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ABSTRACT 11 

Maintaining surveillance of emerging infectious diseases presents challenges for monitoring their 12 

transmission and burden. Incomplete observation of infections and imperfect diagnosis reduce 13 

the observed sizes of transmission chains relative to their true sizes. Previous studies have 14 

examined the effect of incomplete observation on estimates of pathogen transmission and 15 

burden. However, each study assumed that, if observed, each infection was correctly diagnosed. 16 

Here, I leveraged principles from branching process theory to examine how misdiagnosis could 17 

contribute to bias in estimates of transmission and burden for emerging infectious diseases. 18 

Using the zoonotic Plasmodium knowlesi malaria as a case study, I found that, even when 19 

assuming complete observation of infections, the number of misdiagnosed cases within a 20 

transmission chain for every correctly diagnosed case could range from 0 (0 – 4) when 𝑅! was 21 

0.1 to 86 (0 – 837) when 𝑅! was 0.9. Data on transmission chain sizes obtained using an 22 

imperfect diagnostic could consistently lead to underestimates of 𝑅!, the basic reproduction 23 

number, and simulations revealed that such data on up to 1,000 observed transmission chains 24 

was not powered to detect changes in transmission. My results demonstrate that misdiagnosis 25 

may hinder effective monitoring of emerging infectious diseases and that sensitivity of 26 

diagnostics should be considered in evaluations of surveillance systems.   27 
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INTRODUCTION 28 

For pathogens with sub-critical transmission (i.e., 𝑅! < 1), a robust surveillance system that 29 

identifies and correctly diagnoses infections is necessary to monitor changes in pathogen 30 

transmission and burden (1). Such pathogen surveillance is important both for measuring 31 

progress towards elimination of diseases with immediate public health importance, such as 32 

measles (2–4) and malaria (5), and for assessing the future threat of emerging infectious diseases 33 

(6), such as avian influenza (7), human monkeypox (1,8), and Middle East respiratory syndrome 34 

coronavirus (2,9).  35 

 Considerable work has been devoted to advance a mathematical framework that 36 

leverages the data collected by surveillance systems to obtain estimates of transmission and 37 

burden for pathogens with sub-critical dynamics (1,2,4,10,11). These studies have improved our 38 

understanding of a wide range of emerging infectious diseases and have critically evaluated the 39 

sensitivity of these estimates to the quality of data from the surveillance system. Crucially, each 40 

study modeled variation in surveillance quality through variation in the ascertainment fraction 41 

(i.e., the proportion of infections that are detected) and assumed that, once detected, all infections 42 

were correctly diagnosed. In reality, however, non-specific clinical and biological features are 43 

likely to limit the sensitivity of clinical diagnosis, particularly for emerging infectious diseases 44 

(12,13). The extent to which misdiagnosis affects estimates of transmission and burden for 45 

pathogens with sub-critical dynamics remains largely unaddressed.   46 

  The zoonotic Plasmodium knowlesi malaria offers a natural case study to examine the 47 

impact of misdiagnosis on estimates of transmission and burden. Endemic to Southeast Asia 48 

(14), P. knowlesi is a vector-borne disease with most or all infections in humans caused by 49 

spillover transmission from the long- and pig-tailed macaque reservoir (15,16). The extent of 50 
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transmission between humans is currently unknown (17). Due to morphological similarities with 51 

other Plasmodium spp., P. knowlesi is routinely misdiagnosed by light microscopy (18). A recent 52 

systematic review and meta-analysis estimated that the sensitivity of light microscopy for 53 

diagnosing P. knowlesi infections was less than 1% (19). This high rate of misdiagnosis greatly 54 

affects the quality of surveillance data on P. knowlesi, potentially biasing estimates of 55 

transmission and burden.  56 

 In this study, I aimed to evaluate the extent to which misdiagnosis of a pathogen affected 57 

the ability to monitor its change in transmission and burden. Using P. knowlesi as a case study, I 58 

leveraged an established framework based upon branching process theory to first quantify the 59 

potential magnitude of underestimation of pathogen burden on account of misdiagnosis. Next, I 60 

considered how underestimates of pathogen burden could lead to bias in estimates of 𝑅!, the 61 

basic reproduction number. Finally, I quantified the degree to which misdiagnosis reduced the 62 

statistical power to detect changes in transmission from surveillance data for emerging infectious 63 

diseases, such as P. knowlesi.  64 

 65 

METHODS 66 

Branching Process Framework of Sub-Critical Transmission 67 

To explore the effects of misdiagnosis on the monitoring of sub-critical transmission (i.e., 𝑅! <68 

1) of P. knowlesi, I extended a framework that uses branching process theory to estimate a 69 

pathogen’s 𝑅! from its size distribution of stuttering transmission chains. Here, I followed 70 

Blumberg and Lloyd-Smith (1,11) and defined a transmission chain as a primary infection (i.e., a 71 

spillover infection from a zoonotic reservoir) and all secondary infections arising from that 72 

primary infection through at least one generation of pathogen transmission.  73 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2022. ; https://doi.org/10.1101/2021.09.13.21263501doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.13.21263501
http://creativecommons.org/licenses/by/4.0/


 5 

 Assuming that the number of secondary infections caused through one generation of 74 

pathogen transmission followed a negative binomial distribution with mean 𝑅! and dispersion 75 

parameter 𝜅, I used the branching framework to calculate summary statistics of the transmission 76 

chains. Specifically, I solved for the probability that a transmission chain was truly of size j 77 

infections, 𝑟", and the mean size of transmission chains, 𝜇.  78 

Following Blumberg and Lloyd-Smith (11), I considered two models of observation of 79 

infections: (i) independent observation and (ii) size-dependent observation. The model of 80 

independent observation assumes that each infection is subject to an independent probability of 81 

observation and correct diagnosis, 𝑝#$%, that is equal to the product of the observation 82 

probability, 𝑝%&', and the diagnostic sensitivity, 𝑠𝑒. By comparison, the model of size-dependent 83 

observation assumes that observation of transmission chains occurs through sentinel infections. 84 

Each infection within a transmission chain is a sentinel infection with probability, 𝑝(&$', and, if 85 

there is at least sentinel infection within the transmission chain, then all infections within the 86 

transmission chain are observed. Diagnosis of each infection occurs independently and is subject 87 

to sensitivity, 𝑠𝑒.  88 

 I then computed the mean observed transmission chain size, 𝜇∗, as a function of the 89 

transmission parameters (𝑅! and 𝜅), the observation model (𝑝%&' or 𝑝(&$'), and the diagnostic 90 

accuracy (𝑠𝑒). This allowed me to relate the distribution of observed transmission chain sizes to 91 

the distribution of true transmission chain sizes and quantify bias in the maximum-likelihood 92 

estimates of transmission, 𝑅+! = 1 − *
+∗

.  If all infections are observed and correctly diagnosed, 93 

then 𝜇∗ = 𝜇 and thus  𝑅+! = 𝑅!. Violations of this assumption, either through incomplete 94 

observation or misdiagnosis, introduce bias into transmission estimates. A full description of the 95 

branching process framework can be found in the Supplement.  96 
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 97 

Analyses  98 

Quantifying the Bounds of Total Burden 99 

To first demonstrate how misdiagnosis, in addition to incomplete observation, may lead to an 100 

underestimate of P. knowlesi burden, I computed the probability distribution of the true size of a 101 

transmission chain conditional upon the observed size of a transmission chain. That is, given that 102 

I observed a transmission chain of size 𝚥,̂ the probability that the transmission chain is truly of 103 

size 𝑗 is equal to  104 

 105 

Pr(𝑗|𝚥̂) =
Pr(𝚥̂|𝑗) Pr(𝑗)

Pr(𝚥̂) .						(1) 106 

 107 

In eq. (1), Pr	(𝑗) is the probability that a transmission chain is of size 𝑗, 𝑟", computed using eq. 108 

(S1), and Pr	(𝚥̂) is the probability that a transmission chain is of observed size 𝑗, 𝑠",, computed 109 

using eq. (S2) for the model of independent observation and using the numerator of eq. (S7) for 110 

the model of size-dependent observation. For the model of independent observation, the 111 

probability of observing a transmission chain of size 𝚥̂ given that the transmission chain is truly 112 

of size 𝑗 is  113 

 114 

Pr(𝚥̂|𝑗) = 7
𝑗
𝚥̂8 ∙ 𝑝#$%

-̂ ∙ (1 − 𝑝#$%)"/-̂,					(2) 115 

 116 
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where 𝑝#$% is equal to the product of the probability of detection, 𝑝%&', and the sensitivity of 117 

diagnosis, 𝑠𝑒. By comparison, for the model of size-dependent observation, this quantity is 118 

computed as  119 

 120 

Pr(𝚥̂|𝑗) = <1 − (1 − 𝑝(&$')"= ∙ 7
𝑗
𝚥̂8 ∙ 𝑠𝑒

-̂ ∙ (1 − 𝑠𝑒)"/-̂.					(3) 121 

 122 

Substituting the respective terms into eq. (1), for the model of independent observation, I 123 

computed the probability that a transmission chain is of true size 𝑗 given that it is observed to be 124 

of size 𝚥 ̂as  125 

 126 

Pr(𝑗|𝚥̂) =
?"-̂@ ∙ 𝑝#$%

-̂ · (1 − 𝑝#$%)"/-̂𝑟"
𝑠",

.					(4) 127 

 128 

For the model of size-dependent observation, I computed this quantity as  129 

 130 

Pr(𝑗|𝚥̂) =
<1 − (1 − 𝑝(&$')"= ∙ ?"-̂@ ∙ 𝑠𝑒

-̂ ∙ (1 − 𝑠𝑒)"/-̂𝑟"
𝑠",

.					(5) 131 

 132 

I used eqs. (4-5) to compute the expected true transmission chain sizes given observed 133 

transmission chains of one, two, or three cases while varying the probability of observation, 𝑝%&' 134 

or 𝑝(&$', from 0.1 to 1.0 in increments of 0.1. I sampled the sensitivity of the diagnostic method 135 

from the posterior estimate of sensitivity of light microscopy for P. knowlesi with mean equal to 136 

1.19 x 10-3 (19). For each combination of observed chain size and probability of observation, I 137 
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calculated the expected true transmission chain size, assuming that the true value of 𝑅! was 138 

equal to 0.1, 0.5, or 0.9. These values of 𝑅! represent low, medium, and high values of sub-139 

critical transmission and fall within the plausible range of human-to-human transmission of P. 140 

knowlesi (20). The dispersion parameter 𝜅 was assumed to be 0.1 in all scenarios, though a 141 

supplementary analysis was performed where 𝜅 → ∞.   142 

 143 

Effect of Misdiagnosis on Estimates of Transmission 144 

On account of incomplete observation and misdiagnosis, the observed burden of P. knowlesi may 145 

not reflect the true burden. It follows that the mean observed transmission chain size will not 146 

equal the true mean transmission chain size, biasing our estimates of 𝑅!. To explore the extent of 147 

this bias in scenarios where 𝑅! was equal to 0.1, 0.5, or 0.9, I calculated the mean observed 148 

transmission chain sizes while varying the probabilities of observation, 𝑝%&' or 𝑝(&$', from 0.1 to 149 

1.0 in increments of 0.1 and while using posterior samples of sensitivity of light microscopy for 150 

P. knowlesi (19). I then compared the maximum-likelihood estimates of 𝑅+! to the true values of 151 

𝑅! for both the models of independent observation and size-dependent observation. In all 152 

scenarios, I assumed that the dispersion parameter 𝜅 was 0.1, and a supplementary analysis was 153 

performed were 𝜅 → ∞.   154 

 155 

Effect of Misdiagnosis on Statistical Power to Detect Changes in Transmission 156 

Bias in 𝑅! estimates on account of misdiagnosis could reduce the statistical power to detect 157 

changes in 𝑅! over time using data on the size of transmission chains. To measure statistical 158 

power as a function of the number of observed transmission chains, I followed an approach taken 159 

by Blumberg et al. (2). I assumed that 𝑅! was historically equal to 0.1 and then increased to 160 
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𝑅! + Δ𝑅!, where Δ𝑅! was set to 0.1, 0.5, or 0.9. I then simulated 𝑁 observed transmission chains 161 

and estimated 𝑅+! while varying 𝑁 from 1 to 1,000. I then compared the model in which 𝑅! was 162 

estimated to have changed to the null hypothesis that there was no change in transmission (i.e., 163 

Δ𝑅! = 0) using the Akaike Information Criterion (AIC) (21). For each number of observed 164 

transmission chains 𝑁, I repeated this procedure 1,000 times and computed statistical power as 165 

the proportion of simulations in which I detected a change in transmission on the basis of AIC. 166 

To measure the minimum effect of misdiagnosis on statistical power, I set 𝑝%&' and 𝑝(&$' equal 167 

to 1. Because all infections are observed under this assumption and diagnosis is performed 168 

independently across infections in both models, the models of independent and size-dependent 169 

observation yield identical results. In all scenarios, I assumed that the dispersion parameter 𝜅 170 

was 0.1, and a supplementary analysis was performed were 𝜅 → ∞.   171 

 172 

RESULTS 173 

Assuming complete observation of infections (i.e., 𝑝%&' and 𝑝(&$' equal to 1), misdiagnosis of P. 174 

knowlesi infections would underestimate the true P. knowlesi burden, with the magnitude of this 175 

effect depending upon 𝑅! (Fig. 1). For a scenario in which 𝑅! was 0.1, the expected true size of a 176 

transmission chain is one infection (95% CI: 1 – 5) if the observed size is one case, four 177 

infections (2 – 12) if the observed size is two cases, and seven infections (3 – 17) if the observed 178 

size is three cases. Under an alternative scenario in which 𝑅! was 0.9, the expected true size of 179 

the transmission chains increased to 87 (1 – 838), 461 (49 – 965), and 650 (157 – 983) 180 

infections, respectively.  181 

 The effect of incomplete observation (i.e., 𝑝%&' or 𝑝(&$' < 1) on the expected burden was 182 

most apparent at an intermediate 𝑅! of 0.5 and with the model of size-dependent observation 183 
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(Fig. 1D). Under this scenario, given a transmission chain of size one, the expected true 184 

transmission chain was 18 infections (1 – 107) if 𝑝(&$' was equal to 0.1, compared to 3 infections 185 

(1 – 80) if 𝑝(&$' was equal to 1. In all other scenarios, the expected burden did not change 186 

significantly with 𝑝%&' or 𝑝(&$'. This occurred because, even with complete observation (i.e., 187 

𝑝%&' and 𝑝(&$' equal to 1), 99.881% of P. knowlesi cases were expected to be misdiagnosed, 188 

given a sensitivity of 0.119%. Therefore, irrespective of the observation probability, only a 189 

subset of true transmission chain sizes is consistent with the sizes of the observed transmission 190 

chains, given this high percentage of false negatives. If I instead assumed perfect sensitivity of 191 

the method, I observed a greater effect of the observation probability on the expected burden 192 

(Fig. S1).  193 

 194 

 195 
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Figure 1. Effect of misdiagnosis and imperfect observation on the expected burden. The mean 196 

true transmission chain size (dots) and  95% CI (segments) are shown conditional upon on an 197 

observed transmission chain size of one (yellow), two (orange), or three (red) cases and an R0 of 198 

0.1 (A,B), 0.5 (C,D), and 0.9 (E,F). The horizontal axis is the observation probability, 199 

representing pdet for the Model of Independent Observation (A, C, E) and psent for the Model of 200 

Size-Dependent Observation (B, D, F). 201 

 202 

Given that misdiagnosis underestimated the burden of P. knowlesi in this analysis, I assessed its 203 

effect on my estimates of transmission, 𝑅+!. Because misdiagnosis caused the average observed 204 

size of transmission chains to be less than the average true size of transmission chains, I 205 

consistently underestimated 𝑅+!, with the effect being more severe at lower 𝑅! (Fig. 2). For 206 

example, with an 𝑅! of 0.1 and assuming perfect observation of infections (i.e., 𝑝%&' and 𝑝(&$' 207 

equal to 1), my median 𝑅+! estimate was 1.9 x 10-4 (95% PPI: 2.0 x 10-5 – 2.9 x 10-3), 208 

corresponding to a 520-fold (34 – 4900) underestimate of transmission. Under an alternative 209 

scenario in which 𝑅! was 0.9, my median 𝑅+! was 0.26 (0.046 – 0.66), corresponding to a 3.5-210 

fold (1.4 – 19.4) underestimate in transmission.  211 

 My estimates of transmission were sensitive to the simulated observation probability, 212 

though the direction of the effect depended upon the assumed model of observation. For the 213 

model of independent observation, 𝑅+! estimates increased with increasing 𝑝%&', because the 214 

average observed size of transmission chains increased as more infections were observed (Fig. 2, 215 

left column). By contrast, 𝑅+! estimates decreased with increasing 𝑝(&$' for the model of size-216 

dependent observation (Fig. 2, right column). This counterintuitive effect can be explained by the 217 

observation that, if 𝑝(&$' is low, larger transmission chains have a greater probability that at least 218 
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one infection is a sentinel infection. This causes a bias in the size of the transmission chains that 219 

are observed at low values of 𝑝(&$', increasing the mean observed transmission chain size 220 

relative to that at higher values of 𝑝(&$' and thus inflating the 𝑅+! estimate.  221 

 222 

 223 

Figure 2. Effect of misdiagnosis and imperfect observation on estimates of transmission. The 224 

posterior median (blue line) and 95% posterior prediction interval (blue shaded region) of 225 

maximum-likelihood estimates of R0 are shown as a function of the observation probability. The 226 

observation probability represents pdet for the Model of Independent Observation (A, C, E) and 227 

psent for the Model of Size-Dependent Observation (B, D, F). The solid black denotes the true R0 228 

in each panel, and the grey lines denote two-to-five-fold underestimates of R0 in each panel.  229 
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 230 

 The underestimates of burden (Fig. 1) and transmission (Fig. 2) indicated that 231 

misdiagnosis of P. knowlesi may affect the statistical power to detect changes in transmission 232 

based on the size of observed transmission chains. To test this, I simulated changes in 233 

transmission and measured the statistical power to detect that change. I observed that, under 234 

scenarios in which 𝑅! increased by 0.9, data on 1,000 observed transmission chains provided 235 

only 10.3% power using an imperfect diagnostic method, compared to 100% if using a perfect 236 

diagnostic method (Fig. 3). At smaller increases in 𝑅!, data on observed transmission chain sizes 237 

obtained using an imperfect diagnostic method had effectively no power to detect a change in 238 

transmission. 239 

 240 
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 241 

Figure 3. Effect of misdiagnosis on the statistical power to detect changes in transmission. The 242 

statistical power (%) to detect an increase in transmission is shown as a function of the number 243 

of observed chains for a transmission increase (Δ𝑅!) of 0.1 (yellow), 0.5 (orange), and 0.9 (red). 244 

Solid lines and points represent an imperfect diagnostic method (i.e., LM) and the dotted lines 245 

represent perfect diagnosis (i.e., PCR).  246 

 247 

DISCUSSION 248 

Obtaining accurate estimates of transmission and burden is important for monitoring the 249 

emergence of infectious diseases. Previous studies have explored the extent to which incomplete 250 

observation of infections affects the estimates of transmission for such pathogens (1,2,7,11). In 251 
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this work, I built upon these studies by considering the effect of misdiagnosis on estimates of 252 

pathogen transmission and burden. Using the zoonotic P. knowlesi malaria as a case study, I 253 

found that misdiagnosis—independent of incomplete observation of infections—may cause us to 254 

underestimate the transmission and burden of pathogens with sub-critical dynamics and hinders 255 

effective, prospective monitoring of changes in transmission. 256 

 My results demonstrate that, for pathogens with sub-critical transmission, misdiagnosis 257 

leads to an underestimate of overall pathogen burden. Depending upon the 𝑅! simulated, I found 258 

that there could be as many as 86 misdiagnosed cases, on average, for each correctly diagnosed 259 

case of P. knowlesi, even when assuming complete observation of infections. This effect 260 

increased under select settings when the assumption of complete observation of infections was 261 

relaxed. The underestimation of burden due to misdiagnosis has the potential to shape our 262 

epidemiological understanding of an emerging pathogen. For instance, singleton cases of a 263 

zoonotic pathogen, such as P. knowlesi, are commonly assessed as dead-end spillover events 264 

from the zoonotic reservoir (17). However, my simulations suggest that such singleton cases 265 

could instead represent a broad range of epidemiological outcomes, spanning dead-end spillover 266 

events to larger transmission chains.  267 

 Due to its effect on observed pathogen burden, misdiagnosis contributed a downward 268 

bias in estimates of transmission. Except for scenarios in which the true simulated 𝑅! was close 269 

to one, my maximum-likelihood estimates of 𝑅! approached zero, representing situations in 270 

which we would incorrectly conclude that human-to-human transmission of the pathogen was 271 

unlikely to be occurring. For every scenario considered, the estimate of 𝑅! was less than the true 272 

value, indicating that bias due to misdiagnosis exceeds the competing positive bias from 273 

incomplete observation when assuming size-dependent observation (1). For pathogens such as P. 274 
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knowlesi, these simulation results suggest that, in settings where misdiagnosis is common, the 275 

extent of human-to-human transmission could be greater than previously thought. To date, it has 276 

been believed that nearly all cases of P. knowlesi in humans are caused by spillover from long-277 

tailed and pig-tailed macaques, the zoonotic reservoir (17). The lack of observed human-to-278 

human transmission may be explained by multiple factors, including low parasite densities in 279 

humans (16) and restricted vector habitat preference (15), and is supported by a lack of genetic 280 

diversity across human P. knowlesi infections (22). Nevertheless, human-to-human transmission 281 

of P. knowlesi has been demonstrated experimentally (23), and these results suggest that, if or 282 

when human-to-human transmission occurs, misdiagnosis could cause us to underestimate its 283 

magnitude.  284 

 Finally, I demonstrated that data on the sizes of transmission chains diagnosed using a 285 

diagnostic with realistic sensitivity would be insufficient to monitor changes in transmission. 286 

Even with 1,000 observed transmission chains, I calculated a power of only 10% to detect an 287 

increase in 𝑅! from 0.1 to 1. This empirical power calculation assumed complete observation of 288 

infections, so it represents an upper bound on the statistical power that we might expect if a 289 

diagnostic with realistic sensitivity was used. Therefore, more sensitive diagnostics, such as 290 

polymerase chain reaction, may be needed to detect changes in transmission that could result 291 

from pathogen evolution (24), among other factors (25–27). 292 

 This analysis is subject to a number of limitations. First, the conclusions that I reached 293 

were based upon simulated data only. I used simulations representative of P. knowlesi to 294 

illustrate possible outcomes that may occur due to misdiagnosis (19,20), yet I lacked empirical 295 

data on the distribution of transmission chain sizes for P. knowlesi. As such, this analysis is not 296 

estimating the true extent of human-to-human transmission of P. knowlesi. Second, methods 297 
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exist to account for incomplete observation of infections in estimates of R0 (11). However, as 298 

noted by Blumberg et al. (2), it is challenging to estimate the proportion of infections that are 299 

captured by the surveillance system. Consequently, these calculations were conditioned upon the 300 

assumption of complete observation and perfect diagnoses, so violations therein should be 301 

interpreted as the upper bound on the bias that would likely be observed. Finally, I considered a 302 

single pathogen in isolation, though misdiagnosis is commonly due to co-circulation of related 303 

pathogens (12,13,18). Accounting for the upward bias due to false-positive diagnoses from other 304 

pathogens and exploring the magnitude of this effect across epidemiological settings could be 305 

important directions for future work.  306 
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Mean Transmission Chain Size 321 

Complete Observation and Correct Diagnosis 322 

For a pathogen with sub-critical transmission dynamics, I modeled the number of offspring 323 

caused by a single infection through one generation of transmission as a negative binomial 324 

distribution with mean 𝑅! and dispersion parameter 𝜅 (1,11). Therefore, it follows that 325 

transmission chains of size 𝑗 occur with probability, 326 

 327 

𝑟" =
Γ(𝜅𝑗 + 𝑗 − 1)
Γ(𝜅𝑗)Γ(𝑗 + 1)

?𝑅! 𝜅K @
"/*

L1 + ?𝑅! 𝜅K @M
0"1"/* .					(𝑆1) 328 

 329 

In eq. (S1), Γ(·) is the gamma function. Because 𝑅! < 1, the mean transmission chain size 𝜇 can 330 

be calculated as the mean of a geometric series with common ratio 𝑅! and is equal to *
*/2"

. 331 

 332 

Incomplete Observation and Imperfect Diagnosis  333 

In the case of P. knowlesi and many other pathogens, the size of transmission chains that are 334 

identified by a surveillance system will be affected by two factors. First, infections in a 335 

transmission chain may not present within the health system, due to a lack of symptoms or 336 

access to treatment. Second, infections in the transmission chain that do present within the health 337 

system may be misdiagnosed and thus inaccurately recorded within the surveillance system. 338 

Both factors will make the observed transmission chain appear smaller in size than the true 339 

transmission chain. Previous work by Blumberg and Lloyd-Smith (1) has quantified the effect of 340 

two models of incomplete observation on estimates of transmission and burden. Here, I build 341 
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upon this work by integrating the effect of (mis)diagnosis of infections that occurs secondary to 342 

the observation of infections within the health system.  343 

 344 

Model of Independent Observation  345 

The first model of incomplete observation and diagnosis assumes that each individual is subject 346 

to an independent probability 𝑝#$% equal to the product of observation probability, 𝑝%&', and the 347 

sensitivity of the diagnostic method, 𝑠𝑒. Therefore, the probability that we observe and correctly 348 

diagnose 𝑗 cases from a transmission chain is equal to  349 

 350 

𝑠", =O𝑟3 ∙ 7
𝑘
𝑗8 ∙ 𝑝#$%

" ∙ (1 − 𝑝#$%)3/"
4

35"

,					(𝑆2) 351 

 352 

where 𝑟3 is the probability that a transmission chain is of true size 𝑘, calculated using eq. (S1). 353 

The probability that a transmission chain is of observed size 𝑗 is equal to the normalized 354 

probability of 𝑠",, computed as  355 

 356 

𝑟", =
𝑠",

1 − 𝑠!,
.					(𝑆3) 357 

 358 

In eq. (S3), 𝑠!,  is the probability that a transmission chain is neither observed nor correctly 359 

diagnosed. Due to incomplete observation and misdiagnosis, the probability that a transmission 360 

chain is of observed size 𝑗, 𝑟",, is not equal to the probability that a transmission chain is of true 361 

size 𝑗, 𝑟". Finally, because each infection within the transmission chain is subject to an 362 
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independent probability of observation and correct diagnosis, the probability 𝑝67( that a 363 

randomly sampled infection is observed and correctly diagnosed is equal to 𝑝#$%.  364 

 365 

Model of Size-Dependent Observation 366 

The alternative model assumes that transmission chains are observed through a sentinel 367 

infection, such that, if the sentinel infection is observed, then all other infections in the 368 

transmission chain will be observed. Incorporating the effect of imperfect diagnosis, the 369 

probability that we do not observe a transmission chain of size 𝑗 is equal to  370 

 371 

𝑣" = (1 − 𝑝(&$')" + <1 − (1 − 𝑝(&$')"=(1 − 𝑠𝑒)" .					(𝑆4) 372 

 373 

In eq. (S4), the first term in the summation is the probability that none of the 𝑗 infections of the 374 

transmission chain are a sentinel infection, and the second term in the summation is the product 375 

of the probability that at least one infection is a sentinel infection (i.e., the probability that we 376 

observe the transmission chain) and the probability that all 𝑗 infections are misdiagnosed. Using 377 

eq. (S4), I calculated the probability that a transmission chain is neither observed nor correctly 378 

diagnosed as  379 

 380 

𝑠!, = O𝑟3 ∙ 𝑣3

4

35*

.					(𝑆5) 381 

 382 

The probability that a transmission chain is of observed size 𝑗 is then equal to  383 

 384 
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𝑟", =
∑ 𝑟3 ∙ (1 − (1 − 𝑝(&$')3) ∙ ?3"@ ∙ 𝑠𝑒

" ∙ (1 − 𝑠𝑒)3/"4
35"

1 − 𝑠!,
,				(𝑆6) 385 

 386 

and the probability that a randomly chosen infection is observed and correctly diagnosed is equal 387 

to  388 

 389 

𝑝67( =
∑ 𝑗 ∙ 𝑟" ∙4
"5* <1 − (1 − 𝑝(&$')"= ∙ 𝑠𝑒

𝜇 .						(𝑆7) 390 

 391 

Eq. (S7) accounts for the probability that non-sentinel infections are detected, a quantity that 392 

increases as a function of the transmission chain size.  393 

 394 

Mean Transmission Chain Size 395 

For both the model of independent observation and the model of size-dependent observation, the 396 

mean observed size of transmission chains is calculated as  397 

 398 

𝜇∗ =O𝑗 ∙ 𝑟",
4

"5*

=
𝑝67( ∙ 𝜇
1 − 𝑠!,

.					(𝑆8) 399 

 400 

Results 401 
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 402 

Figure S1. Effect of misdiagnosis and imperfect observation on the expected true pathogen 403 

burden assuming perfect diagnosis. The mean true transmission chain size (dots) and  95% CI 404 

(segments) are shown conditional upon on an observed transmission chain size of one (yellow), 405 

two (orange), or three (red) cases and an R0 of 0.1 (A,B), 0.5 (C,D), and 0.9 (E,F). The 406 

horizontal axis is the observation probability, representing pdet for the Model of Independent 407 

Observation (A, C, E) and psent for the Model of Size-Dependent Observation (B, D, F). 408 

 409 
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 410 

Figure S2. Effect of misdiagnosis and imperfect observation on the expected true pathogen 411 

burden when 𝜿 → ∞. The mean true transmission chain size (dots) and  95% CI (segments) are 412 

shown conditional upon on an observed transmission chain size of one (yellow), two (orange), or 413 

three (red) cases and an R0 of 0.1 (A,B), 0.5 (C,D), and 0.9 (E,F). The horizontal axis is the 414 

observation probability, representing pdet for the Model of Independent Observation (A, C, E) 415 

and psent for the Model of Size-Dependent Observation (B, D, F). 416 

 417 
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 418 

Figure S3. Effect of misdiagnosis and imperfect observation on estimates of transmission 419 

when 𝜿 → ∞. The posterior median (blue line) and 95% posterior prediction interval (blue 420 

shaded region) of maximum-level estimates of R0 are shown as a function of the observation 421 

probability. The observation probability represents pdet for the Model of Independent 422 

Observation (A, C, E) and psent for the Model of Size-Dependent Observation (B, D, F). The solid 423 

black denotes the true R0 in each panel, and the grey lines denote two-to-five-fold underestimates 424 

of R0 in each panel.  425 

 426 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 12, 2022. ; https://doi.org/10.1101/2021.09.13.21263501doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.13.21263501
http://creativecommons.org/licenses/by/4.0/


 25 

 427 

Figure S4. Effect of misdiagnosis on the statistical power to detect changes in transmission 428 

when 𝜿 → ∞. The statistical power (%) to detect an increase in transmission is shown as a 429 

function of the number of observed chains for a transmission increase (Δ𝑅!) of 0.1 (yellow), 0.5 430 

(orange), and 0.9 (red). Solid lines and points represent an imperfect diagnostic method (i.e., 431 

LM) and the dotted lines represent perfect diagnosis (i.e., PCR).  432 
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