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One sentence summary:  

Unbiased grouping of patients based on kidney biopsy transcriptomics profiles generated a 

novel molecular categorization of chronic kidney disease. 

Abstract  

Current classification of chronic kidney disease (CKD) into stages based on the indirect 

measures of kidney functional state, estimated glomerular filtration rate and albuminuria, is 

agnostic to the heterogeneity of underlying etiologies, histopathology, and molecular processes. 

We used genome-wide transcriptomics from patients’ kidney biopsies, directly reflecting kidney 

biological processes, to stratify patients from three independent CKD cohorts. Unsupervised 

Self-Organizing Maps (SOM), an artificial neural network algorithm, assembled CKD patients 

into four novel subgroups, molecular categories, based on the similarity of their kidney 

transcriptomics profiles. The unbiased, molecular categories were present across CKD stages 

and histopathological diagnoses, highlighting heterogeneity of conventional clinical subgroups at 

the molecular level. CKD molecular categories were distinct in terms of biological pathways, 

transcriptional regulation and associated kidney cell types, indicating that the molecular 

categorization is founded on biologically meaningful mechanisms. Importantly, our results 

revealed that not all biological pathways are equally activated in all patients; instead, different 

pathways could be more dominant in different subgroups and thereby differentially influencing 

disease progression and outcomes. This first kidney-centric unbiased categorization of CKD 

paves the way to an integrated clinical, morphological and molecular diagnosis. This is a key 

step towards enabling precision medicine for this heterogeneous condition with the potential to 

advance biological understanding, clinical management, and drug development, as well as 

establish a roadmap for molecular reclassification of CKD and other complex diseases. 

 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.09.09.21263234doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263234


Introduction 

Chronic kidney disease (CKD) is a global health burden affecting nearly 700 million people 

worldwide, with a high cost of care to individuals and health systems. It is an independent risk 

factor for cardiovascular disease and is associated with increased morbidity and mortality (1, 2).  

Biologically, CKD is a highly heterogeneous group of disorders characterized by sustained 

alterations in kidney structure and function arising from a wide range of etiologies (the most 

common are diabetic and hypertensive nephropathies) and associated with a multitude of 

underlying molecular processes in the kidney (3). Even within the same etiological group, 

individual disease presentation, histopathological features, progression rates and treatment 

responses are variable, reflecting the underlying biological heterogeneity. 

According to the KDIGO (Kidney Disease Improving Global Outcomes) guidelines, CKD is 

classified into five stages (CKD 1-5) based on gradations of glomerular filtration rate (GFR), 

estimated from serum creatinine, and/or albuminuria (3). This, now widely accepted 

classification system, was a major achievement in the field as it provided a common vocabulary 

and standardized approach to disease management (4-7). However, the classification relies on 

systemic, indirect measures and is therefore agnostic to the intra-renal biology. As a result, 

biologically diverse cases presenting with the same GFR or albuminuria values are classified 

under the same CKD stage category, thereby precluding personalized prognosis and treatment 

options (8).  

Histopathological diagnosis based on kidney biopsy provides more direct insights on the intra-

renal state (9). However, several tissue morphological features may overlap between various 

kidney diseases. Furthermore, tissue molecular signatures also overlap, as previously revealed 

by a transcriptomics study of CKD biopsies, where patterns of molecular similarity spanned 

histopathological diagnoses (10).  
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Thus, an unbiased re-categorization of CKD by using kidney molecular profiles may circumvent 

the shortcomings of GFR staging or histopathological grouping. In a field where specific 

therapies are still lacking, such a mechanistic classification based on underlying disease biology 

is urgently needed to fuel diagnostic, prognostic, and therapeutic development that will enable 

the transition to precision medicine (11-13).  

The overarching goal of this study was to determine whether a mechanistic disease 

classification based on intra-renal molecular characteristics can be achieved across multiple 

cohorts, as a critical step towards development of novel personalized treatments for CKD. We 

used individual transcriptomics profiles from kidney biopsies to group patients in an unbiased, 

data-driven manner. We analyzed an extensive collection of kidney transcriptomics data across 

three CKD patient cohorts from North America and Europe that encompass a broad range of 

kidney function and wide spectrum of diseases. Focusing on the tubulointerstitial compartment, 

the most abundantly available tissue fraction in kidney biopsies and closely linked to long-term 

outcomes of CKD (40), we employed an unsupervised artificial neural network algorithm, Self-

Organizing Maps (SOM) (14, 15), to reveal inherent patient sub-groups. We then substantiated 

the clinical relevance of these sub-groups by assessing their association with biological 

pathways and clinical parameters.  
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Results 

CKD patient population map construction and segmentation 

A total of 314 CKD patients from European Renal cDNA Bank (ERCB)(16), Clinical Phenotyping 

Resource and Biobank Core (C-PROBE)(17), and Nephrotic Syndrome Study Network 

(NEPTUNE)(18) cohorts with available genome-wide transcriptomics data from kidney biopsy 

tubulointerstitial fraction were included in this study. Patient clinical characteristics are 

summarized in Table 1.  

 

Based on the large sample size as well as broadest range of kidney function and spectrum of 

histopathological diagnoses, the ERCB dataset was selected as the discovery dataset to 

maximize the pattern detection potential in the data. The independent datasets from C-PROBE 

and NEPTUNE, contributing complementary GFR ranges and etiologies, were then used for 

validation.  

An unsupervised SOM of the ERCB CKD population was constructed based solely on patient 

kidney transcriptomics profiles, comprised of expression values for 8,454 genes. The algorithm 

mapped patients onto the 8x8 SOM grid, resulting in 1 to 8 individuals (median of 2) per each of 

the 64 SOM units (Fig 1A), placed in a topological order based on the relative similarities of their 

transcriptional profiles. Hierarchical clustering of SOM units was then performed to delineate 

subgroups with similar gene expression profiles. Four inherent patient clusters were thus 

identified within the discovery CKD population, named “molecular categories” and assigned 

arbitrary colors – Blue, Gold, Olive, Plum – in line with the unbiased nature of their discovery 

(Fig 1B). The larger Blue and Plum molecular categories accounted for 35% and 27% of the 

cases while 20% and 18% of the patients mapped to the Gold and Olive categories, 

respectively. Global gene expression levels were not different between the four molecular 

categories (Fig S1), indicating absence of technical bias but rather, qualitative differences in 
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patterns underlying the subgrouping. This was further evident from inspecting the 

transcriptomics profiles visualization, showing distinct patterns between the molecular 

categories (Fig 1C). 

 

CKD stages consist of molecularly heterogeneous categories  

Having thus identified different molecular categories of patients with CKD based on kidney 

transcriptomics features, we next wanted to compare them with clinical CKD classifications. 

Figs 1D-E visualize the correspondence between novel molecular categories and conventional 

clinical classification. The molecular categories were present across all CKD stages and 

histopathological diagnoses, highlighting heterogeneity of clinical subgroups at the molecular 

level. Gold and Plum categories were relatively more frequent in advanced disease stages 

(CKD 3-5), while CKD 1-3 patients were predominantly mapped to Blue and Olive categories 

(Fig 1D). However, the fact that the same molecular categories were observed at different CKD 

stages indicates independence from GFR as a potential confounder (Fig S2 shows similar 

estimated GFR levels across molecular categories within same CKD stages strata). Likewise, 

each histopathologically defined patient group (Fig 1E) contained multiple molecular categories, 

highlighting within-group heterogeneity as well as between-group similarities. Fig 2 illustrates 

the kidney molecular heterogeneity in a sample of 9 patients (three patients per each of three 

CKD histopathological groups: focal segmental glomerulosclerosis, diabetic nephropathy, and 

immunoglobulin A nephropathy) and highlights differences in grouping in the two classification 

approaches.  

Therefore, CKD molecular categories represent a novel characterization, not captured by 

existing classifications, and provide orthogonal biomechanistic information, independent of 

clinical manifestations or disease severity. 
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CKD molecular categories are biologically distinct 

In order to obtain functional insights into biological processes underlying the molecular 

categorization, we compared differences in kidney gene expression between each molecular 

category to those of healthy controls (living kidney donors). The volcano plots (Fig 3 A), 

highlight substantial transcriptomics changes in each CKD molecular categories. Interestingly, 

the numbers of significantly differentially expressed genes (DEGs) in each comparison were not 

driven by the differences in sample size. Blue, the largest CKD molecular category, yielded the 

fewest number of differentially expressed genes (216), predominantly down-regulated. In 

contrast, Plum and Gold categories had many more DEGs (3,125 and 3,472, respectively), 

evenly proportioned between up- and down-regulation (Table 2). Finally, when the CKD 

samples were pooled together and contrasted to the healthy controls in a conventional case-

control analysis, the differential expression was less pronounced (1,341 DEGs), likely 

dampened by the heterogeneity of cases. The list of all significant DEGs (at FDR q<0.0001) per 

CKD molecular category is provided in Table S1.  

Specific biological themes or pathways in each CKD molecular category were then identified 

using gene set enrichment analysis (GSEA). In the first instance, a hypothesis-free GSEA using 

canonical, CKD-agnostic gene sets (Hallmark, Curated Canonical Pathways, Gene Ontology) 

was performed. The resulting heatmap of gene set enrichment score values (Fig 3 B) shows 

distinct patterns across the molecular categories and presence of both unique and shared 

pathways, as corroborated by Venn diagrams of the significantly enriched (FDR q<0.05) up- and 

down-regulated gene sets (Fig 3 C and D, respectively). The top 10 uniquely enriched gene sets 

(Table 2, while a complete list of significantly enriched gene sets per CKD molecular category is 

provided in Table S2), indicate pathways related to transcription, signaling, response to stimuli, 

apoptosis were selectively down-regulated in the Blue category patients. Gold category 

revealed a strong pro-inflammatory and pro-fibrotic drive, as the top activated processes 
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including immune cell proliferation and migration, cytokine production, and extracellular matrix 

organization, while several metabolic pathways were down-regulated. In the Olive category, 

mitochondrial and peroxisomal processes were up-regulated while immune and membrane 

transport pathways were inhibited. The Plum category showed enrichment for signaling, protein 

synthesis, and vesicle transport processes; at the same time, ion transport pathways were 

down-regulated. 

In line with the vast transcriptomics differences, upstream transcriptional regulator analysis 

revealed a diverse array of activated regulatory molecules in each of the CKD molecular 

category (top 20 upstream regulators are shown in Fig 3 E, while a complete list per CKD 

molecular category is provided in Table S3).  

As the next step, hypothesis-driven gene sets of CKD relevance, including kidney-specific 

genes, Mendelian kidney disease genes, kidney cell type-specific markers, and kidney injury 

markers, were tested for enrichment across CKD molecular categories (Fig 3 F). All three 

groups of kidney-specific transcriptome were positively enriched in the Olive category. 

Mendelian genes known to cause glomerulopathies but not tubulopathies were enriched in the 

Olive and Plum categories. The Gold and Plum molecular categories showed enrichment in 

markers of immune cells and collecting duct, while the Olive category was specifically enriched 

for the proximal and distal tubular signatures. Furthermore, a set of genes encoding established 

urinary biomarkers of kidney damage showed diverse trends across the molecular categories 

(Fig 3 G).  

Taken together, these results  highlight that patients from different CKD molecular categories 

are distinct in terms of the biological pathways affected in the kidney, indicating that the 

molecular categorization has a biomechanistic basis.  
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CKD molecular categories validation in independent cohorts 

We validated our principal findings and determined whether these new molecular categories 

could be identified in other CKD populations using data from two independent cohorts.  

CKD patients from the C-PROBE and NEPTUNE cohorts were mapped onto the discovery SOM 

based on their kidney biopsy transcriptomics profiles (Fig 4 A-B). As a negative control, 

permuted data produced nonsensical mapping. All four molecular categories were present 

among the C-PROBE and NEPTUNE patients. The proportions of patients per molecular 

categories differed between the studied CKD cohorts (chi squared p=0.0019; Fig 4 C).  

To determine whether the underlying differences in biological mechanisms between the CKD 

molecular categories would manifest in disparate disease progression rates, we analyzed 

kidney outcomes in patients with available long-term clinical follow-up data (42 C-PROBE and 

90 NEPTUNE patients, respectively).  

In the C-PROBE cohort, during the follow-up period (median duration 4.7 years, maximal 9.1 

years), 7 out of 42 patients progressed to end-stage kidney disease (ESKD), defined as 

initiation of renal replacement therapy (dialysis or kidney transplantation). Even in this limited 

analysis, the rate of reaching the end-point varied significantly depending on the molecular 

category (log-rank p=0.028). Kaplan-Meier survival curves stratified by molecular category (Fig 

4D) demonstrate the significantly higher probability of ESKD incidence in the Gold category, 

with 5 out of 7 events occurring in this subgroup of patients. The rate of disease progression 

was thus faster for patients in the Gold category with a median survival probability of 6.8 years, 

while no other molecular category reached median survival during the follow-up period. Cox 

regression hazard ratios (HR) for ESKD in Gold compared to other molecular categories was 

7.9 [95%CI 1.5-41.1] (p=0.014) in the crude model and 5.6 [95%CI 1.0-31.3] in the model 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.09.09.21263234doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263234


adjusted for baseline eGFR (p=0.048). For 37 C-PROBE patients, repeated kidney function 

values were available over time from which eGFR slopes were calculated. Consistent with the 

hard end-point (ESKD) prediction, the eGFR slopes also showed a trend for greater annual loss 

of kidney function in the Gold category (Fig 4E).  

In NEPTUNE, where the outcome was defined as a composite of ESKD or loss of >40% eGFR, 

there were 16 events among 90 patients during the follow-up period (median duration 4.1 years, 

maximal 6.0 years). Likewise, the rate of disease progression was significantly different 

between the molecular categories (log-rank p=0.00049, Fig 4F), with the Gold category patients 

showing higher event incidence (9 out of 16) and median renal survival probability of 4.5 years. 

Cox regression HR for Gold compared to other molecular categories was 6.7 [95%CI 2.4-19.0] 

(p=0.00032) in the crude model and 4.3 [95%CI 1.3-14.2] (p=0.017) in the model adjusted for 

baseline eGFR (4 observations were excluded from the adjusted analysis due to missing 

values). 

Interestingly, in contrast to the molecular categories, if stratified by CKD stage at baseline in the 

C-PROBE cohort (Fig S3A) or histopathological diagnosis in NEPTUNE (Fig S3B), the event 

rates were not significantly different. 

The presence of the molecular categories in two independent cohorts thus strengthens the 

generalizability of our findings. The differences in disease progression rates between CKD 

molecular classes were consistent across both cohorts. 
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Discussion 

Our findings represent the first kidney transcriptomics-driven approach for molecular 

categorization of CKD, a significant step towards precision medicine for this complex and 

heterogeneous condition. This has the potential to transform the CKD field with respect to 

biological understanding, clinical management, and drug development, as well as pave the way 

towards molecular reclassification of other complex diseases. 

This study was motivated by the growing realization in the field that mechanistic categorization 

of the various CKD etiologies is lacking (8, 10, 19, 20). The call to redefine CKD to boost 

therapeutic development is becoming increasingly urgent as its global prevalence is reaching 

epidemic proportions (21). Integration of molecular features into clinico-morphological diagnosis 

promises a more mechanistic framework for classification of CKD patients, as a foundation for 

development of personalized treatment options based on individual disease biology (22-24). 

Additive value of molecular characterization on top of clinical parameters has been shown, 

previously, in studies evaluating the use of circulating or urinary biomarkers to improve disease 

stratification and prognosis prediction (25, 26). However, a fundamental limitation of such 

systemic phenotyping is that due to the indirect assessment, the underlying molecular changes 

in the kidney remain unknown. We pursued a different approach, leveraging available molecular 

profiles from kidney biopsies, directly reflecting intra-renal biology, as the basis of our 

categorization strategy.  

Transcriptomics profiling provides a fingerprint of genome-wide gene expression patterns 

reflecting tissue structural and functional states (27-30). These include cell type composition, 

activity of biological pathways causing, perpetuating or counteracting the disease, interplay of 

co-morbidities, as well as the effects of treatments (29-32). Our findings highlight the value of 
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transcriptomics in grouping patients based on similar profiles. The fact that permuted data, 

where the expression values of each gene were randomized across the samples, failed to map 

onto SOM signifies the importance of the individual specificity of each patient’s transcriptomics 

profile as well as gene covariance modular structure. 

We identified four novel patient subgroups within a CKD population in an unbiased data-driven 

manner, based on kidney transcriptomics data and without imposing any patient clinical 

information or preconceived, domain biological knowledge. The emergent molecular categories 

did not overlap with the conventional clinical classification and were detected orthogonally at all 

the different CKD stages and histopathological diagnoses, highlighting molecular heterogeneity 

among CKD patients and underscoring the biological complexity of this multifaceted condition. 

We propose that molecular information can, therefore, add a new dimension to the existing 

framework of CKD classification. 

Our results highlighted that CKD molecular categories were distinct from the healthy controls as 

well as one another in terms of biological pathways affected in the kidney. This shows that 

molecular categorization represents a mechanistic classification of disease that is based on 

underlying biological processes. Differential expression analysis of the molecular categories vs 

healthy control produced a multitude of modulated genes. Living kidney donor biopsies were 

chosen to best represent the “healthy” kidney state, as these individuals were specifically 

screened for absence of disease and selected for superior kidney function to qualify for 

donation. Using such a control group, as opposed to commonly used tumor nephrectomy or 

autopsy tissues, provides a robust baseline and enhances our ability to detect biologically 

meaningful differences by maximizing the contrast with the disease state. The case-control 

contrast was further boosted by CKD molecular categories forming intrinsically more uniform 

subgroups as compared to the heterogeneous all-comer CKD population. This highlights that 
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the molecular categorization is also able to capture elements of the biological basis of the 

disease. 

Through both hypothesis-free exploration and hypothesis-driven analyses, we found that distinct 

biological pathways, transcriptional regulators, injury markers, and cell type context were 

perturbed in each of the CKD molecular categories – an important step in unraveling the 

biological basis of disease heterogeneity. Many of the enriched pathways, such as 

inflammation, apoptosis, metabolism, have been previously implicated in CKD (33-36). 

However, the novelty of our results is in that not all pathways were found equally activated in all 

patients; instead, different pathways could be more dominant in different subgroups and thereby 

differentially influencing disease progression and outcomes. For example, inflammation and 

fibrosis, generally accepted as universal pathophysiological mechanisms in CKD, showed 

uneven distribution within the patient population with specific enrichment in one of the molecular 

categories, CKD-Gold. This challenges existing dogma with implications for disease 

understanding as well as anti-inflammatory drug development, further emphasizing the 

importance of precision medicine and mechanistic enrichment approaches to patient selection.  

The identified molecular categories were replicated in independent cohorts indicating that the 

molecular categorization can be extended to other CKD populations. The ability to predict the 

molecular category of previously unseen patient data strengthens generalizability and 

robustness of our findings as it demonstrates robustness across CKD etiology and 

transcriptomics platforms between research centers in the US and Europe. The outcome 

association was replicated in two independent cohorts. The observation of different ESKD risk 

across molecular categories conserved between both cohorts is encouraging and advocates for 

further investigation as the molecular categorization might help identify patients at greater risk 

for rapid disease progression. 
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Cross-sectional study design does not allow to observe the anticipated changes over time in the 

transcriptomics profile following the disease progression processes. However, as repeated 

kidney biopsies are rarely performed in clinical practice, the temporal trends of molecular 

changes will need to be ascertained through non-invasive means or through time-course studies 

in animal models. Finally, to enable implementation in clinical practice, non-invasive biomarkers, 

e.g. urinary proteins reflecting the intra-renal molecular characteristics of each category, will be 

needed to allow comprehensive capture in large scale cohorts. Our findings showing differential 

expression patterns of genes encoding known markers of kidney injury across molecular 

categories offer a starting point to develop a non-invasive biomarker panel to recognize these 

categories. 

There are several limitations to this study. We analyzed the largest available kidney 

transcriptomics datasets from CKD patients nevertheless were limited in sample size. Future 

collaborative effort will be needed to generate more data that may help further refine the 

classification as well as expand the repertoire of ‘omics’ beyond transcriptomics. Studied 

cohorts were subject to an inherent selection bias as patients undergoing clinically indicated 

kidney biopsy, therefore may differ from the general CKD population in composition. Our 

analysis focused on the more readily available tubulointerstitial tissue component; we plan to 

extend similar analysis to the glomerular compartment in the future. However, tubulointerstitial 

biology is highly relevant for CKD. Tubulointerstitial lesions are known to be a strong predictor of 

CKD progression. Even in the cases of primary or secondary glomerular disease, studies have 

suggested that it is the extent of accompanying tubulointerstitial histologic injury that correlates 

best with renal function decline and progression to ESKD (38-41). Transcriptomics profiling of 

renal tubulointerstitium has proved informative in deciphering molecular basis of disease (42-

44). In the subsequent studies, it would be highly relevant to include also genetics and 
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comorbidities information for further exploration and interpretation of the characteristics of each 

molecular class, which for ethical concerns were not available for the discovery cohort.  

Our results have the potential to take the CKD disease classification to the next, mechanistic 

level. A transition to an integrated clinical, morphological and molecular diagnosis is warranted 

for development of individualized treatments in CKD. Elucidation of the molecular drivers of 

different patient subgroups can lead to new biological hypotheses, therapeutic targets, and 

biomarkers. Establishing a first framework of molecular categories in CKD is an important 

milestone in CKD research, but replication across further disease cohorts and development of 

non-invasive means to capture the intra-renal categories are urgently needed to accelerate 

progress towards precision medicine for CKD. 
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Materials & Methods  

Renal transcriptomics data 

We analyzed publicly available renal tubulointerstitial microarray transcriptomics data from three 

CKD cohorts. Consent was obtained from individual patients at enrollment, and the studies were 

approved by Institutional Review Boards of participating institutions.  

ERCB (European Renal cDNA Bank) is a European multicenter CKD study established  to  

collect  renal  biopsy  tissue  for  gene expression  analysis  at  the  time  of  a  clinically 

indicated  biopsy (45). Affymetrix U133 array transcriptomics data from 165 patients were used 

for the discovery analysis (GEO accession ID: GSE104954).  

C-PROBE (Clinical Phenotyping Resource and Biobank Core) is a multicenter longitudinal 

observational CKD cohort (17). Tubulointerstitial transcriptomics data generated on Affymetrix 

Human Genome U133 Plus 2.0 Array were available for 42 patients (GEO accession ID: 

GSE69438). 

NEPTUNE (Nephrotic Syndrome Study Network) is a multi-center, prospective study of children 

and adults with nephrotic range proteinuria (>500mg/day), recruited at the time of first clinically 

indicated baseline renal biopsy (46). Affymetrix Human Gene 2.1 ST Array tubulointerstitial 

transcriptomics data from 107 NEPTUNE-NS adult CKD cases were included in the analysis 

(GEO accession ID: GSE108112). 

Tubulointerstitial transcriptomics data from 46 living kidney donors (GSE104954) were used as 

controls for differential expression analysis.  
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Self-Organizing Maps algorithm 

All analyses and visualizations were run using R version 3.6.0, unless indicated otherwise. SOM 

functions implemented in R packages kohonen v3.0.8, popsom v4.2.1, and oposSOM v2.2.0 

(49) were used. Inherent data clustering tendency in ERCB dataset was assessed with Hopkins 

statistics and VAT (Visual Assessment of cluster Tendency) function using factoextra R 

package (Fig. S4). Genes with low variance across samples (median absolute deviation <0.15, 

27% of genes) were excluded from the analysis as non-informative. The retained 8,454 gene 

expression variables were centered and scaled to give them equal importance during the SOM 

training process and prevent bias from highly abundant genes. Different map grid sizes (4x4 

through 12x12) and number of iterations (100 through 50,000) were tested, and mapping quality 

indices (quantization error, topographic accuracy, embedding accuracy) assessed (Fig. S5). 

Considering the random nature of SOM initialization, behaviors of SOMs from 10 independent 

runs were compared (Fig. S5 B). Final model parameters were set to achieve the highest 

convergence. The optimal map size was determined to be 8x8 (64 SOM units), consistent with 

the commonly used empirical rule of thumb 5x√N samples (50). Hexagonal topology and a 

bubble neighborhood function with sum-of-squares as distance measure were used. In order to 

isolate groups of samples with similar profiles, Ward’s hierarchical clustering was run on the 

codebook vectors. The optimal number of clusters was guided by the ‘elbow method’ using 

NbClust R package  based on the simplest model with the lowest within-cluster sum-of-squares. 

Diagnostic plots are presented in Fig. S5-S6. Validation mapping of the independent CKD 

cohorts was performed using ‘map.kohonen’ function of kohonen R package (14). New data for 

the 8,454 genes were extracted from C-PROBE and NEPTUNE transcriptomics, expression 

values for missing genes (378 and 427 for C-PROBE and NEPTUNE, respectively) were set to 

“NA”. The data were scaled using the ERCB scaling parameters and then presented to the 

trained SOM, and distances from the new data points to the closest units were calculated.  
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Downstream analyses 

Individual and group-level transcriptomics profiles were visualized using oposSOM R package 

with default parameters (49). Differential gene expression analyses comparing patients’ and 

control samples were performed with limma R package(52). The output was ranked by 

sign(logFC)*-log10(adj.p-value), and functional enrichment analyses were run with Gene Set 

Enrichment Analysis application using 5,205 gene sets belonging to Hallmark, Curated 

Canonical Pathways, and Gene Ontology from MSigDB database of molecular signatures (53, 

54). Upstream regulator analysis was performed using IPA (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis, (55)), focusing on 

endogenous regulators only. A list of 413 genes with preferential renal expression (53 kidney-

enriched, 229 kidney-elevated, and 131 group-enriched) was extracted from Human Protein 

Atlas v19.3 (www.proteinatlas.org (56)). Mendelian genes responsible for glomerulopathies 

(172) and tubulopathies (55) were extracted from Parsa et al. (57). A list of renal cell-type 

specific markers was curated from literature (58) as well as derived from single-cell RNA-seq 

data(59). Outcome association testing was performed using survival R package. 
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Fig 1. Unbiased kidney transcriptomics stratification identified four inherent subgroups 

of patients (“molecular categories”) within a CKD cohort.  

Molecular categories were present at different CKD stages and histopathological diagnoses, providing 

orthogonal biomechanistic information regardless of the disease etiology or severity. (A) Self-Organizing 

Map of a CKD population based on kidney gene expression profiling. Individual patients (shown as open 

circles) were arranged in a topological order by similarities of their multivariable transcriptomics profiles. 

(B) Clustering of similar SOM units identified subgroups of similar patients. Thick lines indicate cluster 

boundaries. Clusters were assigned arbitrary colors. (C) Group-level summarized transcriptomics profiles 

(“expression portraits”) show distinct patterns between the molecular categories. Color scale reflects 

relative gene expression levels (red – high, blue – low, green – average) of 8,454 transcripts mapped. (D-

E) Mosaic plots show the correspondence between molecular categorization and CKD stages and 

histopathological diagnoses, respectively. Width of the bands reflects the relative proportions of cases, 

the numbers of patients per category are also indicated by numbers. 
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Fig 2. Heterogeneity of individual CKD transcriptomics profiles and re-classification 

based on molecular similarity independently from the conventional categories.  

Sample of 9 patients’ kidney gene expression profiles demonstrate marked heterogeneity, even within 

same diagnostic groups. Genes are represented in a fixed order on a grid to enable visual comparisons 

between samples. Color scale reflects gene expression levels relative to the population average (red – 

high, blue – low, green – average). 
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Fig. 3. CKD molecular categories differ from healthy kidney transcriptomics profile and 

are biologically distinct.  

(A) Volcano plots visualize differential gene expression analysis results (log fold changes by 

statistical significance) per each molecular category contrasted with healthy control (living 

kidney donors, N=46). Each point represents a gene. Significantly modulated genes (q<0.0001) 

are highlighted in category-specific colors. Vertical dotted line indicates zero-fold change. The 

table shows numbers of differentially expressed genes, stratified by the direction of regulation, 

per each comparison. (B) Heatmap of gene set enrichment analysis results. The 5,205 gene 

sets (columns) were tested in each CKD molecular category (rows). The colors reflect 

normalized enrichment score (NES) values (maroon – positive, blue – negative) per gene set. 

The color bar indicates respective molecular category (Olive, Gold, Plum, Blue). Hierarchical 

clustering groups similar gene sets. (C-D) Venn diagrams visualize overlaps in significantly 

enriched (FDR q<0.05) up- and down-regulated gene sets, respectively, demonstrating 

presence of shared and unique pathways between CKD molecular categories. (E) Transcription 

regulator analysis. Activation Z-score for top 20 endogenous upstream regulators per CKD 

molecular category (orange – activated, green – inhibited). (F) Heatmap of hypothesis-driven 

enrichment analysis visualizing enrichments scores for CKD-relevant gene sets (kidney cell-type 

specific signatures, Mendelian genes known to cause renal phenotypes, genes with kidney-

enriched expression). (G) Gene expression levels of known kidney injury markers in healthy 

controls and CKD molecular categories. Boxplots visualize median values per group, whiskers 

indicate IQR. 
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Fig. 4. CKD molecular categorization in independent patient cohorts and disease 

progression comparison across CKD molecular categories.  

(A) C-PROBE cohort patients (N=42), mapped onto the trained discovery SOM; individual 

patients are shown as red triangles. (B) NEPTUNE-NS cohort patients (N=107) mapped onto 

the trained discovery SOM; individual patients are shown as blue diamonds. (C) Waffle charts 

visualize relative proportions of patients assigned to the different molecular categories in each 

CKD cohort (1 square=1%). (D) Kaplan-Meier curves of ESKD incidence by CKD molecular 

category in C-PROBE patients. Statistical significance of differences was tested using log-rank 

test. (E) Slope of eGFR, ml/min/year, by CKD molecular category in C-PROBE patients. 

Boxplots visualize median values per molecular class, whiskers indicate IQR. Dotted horizontal 

line denotes zero (no change in eGFR over time). (F) Kaplan-Meier curves of ESKD incidence 

by CKD molecular category in NEPTUNE patients. Statistical significance of differences was 

tested using log-rank test. 
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Table 1. Patient clinical characteristics for discovery and validation cohorts 

Parameter ERCB1 C-PROBE2,3 NEPTUNE2,3 Living donors4  

N 165 42 107 46 

Age, years 47±18 40±16 48±16 
 48±12 

% Male 56% 38% 65% 50% 

eGFR, ml/min/1.73m2 66±37 74±41 74±32 104±30 

Proteinuria, g/24h 3.1 [0.7-4.2] 5.9 [5.1-6.5] 3.5 [1.6-6.95]  

Histopathological diagnosis: 
DN 17 (10%) 1 (2%) .  
FSGS 13 (8%) 11 (26%) 46 (43%)  
HTN 20 (12%) 1 (2%) .  
IgAN 25 (15%) 1 (2%) .  
MGN 18 (11%) 2 (5%) 43 (40%)  
MCD 13 (8%) 1 (2%) 18 (17%)  
RPGN 21 (13%) 2 (5%) .  
LN 32 (19%) 16 (38%) .  
TMD 6 (4%) . .  
Other  7 (17%) .  

1Discovery cohort; 2Validation cohort; 3Outcome association testing; 4Control group for differential 
expression analyses 
Quantitative variables are presented as means±SD or medians [IQR]. 
Abbreviations: eGFR – estimated glomerular filtration rate; DN - diabetic nephropathy; FSGS - focal 
segmental glomerulosclerosis; HTN - hypertensive nephrosclerosis; IgAN - immunoglobulin A 
nephropathy; MGN - membranous glomerulonephritis; MCD - minimal change disease; RPGN – rapidly 
progressive glomerulonephritis; LN - lupus nephritis; TMD – thin basement membrane disease. 
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Table 2. Summary of differential expression and enrichment gene sets by molecular CKD 
category 

Parameter CKD-Blue CKD-Gold CKD-Olive CKD-Plum 

Patients 58 33 29 45 
Differentially 
expressed genes 

    

Up-regulated 45 1,756 386 1,660 

Down-regulated 171 1,716 160 1,465 
Significantly 
enriched gene sets  

    

Up-regulated 10 807 428 793 

Down-regulated 122 343 483 140 
Uniquely enriched 
gene sets 

    

Up-regulated 0 458 185 287 

Down-regulated 56 272 376 27 

Top 10 uniquely 
enriched up-regulated 
gene sets 

  • GO_adaptive_immune_r
esponse 

• GO_extracellular_matrix
_structural_constituent 

• GO_leukocyte_proliferati
on 

• GO_regulation_of_leuko
cyte_proliferation 

• GO_positive_regulation_
of_cell_activation 

• GO_b_cell_receptor_sign
aling_pathway 

• GO_membrane_invagina
tion 

• GO_humoral_immune_r
esponse 

• Hallmark_inflammatory_
response 

• GO_positive_regulation_
of_leukocyte_proliferati
on 

• GO_mitochondrial_gene
_expression 

• GO_mitochondrial_matri
x 

• GO_peroxisome_organiz
ation 

• GO_mitochondrial_transl
ation 

• Reactome_peroxisomal_
protein_import 

• GO_peroxisomal_transp
ort 

• GO_cellular_amino_acid
_metabolic_process 

• GO_mitochondrial_prote
in_complex 

• GO_ligase_activity 
• GO_microbody 

• Reactome_mrna_splicing 
• GO_nuclear_export 
• Reactome_downstream_

signaling_events_of_b_c
ell_receptor_bcr 

• GO_endosome_organiza
tion 

• Reactome_scf_skp2_me
diated_degradation_of_
p27_p21 

• Pid_nectin_pathway 
• GO_gdp_binding 
• Reactome_nod1_2_signa

ling_pathway 
• GO_pigment_granule 
• Kegg_spliceosome 

Top 10 uniquely 
enriched down-
regulated gene sets 
 
 
 
 
 
 
 
 
 
 

• GO_cellular_response_to
_starvation 

• GO_response_to_starvat
ion 

• Pid_foxo_pathway 
• Pid_erbb1_downstream_

pathway 
• GO_kinase_inhibitor_acti

vity 
• Pid_tap63_pathway 
• GO_dna_binding_transcr

iption_factor_binding 
• Hallmark_androgen_resp

onse 
• GO_rna_polymerase_ii_s

pecific_dna_binding_tra
nscription_factor_bindin
g 

• GO_transcription_factor
_binding 

• GO_mitochondrial_matri
x 

• GO_alpha_amino_acid_
metabolic_process 

• GO_coenzyme_binding 
• Reactome_protein_locali

zation 
• GO_cofactor_binding 
• GO_cellular_respiration 
• GO_cellular_amino_acid

_metabolic_process 
• GO_mitochondrial_prote

in_complex 
• GO_cellular_lipid_catabo

lic_process 
• Reactome_mitochondrial

_fatty_acid_beta_oxidati
on 

• GO_glomerulus_develop
ment 

• Naba_secreted_factors 
• Reactome_peptide_ligan

d_binding_receptors 
• GO_neuropeptide_signal

ing_pathway 
• Pid_fra_pathway 
• GO_antimicrobial_humo

ral_immune_response_
mediated_by_antimicrob
ial_peptide 

• GO_calcium_channel_re
gulator_activity 

• Reactome_formation_of
_the_cornified_envelope 

• GO_keratinization 
• GO_mononuclear_cell_

migration 

• GO_voltage_gated_pota
ssium_channel_activity 

• GO_glutamate_secretion 
• GO_ligand_gated_ion_ch

annel_activity 
• GO_sodium_channel_act

ivity 
• GO_inorganic_ion_impor

t_across_plasma_membr
ane 

• Reactome_phase_0_rapi
d_depolarisation 

• GO_transmission_of_ner
ve_impulse 

• GO_potassium_ion_hom
eostasis 

• Reactome_voltage_gate
d_potassium_channels 

• GO_ligand_gated_cation
_channel_activity 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 13, 2021. ; https://doi.org/10.1101/2021.09.09.21263234doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.09.21263234


Supplementary Materials 

Supplemental Acknowledgement. NEPTUNE Consortia members. 

Fig S1. Gene expression levels across CKD molecular categories 

Fig S2. eGFR by molecular category stratified by CKD stage 

Fig S3. Kaplan-Meier survival curves for prediction of ESKD outcome stratified by CKD stage 

(A) and histopathological diagnosis (B) 

Fig S4. Data clustering tendency assessment: pairwise Spearman correlation-based distances 

between samples (A); VAT, Visual Assessment of cluster Tendency (B) 

Fig S5. Building Self-Organizing Map of CKD population: quantization error vs map size (A); 

convergence - embedding accuracy & topographic accuracy (B); learning progress across 10 

independent models (C) 

Fig S6. Final model SOM diagnostic plots: counts (A); mapping quality (B); neighbor distances 

(C); number of clusters (D) 

 

Table S1. Differentially expressed genes per CKD molecular category vs healthy control 

Table S2. Enriched pathways per CKD molecular category  

Table S3. Upstream transcriptional regulators per CKD molecular category 
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