT-Rinf. The red curve represents MdlInfer’s estimation of reported
infections, MdlParamRinf . Similarly, the blue curve represents BaseInfer’s estimation of re-
ported infections, BaseParamRinf . Note that the curves to the right of the vertical grey line are
future predictions. As seen in Fig. 3, MdlParamRinf aligns more closely with NYT-Rinf than
BaseParamRinf , indicating the superiority of MdlInfer in fitting and forecasting reported infec-
tions.

We define a performance metric ρRinf as Rmse(BaseParamRinf ,NYT-Rinf)
Rmse(MdlParamRinf ,NYT-Rinf) to compare MdlParamRinf

against BaseParamRinf in a manner similar to ρTinf . In Fig. 3I and Fig. 3J, we plot the ρRinf for
the observed and forecast period. In both periods, we notice that the ρRinf is close to or greater
than 1. This further shows that MdlInfer has a better or at least closer fit for reported infec-
tions than BaseInfer. Additionally, the ρRinf for the forecast period is even greater than ρRinf
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Figure 4: MdlInfer (red) gives a closer estimation of the trends of symptomatic
rate (black) than BaseInfer (blue) on various geographical regions and time peri-
ods. (A)-(D) The red and blue curves represent MdlInfer’s estimation of symptomatic rate,
MdlParamSymp, and BaseInfer’s estimation of symptomatic rate, BaseParamSymp, respec-
tively. They use the y-scale on the left. The black points and the shaded regions are the point
estimate with standard error for RateSymp (the COVID-related symptomatic rates derived from
the symptomatic surveillance dataset [51, 53]). They use the y-scale on the right. Note that we focus
on trends instead of the exact numbers, hence MdlParamSymp/BaseParamSymp, and RateSymp

may scale differently. We show more experiments in the Supplementary Information.

for the observed period, which shows that MdlInfer performs even better than BaseInfer while
forecasting.

Note that Fig. 3A, C, E, G correspond to the early state of the COVID-19 epidemic in spring
and summer 2020, and Fig. 3B, D, F, H correspond to fall 2020. We can see that MdlInfer
performs well in estimating temporal patterns at different stages of the COVID-19 epidemic. We
show more experiments in the Supplementary Information.

(C) Estimating symptomatic rate trends: MdlInfer estimates the symptomatic rate
trends more accurately than BaseInfer

We validate this observation using Facebook’s symptomatic surveillance dataset [51]. We plot
MdlInfer’s and BaseInfer’s estimated symptomatic rate over time and overlay the estimates
and standard error from the symptomatic surveillance data in Fig. 4. The red and blue curves are
MdlInfer’s and BaseInfer’s estimation of symptomatic rates, MdlParamSymp and BaseParamSymp

respectively. Note that SAPHIRE model does not contain states corresponding to the symp-
tomatic infections. Therefore, we only focus on SEIR + HD model. We compare the trends of
the MdlParamSymp and BaseParamSymp with the symptomatic surveillance results. We focus
on trends rather than actual values because the symptomatic rate numbers could be biased [51]
(see Methods section for a detailed discussion) and therefore cannot be compared directly with
model outputs like what we have done for serological studies. As seen in Fig. 4, MdlParamSymp

captures the trends of the surveyed symptomatic rate RateSymp (black plus symbols) better than
BaseParamSymp. We show more experiments in the Supplementary Information.

To summarize, these three sets of experiments in (A), (B) and (C) together demonstrate that
BaseInfer fail to accurately estimate the total infections including unreported ones. On the other
hand, MdlInfer estimates total infections closer to those estimated by serological studies and
better fits reported infections and symptomatic rate trends.
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Figure 5: (A) MdlInfer estimates cumulative reported rate more accurately than BaseInfer:
The blue and red curve represent the cumulative reported rate estimated by BaseInfer,
BaseParamRate, and by MdlInfer, MdlParamRate, respectively. The black point estimate
and its confidence interval represent the cumulative reported rate SeroStudyRate estimated by
serological studies [2, 26]. Note that both approaches try to fit the SeroStudyRate without being
informed with them. The results reveal that a large majority of COVID-19 infections were unre-
ported. (B) MdlInfer reveals that non-pharmaceutical interventions (NPI) on asymptomatic and
presymptomatic infections are essential to control the COVID-19 epidemic. Here, the red curve and
other five curves represent the MdlInfer’s estimation of reported infections for no NPI scenario
and 5 different NPI scenarios described in the Results section. The vertical grey dash line divides
the observed period (left) and forecast period (right). (C) Inaccurate estimation by BaseInfer
may lead to wrong non-pharmaceutical intervention conclusions. The blue curve and other five
curves represent the BaseInfer’s estimation of reported infections for no NPI scenario and the
same 5 scenarios in (B).

Evaluating the effect of non-pharmaceutical Interventions

We have already shown that MdlInfer is able to estimate the number of total infections accurately.
In the following three observations, we show that such accurate estimations are important for
evaluating the effect of non-pharmaceutical interventions.

(D) MdlInfer reveals that a large majority of COVID-19 infections were unreported

We compute the cumulative reported rate MdlParamRate measured by the ratio of the cumulative
value of reported infections to the total infections estimated by MdlInfer over time and plotted it
for Minneapolis-Spring-20 in Fig. 5A. The figure shows that the MdlParamRate increases in early
March, and then gradually decreases. This observation is explained by the community spread-driven
COVID-19 outbreaks that were not reported until early March, which fits earlier studies [40].

(E) Non-pharmaceutical interventions on asymptomatic and presymptomatic infections
are essential to control the COVID-19 epidemic

Our simulations show that non-pharmaceutical interventions on asymptomatic and presymptomatic
infections are essential to control COVID-19. Here, we plot the simulated reported infections of
MdlParam in Fig. 5B (red curve). We then repeat the simulation of reported infections for 5
different scenarios: (i) isolate just the reported infections, (ii) isolate just the symptomatic infec-
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tions, and isolate symptomatic infections in addition to (iii) 25%, (iv) 50%, and (v) 75% of both
asymptomatic and presymptomatic infections. In our setup, we assume that the infectivity reduces
by half when a person is isolated. As seen in Fig. 5B, when only the reported infections are isolated,
there is almost no change in the “future” reported infections. However, when we isolate both the
reported and symptomatic infections, the reported infections decreases significantly. Even here, the
reported infections are still not in decreasing trend. On the other hand, non-pharmaceutical inter-
ventions for some fraction of asymptomatic and presymptomatic infections make reported infections
decrease. Thus, we can conclude that non-pharmaceutical interventions on asymptomatic infections
are essential in controlling the COVID-19 epidemic.

(F) Accuracy of non-pharmaceutical intervention simulations relies on the good esti-
mation of parameterization

Next, we also plot the simulated reported infections generated by BaseInfer in Fig. 5C (blue
curve). As seen in the figure, based on BaseInfer, we can infer that only non-pharmaceutical
interventions on symptomatic infections are enough to control the COVID-19 epidemic. However,
this has been proven to be incorrect by prior studies and real-world observations [41]. Therefore, we
can conclude that the accuracy of non-pharmaceutical intervention simulation relies on the quality
of the learned parameterization.

Discussion and Future Work

This study proposes MdlInfer, a data-driven model selection approach that automatically esti-
mates the number of total infections using epidemiological models. Our approach leverages the
information theoretic Minimum Description Length (MDL) principle to select total infections that
“best describe” the observed outbreak. Our approach addresses several gaps in current practice
including the long-term infeasibility of serological studies [26], and ad-hoc assumptions in epidemi-
ological models [33, 39, 44, 25].

Overall, our results show that MdlInfer estimates total infections at various geographical loca-
tions and different epidemiological models more accurately than BaseInfer from both directions,
i.e., it corrects both over- and under-estimates. For example, compared to BaseInfer, we correctly
estimate 55719 more infections by April 1 for the SEIR + HD model in Fig. 2F, and 87636 fewer
infections for the SAPHIRE model in Fig. 2B for South Florida-Spring-20. We also show that
MdlInfer leads to a better fit of the reported infections in the observed period and more accurate
forecasts for the forecast period than BaseInfer. We reveal that a large majority of COVID-19 in-
fections were unreported, where non-pharmaceutical interventions on unreported infections can help
to mitigate the COVID-19 outbreak. We also show that MdlInfer estimates more accurate symp-
tomatic rate trends than BaseInfer. Additionally, our results show consistent performance with
respect to the reported infections and serological studies on both SAPHIRE and SEIR + HD model.
We also show that MdlInfer identifies the ground truth parameters better than BaseInfer (see
Supplementary Information section for details). As an aside, BaseInfer may also give uncertainty
estimates for their calibrated parameterizations. Our framework MdlInfer can be adapted to
generate such estimates as well (see Supplementary Information section for a demonstration).

The MdlInfer framework is likely to be helpful in the surveillance of COVID-19 in the near
future, and for future epidemics. Even with the U.S. returning to normalcy, surveillance of the
pandemic is still essential for public health. The daily incidence of COVID-19 has decreased from
early 2021 to summer 2021, according to the CDC COVID Data Tracker portal [7, 35]. However, new
variants of the SARS-CoV-2 (e.g., the Delta and Omicron variants) have been spreading rapidly [37,
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48, 21]. Testing for these new variants and large-scale surveillance via laboratory tests may be
limited and less systematic than what was done for COVID-19 before. In such settings, using our
MdlInfer framework, epidemiologists and policymakers can improve the accuracy of estimates of
total infections (without large-scale serological studies), as well as forecasts of their models.

One of the limitations of our work is that the benefits of using MdlInfer depends on the
suitability of the epidemiological model. If the epidemiological model is not expressive enough for
the observed data, then the gains from MdlInfer may not be significant. As a future work, it may
be helpful to adapt MdlInfer to measure the quality of an epidemiological model. We also note
that MdlInfer is built on ODE-based epidemiological models; other kinds of epidemic models, e.g.,
agent-based models [42, 28, 59, 18, 45], are more suitable in some settings. It would be interesting
to extend MdlInfer to incorporate such models. Finally, there is significant population or spatial
heterogeneity in disease outcomes [15, 31], e.g., differences in severity rate or mortality rate, when
infected with COVID-19, for different age groups [22, 27], which has not been considered in our
work.

To summarize, MdlInfer is a robust data-driven method to accurately estimate total infec-
tions, which will help data scientists, epidemiologists, and policy-makers to further improve existing
ODE-based epidemiological models, make accurate forecasts, and combat the ongoing COVID-19
pandemic. More generally, MdlInfer opens up a new line of research in epidemic modeling using
information theory.

Materials and Methods

Data

Datasets

We use the following publicly available datasets for our study:

1. New York Times reported infections [3]: This dataset (NYT-Rinf) consists of the
daily time sequence of reported COVID-19 infections Dreported and the mortality Dmortality

(cumulative values) for each county in the US starting from January 21, 2020 to current.

2. Serological studies [26, 2]: This dataset consists of the point and 95% confidence interval
estimates of the prevalence of antibodies to SARS-CoV-2 in 10 US locations every 3–4 weeks
from March to July 2020. For each location, CDC works with commercial laboratories to col-
lect the blood specimens in the population and test them for antibodies to SARS-CoV-2. Each
specimen collection period ranges from 6 to 14 days. As suggested by prior work [32, 47], these
serological studies have high sensitivity to antibodies for 6 months after infections. Hence,
using the prevalence and total population in one location, we can compute the estimated total
infections SeroStudyTinf for the past 6 months (i.e., from the beginning of the pandemic
since January 2020). However, this SeroStudyTinf can not be compared with the epidemi-
ological model estimated total infection numbers directly. The reasons are (i) the antibodies
may take 10 to 14 days delay to be detectable after infection [65, 54] and (ii) the 6-14 range
period for specimen collection as mentioned before. To account for this, we compare the
SeroStudyTinf numbers with the MdlInfer and BaseInfer estimated total infections of 7
days prior to the first day of specimen collection period as suggested by the CDC serological
studies work [26].

Cui. et al · 11



3. Symptomatic surveillance [51, 53]: This dataset consists of point estimate RateSymp and
standard error of the COVID-related symptomatic rate for each county in the US starting from
April 6, 2020 to date. The survey asks a series of questions on randomly sampled social media
(Facebook) users to estimate the percentage of people who have a COVID-like symptoms such
as the fever along with cough or shortness of breath or difficulty breathing on a given day.
However, there are several caveats such as they could not cover all symptoms of COVID-19
and these symptoms can be also caused by many other conditions, due to which they are not
expected to be unbiased estimates for the true symptomatic rate [51]. Besides, as the original
symptomatic surveillance data is at a county level, we sum up the numbers to compute the
RateSymp and focus on trends instead of the exact numbers.

Our Approach

Two-part sender-receiver framework

In this work, we use two-part sender-receiver framework. The conceptual goal of the framework is
to transmit the Data from the possession of the hypothetical sender S to the hypothetical receiver
R. We assume the sender does this by first sending a Model and then sending the Data under this
Model. In this MDL framework, we want to minimize the number of bits for this process. We do
this by identifying the Model that encodes the Data such that the total number of bits needed to
encode both the Model and the Data is minimized. Hence our cost function in the total number
of bits needed is composed of two parts: (i) model cost L(Model): The cost in bits of encoding
the Model and (ii) data cost L(Data|Model): The cost in bits of encoding the Data given the
Model. Intuitively, the idea is that a good Model will lead to a fewer number of bits needed to
encode both Model and Data. We formulate the general MDL optimization problem as follows:
Given the Data, L(Model), and L(Data|Model), find Model∗ such that

Model∗ = arg min
Model

L(Model) + L(Data|Model) (1)

In our situation, the Data is the reported COVID-19 infections Dreported: it is the only real-
world data given to us. Note that total infections are not directly observed. As described in the
introduction section, the Model is intuitively (D,α′

reported). Here D refers to a candidate total
infections time series, and α′

reported is the corresponding reported rate. Specifically, we calibrate OM

on (D,Dreported) using Calibrate to get the "candidate" parameterization Θ
′ , and then compute

α′
reported from Θ

′ . Further, we choose to also add Θ̂ estimated by BaseInfer, making our Model to
be (D,Θ

′
, Θ̂). There are alternative Models that can be considered, but we choose this Model =

(D,Θ
′
, Θ̂) and explain more in the Supplementary Information. Note that as two-part MDL (and

MDL in general) does not assume the nature of the Data or the Model, our MdlInfer can be
applied to any ODE model. We have also discussed intuitive advantages of the MdlInfer over
BaseInfer briefly in the introduction section (see Supplementary Information for more details).
Next, we give more details how to formulate our problem of estimating total infections D.

MDL formulation

First, we need to introduce some notations. Given an epidemiological model OM and the paramter-
ization Θ̂ estimated by BaseInfer, we can compute the reported infections. However, this is only
an estimate of the reported infections rather than the exact Dreported. This is because even though
we have already calibrated OM using Dreported, the calibration cannot be perfect, and there will be
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differences between these estimated reported infections and Dreported. Here, we term this estimated
reported infections as Dreported(Θ̂). We can also estimate the total infections D(Θ̂) for OM in the
same way. Similarly, we have the Dreported(Θ

′
) and D(Θ

′
) for Θ

′ . As described in the introduction
section, we can also calculate the reported rate α̂reported and α′

reported using Θ̂ and Θ
′ . With these

notations, next we will formulate the space of all possible Models and give the equation for the
cost in bits of encoding Model and Data.

Model space

We have Model = (D,Θ
′
, Θ̂) as described above. Hence our Model space will be all possible

daily sequences for D and all possible parameterizations for Θ
′ and Θ̂. The MDL framework will

search in this space to find the Model∗.

Model cost

With Model = (D,Θ
′
, Θ̂), we conceptualize the model cost by imagining that the sender S will

send the Model = (D,Θ
′
, Θ̂) to the receiver R in three parts: (i) first send the Θ̂ by encoding Θ̂

directly (ii) next send the Θ
′ given Θ̂ by encoding Θ

′ − Θ̂ and (iii) then send D given Θ
′ and Θ̂ by

encoding α′
reported × D − Dreported(Θ̂). Intuitively, both α′

reported × D and Dreported(Θ̂) should be
close to Dreported, and the receiver could recover the D using Θ̂, α′

reported, and Dreported(Θ̂) as they
have already been sent. We term the model cost as L(D,Θ

′
, Θ̂) with three components: Cost(Θ̂),

Cost(Θ
′ |Θ̂), and Cost(D|Θ′

, Θ̂). Hence,

L(D,Θ
′
, Θ̂) = Cost(Θ̂) + Cost(Θ

′ − Θ̂|Θ̂) + Cost(α′
reported ×D −Dreported(Θ̂)|Θ′

, Θ̂) (2)

For Equation 2, the Cost(·) function gives the total number of bits we need to spend in encoding
each term. The details of the encoding method can be found in the Supplementary Information.

Data cost

We need to send the Data = Dreported next given the Model. Given Model = (D,Θ
′
, Θ̂), we send

Data by encoding D−Dreported

1−α′
reported

− D(Θ
′
). Intuitively, D − Dreported corresponds to the unreported

infections, and 1 − α′
reported is the unreported rate. Therefore, D−Dreported

1−α′
reported

should be close to the

total infections D and D(Θ
′
). The receiver could also recover the Dreported using D, α′

reported, and
D(Θ

′
) as they have already been sent. We term data cost as L(Dreported|D,Θ

′
, Θ̂) and formulate it

as Equation 3.

L(Dreported|D,Θ
′
, Θ̂) = Cost(

D −Dreported

1− α′
reported

−D(Θ
′
)|D,Θ

′
, Θ̂) (3)

Total cost

With L(D,Θ
′
, Θ̂) as in Equation 2 and L(Dreported|D,Θ

′
, Θ̂) as in Equation 3 above, the total cost

L(Dreported, D,Θ
′
, Θ̂) is:
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L(Dreported, D,Θ
′
, Θ̂) = L(D,Θ

′
, Θ̂) + L(Dreported|D,Θ

′
, Θ̂)

= Cost(Θ̂) + Cost(Θ
′ − Θ̂|Θ̂)

+ Cost(α′
reported ×D −Dreported(Θ̂)|Θ′

, Θ̂)

+ Cost(
D −Dreported

1− α′
reported

−D(Θ
′
)|D,Θ

′
, Θ̂)

(4)

Problem statement

Note that our main objective is to estimate the total infections D. With L(Dreported, D,Θ
′
, Θ̂)

formulated in Equation 4, we can state the problem as: Given the time sequence Dreported, epidemi-
ological model OM, and a calibration procedure Calibrate, find D∗ that minimizes the MDL total
cost i.e.

D∗ = argmin
D

L(Dreported, D,Θ
′
, Θ̂) (5)

Algorithm

Next, we will present our algorithm to solve the problem in Equation 5. Note that directly searching
D∗ naively is intractable since D∗ is a daily sequence not a scalar. Instead, we propose first finding a
“good enough” reported rate α∗

reported quickly with the constraint D =
Dreported

α∗
reported

to reduce the search
space. Then with this α∗

reported, we can search for the optimal D∗ in Equation 5. Hence we propose a
two-step algorithm: (i) do a linear search to find a good reported rate α∗

reported (ii) given the α∗
reported

found above, use an optimization method to find the D∗ that minimizes L(Dreported, D,Θ
′
, Θ̂) with

α∗
reported constraints.

Step 1: Find the α∗
reported

In step 1, we do a linear search on αreported to find the α∗
reported. As stated before, we use Dreported

αreported

as D in L(Dreported, D,Θ
′
, Θ̂) to help reduce the search space. Here, we formulate step 1 algorithm

as Equation 6.

α∗
reported = arg min

αreported

L(Dreported,
Dreported

αreported
,Θ

′
, Θ̂) (6)

Step 2: Find the D∗ given α∗
reported

With the α∗
reported found in step 1, we next find the D∗ that minimizes the L(Dreported, D,Θ

′
, Θ̂).

Note that we have already found a good α∗
reported, we can constrain the D∗ to ensure that the sum

of D∗ equals to the sum of Dreported

α∗
reported

. We use the Nelder-Mead method [20] to solve this constrained
optimization problem for D∗. Here, we formulate step 2 algorithm as Equation 7.

D∗ = argmin
D

L(Dreported, D,Θ
′
, Θ̂) (7)

We describe the two-step algorithm in more detail in the Supplementary Information.
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BaseInfer and MdlInfer formulation

Here, we also give the mathematical formulations for BaseInfer and MdlInfer. As described
in the introduction section, given an epidemiological model OM, a typical approach is to calibrate
the OM to Dreported using the calibration procedure Calibrate. We call this methodology as
BaseInfer(OM,Calibrate, Dreported). As in Equation 8, the output of BaseInfer is the baseline
parameterization (BaseParam) Θ̂.

Θ̂ = BaseInfer(OM,Calibrate,Dreported)

= Calibrate(OM,Dreported)
(8)

As for the MdlInfer, it also takes the same input (OM, Calibrate, Dreported) as BaseInfer. As-
sume we are given the total infections D, we calibrate the OM on (D,Dreported) to get a "candidate"
paramterization Θ

′ in Equation 9.

Θ
′
= Calibrate(OM, (D,Dreported)) (9)

However, we are not given the D. Hence, we use the MDL framework to find such D∗ as in
Equation 7. With such D∗, we could finally calibrate the OM on (D∗, Dreported) and gets another
parameterization Θ∗. As in Equation 10, we call Θ∗ as the MDL parameterization, or MdlParam.

Θ∗ = MdlInfer(OM,Calibrate,Dreported)

= Calibrate(OM, (D∗, Dreported))
(10)

where D∗ = argminD L(Dreported, D,Θ
′
, Θ̂). Intuitively, if Θ̂ estimated by BaseInfer is perfect,

MdlInfer will also give the same Θ∗ as Θ̂.

Epidemiological models

Next, we describe the two epidemiological models we use in our experiments: SEIR + HD and
SAPHIRE model. SEIR + HD [33] consists of 10 states: Susceptible S, exposed E, pre-symptomatic
IP , severe symptomatic IS , mild symptomatic IM , asymptomatic IA, hospitalized (eventual death)
HD, hospitalized (eventual recover) HR, recovered R, and dead D. The parameters to be cali-
brated are the transmission rate β0 (the transmission rate in the absence of interventions), σ (the
proportional reduction on β0 under shelter-in-place), and E0 (number of initial infections). The
other parameters are fixed and given. They assume the importations only happen at the beginning
of the pandemic (captured by E0), and the total population N remains constant. We also extend
SEIR + HD model to infer two more parameters: α (proportion of asymptomatic infections) and
α1 (proportion of new symptomatic infections that are reported). We compute the new reported
infections and unreported infections as follows:

1. New reported infections = α1 × (NIP IS +NIP IM ): Here NIP IS +NIP IM is the number of new
symptomatic infections everyday. NIP IS is the number of patients switching their state from
IP to IS (and similarly for NIP IM ). We assume α1 proportion of new symptomatic infections
every day are reported.

2. New unreported infections = (1− α1)× (NIP IS +NIP IM ) +NEIA .

SAPHIRE [25] consists of 7 states: Susceptible S, exposed E, pre-symptomatic P , ascertained
infectious I, unascertained infectious A, hospitalized H, and recovered R. The parameters to be
calibrated are the transmission rate β and reported rate r while keeping other parameters fixed as
given values. We also compute the new reported infections and unreported infections as follows:
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1. New reported infections = rP
Dp

: Here P
Dp

is the number of new infections from pre-symptomatic
every day. Dp is the parameter for the presymptomatic infectious period and is fixed. r is the
reported rate estimated by the epidemiological model.

2. New unreported infections = (1−r)P
Dp

.

Estimating infections using BaseParam and MdlParam

Here, we describe how we get the estimations in the results section using BaseParam and MdlParam.
Here we use the BaseParam from BaseInfer as the example (this can also be repeated for
MdlParam for MdlInfer). Using the epidemiological model OM, we can calculate the BaseParam’s
estimation of total infections BaseParamTinf as the cumulative values of D(Θ̂) from pandemic’s
beginning. Dreported(Θ̂) can be directly used as the BaseParam’s estimation of reported infec-
tions. For the cumulative reported rate BaseParamRate, we calculate it as the cumulative values
of NYT-Rinf divided by D(Θ̂). For the symptomatic rate, SEIR + HD model [33] could estimate
the number of symptomatic rate BaseParamSymp by dividing the number of infections in state
IS and IM by the population number. However, SAPHIRE model [25] does not contain states
that correspond to the symptomatic cases, so we cannot estimate the symptomatic rate using this
model.
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