
Fundamental limits on inferring epidemic resurgence in real time 

using effective reproduction numbers 

 

Kris V. Parag1,* and Christl A. Donnelly1,2 

1MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK. 

2Department of Statistics, University of Oxford, Oxford, UK. 

*For correspondence: k.parag@imperial.ac.uk. 

 

Abstract 

We find that epidemic resurgence, defined as an upswing in the effective reproduction number 

(R) of the contagion from subcritical to supercritical values, is fundamentally difficult to detect 

in real time. Inherent latencies in pathogen transmission, coupled with smaller and intrinsically 

noisier case incidence across periods of subcritical spread, mean that resurgence cannot be 

reliably detected without significant delays of the order of the generation time of the disease, 

even when case reporting is perfect. In contrast, epidemic suppression (where R falls from 

supercritical to subcritical values) may be ascertained 5–10 times faster due to the naturally 

larger incidence at which control actions are generally applied. We prove that these innate 

limits on detecting resurgence only worsen when spatial or demographic heterogeneities are 

incorporated. Consequently, we argue that resurgence is more effectively handled proactively, 

potentially at the expense of false alarms. Timely responses to recrudescent infections or 

emerging variants of concern are more likely to be possible when policy is informed by a 

greater quality and diversity of surveillance data than by further optimisation of the statistical 

models used to process routine outbreak data. 
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Author summary 

The timely detection of epidemic resurgence (i.e., upcoming waves of infected cases) is crucial 

for informing public health policy, providing valuable signals for implementing interventions 

and identifying emerging pathogenic variants or important population-level behavioural shifts. 

Increases in epidemic transmissibility, parametrised by the time-varying reproduction number, 

R, commonly signify resurgence. While many studies have improved computational methods 

for inferring R from case data, to enhance real-time resurgence detection, few have examined 

what limits, if any, fundamentally restrict our ability to perform this inference. We apply optimal 

Bayesian detection algorithms and sensitivity tests and discover that resurgent (upward) R-

changes are intrinsically more difficult to detect than equivalent downward changes indicating 

control. This asymmetry derives from the often lower and stochastically noisier case numbers 
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that associate with resurgence, and induces detection delays on the order of the disease 

generation time. We prove these delays only worsen if spatial or demographic differences in 

transmissibility are modelled. As these fundamental limits exist even if case data are perfect, 

we conclude that designing integrated surveillance systems that fuse potentially timelier data 

sources (e.g., wastewater) may be more important than improving R-estimation methodology 

and deduce that there may be merit (subject to false alarm costs) in conservative resurgence 

response initiatives. 

 

Introduction 

Real-time estimates of the transmissibility of an infectious disease [1,2] are crucial for informed 

outbreak responses. Timely detection of salient changes in the effective reproduction number 

(R) of the disease of interest, which measures the average number of secondary cases likely 

caused by a typical primary case, can provide important evidence for policymaking and public 

communication [3,4], as well as improve forecasts of disease burden [5] (e.g., hospitalisations 

and deaths). Two critical changes of interest are resurgence and control. Resurgence, which 

we define as an increase from subcritical (R ≤ 1) to supercritical (R > 1) transmissibility, can 

warn of imminent waves of infections, signify the emergence of pathogenic variants of concern 

and signal important shifts in the behavioural patterns of population [6,7]. Alternatively, control 

(or suppression) describes a switch from supercritical to subcritical spread and can indicate 

the effectiveness of interventions and the impact of depleting susceptibility (including that due 

to vaccine-induced immunity) [8,9]. 

 

Identifying these transmissibility changes in real time, however, is an enduring challenge for 

statistical modelling and surveillance planning. Inferring a transition in R from stochastic time 

series of incident cases necessitates assumptions about the differences among meaningful 

variations (signal) and random fluctuations (noise) [10–12]. Modern approaches to epidemic 

modelling and monitoring aim to maximise this signal-to-noise ratio either by enhancing noise 

filtering and bias correction methods [13–15], or by amplifying signal fidelity through improving 

surveillance quality and diversity [16–18]. While both approaches have substantially advanced 

the field, there have been few attempts to explore what, if any, fundamental limits exist on the 

timely detection of these changes. Such limits can provide key benchmarks for assessing the 

effectiveness of modelling or data collection and deepen our understanding of what can and 

cannot be achieved by real-time outbreak response programmes, ensuring that model outputs 

are not overinterpreted and redirecting surveillance resources more efficiently [19–21]. 

 

While studies are examining intrinsic bounds on epidemic monitoring and forecasting [22–25], 

works on transmissibility have mostly probed how extrinsic surveillance biases might cause R 
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misestimation [14,26–28]. Here we address these gaps in the literature by characterising and 

exposing fundamental limits to detecting resurgence and control, from a perfectly ascertained 

incidence time series, using effective reproduction numbers. This presents vital insights into 

the best real-time performance possible and blueprints for how outbreak preparedness might 

be improved. We analyse a predominant, flexible real-time epidemic model [1,2] and discover 

stark asymmetries in our intrinsic ability to detect resurgence and control, emerging from the 

noisier, low-incidence data underlying possible resurgence events. While epidemic control or 

suppression change-points are inferred robustly and rapidly, the data bottleneck caused by 

subcritical spread forces inherent delays (potentially 5–10 times that for control and on the 

order of the mean disease generation time) that inhibit real-time resurgence estimation. 

 

We show that these innate constraints on resurgence detection worsen with smaller epidemic 

size, steepness of the upswing in R and spatial or demographic heterogeneities. Given these 

limitations to timely outbreak analysis, which exist despite perfect case reporting and the use 

of optimal Bayesian detection algorithms [15,29], we argue that methodological improvements 

to existing models for analysing epidemic curves (e.g., cases, hospitalisations or deaths) are 

less important than designing enhanced and integrated surveillance systems [30,31]. Such 

systems, which might fuse multiple data streams including novel ones (e.g., wastewater [32]) 

to triangulate possible resurgences, could minimize some of these fundamental bottlenecks. 

We conclude that early responses to suspected resurging epidemics, at the expense of false 

alarms, might be justified in many settings, both from our analysis and the consensus that lags 

in implementing interventions can translate into severely elevated epidemic burden [33–36]. 

While such decisions must, ultimately, be weighed against the cost of those interventions, the 

bottlenecks we expose, hopefully, bolster the evidence base for decision-making. Using theory 

and simulation, we explore and elucidate these conclusions in the next section. 

 

Results 

Epidemic resurgence is statistically more difficult to infer than control 

We first provide intuition for why resurgence and control might present asymmetric difficulties 

when inferring transmissibility in real time. We consider an epidemic modelled via a renewal 

branching process [37] over times (usually in days) 1 ≤ 𝑠 ≤ 𝑡. Such models have been widely 

applied to infer the transmissibility of many diseases including COVID-19, pandemic influenza 

and Ebola virus disease. Renewal models postulate that the incidence of new cases at time 

s, denoted 𝐼𝑠, depends on the effective reproduction number, 𝑅𝑠, and the past incidence, 𝐼1
𝑠−1 

as in Eq. (1) [2]. Here 𝐼𝑎
𝑏 means the set {𝐼𝑎, 𝐼𝑎+1, … , 𝐼𝑏} and ≡ indicates equality in distribution. 
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P(𝐼𝑠| 𝑅𝑠, 𝐼1
𝑠−1) ≡  Pois(𝑅𝑠Λ𝑠),        Λ𝑠 = ∑ 𝑤𝑢𝐼𝑠−𝑢 

𝑠−1

𝑢=1 
.    (1) 

In Eq. (1), Pois represents Poisson noise and Λ𝑠 is the total infectiousness, which summarises 

the weighted influence of past infections. The set of weights 𝑤𝑢 for all u define the generation 

time distribution of the infectious disease with ∑ 𝑤𝑢 = 1∞
𝑢=1  [38]. We assume that all 𝑤𝑢 are 

known. If this distribution changes across the epidemic [39], we can recompute the Λ𝑠 terms 

after that change to model its effects. Applying Bayesian inference techniques (see Methods 

in the S1 Appendix for derivations) [2,40] under the assumption that transmissibility is 

constant over a past window of size m days, 𝜏(𝑠) = {𝑠, 𝑠 − 1, … , 𝑠 − 𝑚 + 1}, we obtain the 

gamma (Gam) posterior distribution given the incidence data P(𝑅𝑠| 𝐼1
𝑠) ≈  P(𝑅𝑠| 𝐼𝑠−𝑚+1

𝑠 ) ≡

 Gam (𝑎 + 𝑖𝜏(𝑠), (𝑐 + 𝜆𝜏(𝑠))
−1

), with sums of 𝑖𝜏(𝑠) = ∑ 𝐼𝑢𝑢∈𝜏(𝑠)  and 𝜆𝜏(𝑠) = ∑ Λ𝑢𝑢∈𝜏(𝑠) .  

 

Here (𝑎, 𝑐) are prior distribution (P(𝑅𝑠)) parameters, which are set so the prior mean of 𝑅𝑠 is 

above 1 but uninformative. This maximises sensitivity to resurgence since the model, in the 

absence of data, favours E[𝑅𝑠] > 1. The approximations above and later emerge from the 

window assumption and underpin popular real-time R-inference methods [2,41]. Using this 

renewal formulation, we define the relative change in the epidemic size as Δ𝜆𝜏(𝑠) =  
𝑖𝜏(𝑠)− 𝜆𝜏(𝑠)

𝜆𝜏(𝑠)
. 

This measures the perturbation to the past incidence (summarised by 𝜆𝜏(𝑠)) that the most 

recently observed incidence, 𝑖𝜏(𝑠), causes over 𝜏(𝑠). Normalising by 𝜆𝜏(𝑠) is sensible as the 

posterior mean estimate of 𝑅𝑠 is roughly 
𝑖𝜏(𝑠)

𝜆𝜏(𝑠)
, so Δ𝜆𝜏(𝑠) approximates 𝑅𝑠 − 1.  

  

This posterior distribution only uses data up until time s and defines our real-time estimate of 

R at that time. We can analyse its properties (and related likelihood function P(𝐼𝑠−𝑚+1
𝑠 | 𝑅𝑠)) 

to obtain the Fisher information (FI) on the left side of Eq. (2). We derive this expression in the 

Methods of the S1 Appendix. This FI captures how informative 𝐼1
𝑠 is (here approximated by 

𝐼𝑠−𝑚+1
𝑠 ) for inferring 𝑅𝑠, with its inverse defining the smallest asymptotic variance of any 𝑅𝑠 

estimate [10,42]. Larger FI implies better statistical precision.  

FI[𝑅𝑠] =  
𝜆𝜏(𝑠)

𝑅𝑠
,         P(𝑅𝑠 > 1| 𝐼1

𝑠) = ∑
(𝑐 + 𝜆𝜏(𝑠))

𝑗

𝑗!
𝑒−(𝑐+𝜆𝜏(𝑠))

𝑎−1+𝑖𝜏(𝑠)

𝑗=0
.    (2) 
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As resurgence will likely follow low-incidence periods, we might expect 𝜆𝜏(𝑠) to be small, while 

𝑅𝑠 rises. This effect will reduce the FI in Eq. (2), making these changes harder to detect. In 

contrast, the impact of interventions will be easier to infer since these are often applied when 

cases are larger and reduce 𝑅𝑠. This observation applies for any 𝜏(𝑠) and is fundamental as 

it delimits the best estimator performance under our renewal model (Cramer-Rao bound) [43]. 

 

We expand on this intuition, using the R posterior distribution to derive (see S1 Appendix 

Methods) the real-time resurgence probability P(𝑅𝑠 > 1| 𝐼1
𝑠) ≈ ∫ P(𝑅𝑠| 𝐼𝑠−𝑚+1

𝑠 ) 𝑑𝑅𝑠
∞

1
, as on 

the right side of Eq. (2). We plot its implications in Fig 1, corroborating our intuition. In panel 

A we find that larger past epidemic sizes (𝜆𝜏(𝑠)) improve our ability to detect transmissibility 

shifts from fluctuations in incidence (the posterior distributions for 𝑅𝑠 overlap less). Panel B 

bolsters this idea, showing that when 𝜆𝜏(𝑠) is smaller (as is likely before resurgence) we need 

to observe larger relative epidemic size changes (Δ𝜆𝜏(𝑠)) for some increase in P(𝑅𝑠 > 1| 𝐼1
𝑠) 

than for an equivalent decrease when aiming to detect control (where 𝜆𝜏(𝑠) will often be larger). 

This detection asymmetry holds for arbitrary window sizes and indicates that data bottlenecks 

translate into real-time detection delays. We assess the magnitude of these delays next.  
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Fig 1: Relative sensitivity to perturbations in incidence. Panel A plots posterior real-time 

distributions for time-varying reproduction numbers 𝑅𝑠, given incidence data 𝐼1
𝑠, at different 

relative incidence perturbations, 𝛥𝜆𝜏(𝑠) =  
𝑖𝜏(𝑠)− 𝜆𝜏(𝑠)

𝜆𝜏(𝑠)
, (increasing from blue to red). Here 𝜏(𝑠)  

represents some arbitrary window size used in computation (see Eq. (2)). The degree of 

distribution separation and hence our ability to uncover meaningful incidence fluctuations from 

noise, improves with the current epidemic size, 𝜆𝜏(𝑠) (i.e., as this increases from 25–400 

overlap among the distributions decreases). Panel B shows how this sensitivity modulates our 

capacity to infer resurgence (P(𝑅𝑠 > 1| 𝐼1
𝑠)) and control (P(𝑅𝑠 ≤ 1| 𝐼1

𝑠) = 1 − P(𝑅𝑠 > 1| 𝐼1
𝑠)). 

If epidemic size is smaller, larger relative incidence perturbations are required to detect the 

same change in 𝑅𝑠 (curves have gentler gradient as we traverse from blue to red). Resurgence 

(likely closer to the blue line in the top right quadrant) is appreciably and innately harder to 

detect than control (likely closer to the red line, in the bottom left quadrant). 

 
Fundamental delays on detecting resurgence but not control 
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The intrinsic asymmetry in sensitivity to upward versus downward shifts in R (see Fig 1) 

implies that it is not equally simple to infer resurgence and control from incident cases. We 

investigate ramifications of this observation by comparing our real-time 𝑅𝑠-estimates to ones 

exploiting all the future incidence information available. We no longer consider window-based 

approximations (which we only use to extract analytic insights) but instead apply formal real-

time Bayesian inference and detection algorithms [29]. We investigate two foundational 

posterior distributions, the filtered, 𝑝𝑠, and smoothed, 𝑞𝑠, distributions, defined as in Eq. (3).  

𝑝𝑠 = P(𝑅𝑠| 𝐼1
𝑠), 𝑞𝑠 = P(𝑅𝑠| 𝐼1

𝑡),         D(𝑝𝑠|𝑞𝑠) =  ∫ 𝑝𝑠log
𝑝𝑠

𝑞𝑠
 𝑑𝑅𝑠

∞

0

.    (3) 

Here 𝑝𝑠 considers all information until time s and captures changes in 𝑅𝑠 from 𝐼1
𝑠 in real time. 

Estimates of 𝑅𝑠 using this posterior distribution minimise the mean squared error (MSE) given 

𝐼1
𝑠. In contrast, 𝑞𝑠 extracts all the information from the full incidence curve 𝐼1

𝑡, providing the 

minimum MSE 𝑅𝑠-estimate given 𝐼1
𝑡 [29]. This smoother MSE is never larger and may be 

substantially smaller than the filtered MSE due to its use of additional information (i.e., 𝐼𝑠+1
𝑡 ) 

[29,44]. The differential between 𝑝𝑠 and 𝑞𝑠, summarised via the Kullback-Liebler divergence, 

D(𝑝𝑠|𝑞𝑠), measures the value of this additional ‘future’ information. 

 

Bayesian filtering and smoothing are central formalisms across engineering, where real-time 

inference and detection problems are common [29,45]. We compute formulae from Eq. (3) via 

the EpiFilter package (see S1 Appendix and [15,28]), which uses optimal forward-backward 

algorithms, improves on the window-based approach of the last section and maximises the 

signal-to-noise ratio in R-estimation. We further obtain filtered and smoothed probabilities of 

resurgence as P(𝑅𝑠 > 1 | 𝐼1
𝑠) = ∫ 𝑝𝑠 𝑑𝑅𝑠

∞

1
 and P(𝑅𝑠 > 1 | 𝐼1

𝑡) = ∫ 𝑞𝑠 𝑑𝑅𝑠
∞

1
. The probability 

that the epidemic is controlled (i.e., R ≤ 1) is the complement of these expressions. Our main 

results, which average the above quantities over many simulated Ebola virus and COVID-19 

epidemics, are given in Fig 2 and S1 Appendix Fig A, respectively. The simulated incidence 

curves are provided in S1 Appendix Figs B-C and illustrate the expected differences in case 

numbers associated with upward and downward R-shifts. We uncover striking differences in 

the intrinsic ability to infer resurgence versus control in real time.  

 

Upward change-points are significantly harder to detect both in terms of accuracy and timing. 

Discrepancies between 𝑝𝑠- and 𝑞𝑠-based estimates (the latter benchmark the best realisable 

performance) are appreciably larger for resurgence than control. While decreases in R can be 

pinpointed reliably, increases seem fundamentally more difficult to detect. These limits appear 
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to exacerbate with the steepness of the R upswing. We confirm these trends with a detailed 

simulation study across five infectious diseases in Fig 3. There we alter the steepness, 𝜃, of 

transmissibility changes and map delays in detecting resurgence and control as a function of 

the difference in the first time that 𝑝𝑠- and 𝑞𝑠-based probabilities cross 0.5 (Δ𝑡50) and 0.95 

(Δ𝑡95), normalised by the mean generation time of the disease. We find that lags in detecting 

resurgence can be at least 5–10 times longer than for detecting control and are of the order 

of the average intrinsic generation time of the disease. 

 

 

 

Fig 2: Resurgence and control dynamics of Ebola virus. Using renewal models with the 

generation time from [46], we simulate 1000 realisations of Ebola virus epidemics (𝑡 = 300) 

with step (A panels) and seasonally (B panels) changing transmissibility (true 𝑅𝑠 in black). Top 

panels show posterior mean estimates from the filtered (E𝑝[𝑅𝑠], blue) and smoothed (E𝑞[𝑅𝑠], 

red) distributions from every realisation (computed using EpiFilter [15]). Middle panels average 

the Kullback-Liebler divergences from those simulations, 𝐷(𝑝𝑠|𝑞𝑠), and bottom panels display 

the overall filtered (P(𝑅𝑠 > 1 | 𝐼1
𝑠), blue), and smoothed (P(𝑅𝑠 > 1 | 𝐼1

𝑡), red) probabilities of 

resurgence. We find fundamental and striking delays in detecting resurgence, often an order 
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of magnitude longer than those for detecting control or suppression in transmission (see lags 

between red and blue curves in all relevant panels). Note that the initial rise in P(𝑅𝑠 > 1 | 𝐼1
𝑠) 

of panel A, which precedes the transition in 𝑅𝑠, is due to the influence of the prior distribution 

(which has a mean above 1) in a period with very few cases. We present the incidence curves 

that underlie the simulations here in Fig C of the S1 Appendix. 

 

 

Fig 3: Delays in detecting upward and downward changes in R. We characterise the 

discrepancies between detecting resurgence and control against the steepness or rate, 𝜃, of 

changes in transmissibility (𝑅𝑠), which we model using logistic functions (panel A, steepness 

increases from blue to red). We compare differences in the probability of detecting resurgence 

(P(𝑅𝑠 > 1)) or control (P(𝑅𝑠 ≤ 1) under filtered and smoothed estimates (see main text) first 
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crossing thresholds of 0.5 (𝛥𝑡50) and 0.95 (𝛥𝑡95) for five infectious diseases (panel B plots 

their assumed generation time distributions from [2,46,47]). We simulate 1000 epidemics from 

each disease using renewal models and estimate 𝑅𝑠 with EpiFilter [15]. Panels C and D (here 

colours match panel B, 𝛥𝑡 is normalised by the mean generation times of the diseases) show 

that delays in detecting resurgence (dots with colours indicating the disease) are at least 5–

10 times longer than for detecting control (diamonds with equivalent colours). Our ability to 

infer even symmetrical transmissibility changes is fundamentally asymmetric, largely due to 

the differences in case incidence at which those changes usually tend to occur. 

 
Fundamental delays worsen with spatial or demographic heterogeneities 

In previous sections we demonstrated that sensitivity to changes in R is asymmetric, and that 

intrinsic, restrictive limits exist on detecting resurgence in real time, which do not equally inhibit 

detecting control. While those conclusions apply generally (e.g., across diseases), they do not 

consider the influence of spatial or demographic heterogeneity. We examine this complexity 

through a simple but realistic generalisation of the renewal model. Often R-estimates can be 

computed at small scales (e.g., at the municipality level) via local incidence or more coarsely 

(e.g., countrywide), using aggregated case counts [3,13]. We can relate these differing scales 

with the weighted mean in Eq. (4), where the overall (coarse) R at time s, 𝑅̅𝑠, is a convex sum 

of finer-scale R contributions from each group (𝑅𝑠[𝑗] for the jth of p groups) weighted by the 

epidemic size of that group (as in Eq. (2) we use windows 𝜏(𝑠) for analytic insight).  

𝑅̅𝑠 = ∑ 𝑅𝑠[𝑗]𝛼𝑗

𝑝

𝑗=1 
, 𝛼𝑗 =

𝜆𝜏(𝑠)[𝑗]

∑ 𝜆𝜏(𝑠)[𝑘]𝑝
𝑘=1

 .     (4) 

Our choice of groupings is arbitrary and can equally model demographic heterogeneities (e.g., 

age-specific transmission), where we want to understand how dynamics within the subgroups 

influence overall spread [7]. Our aim is to ascertain how grouping, which often occurs naturally 

due to data constraints or a need to succinctly describe the infectious dynamics over a country 

to aid policymaking or public communication [48], affects resurgence detection. Eq. (4) implies 

that 𝑅̅𝑠 − 1 = ∑ (𝑅𝑠[𝑗] − 1)𝛼𝑗
𝑝
𝑗=1 . Since resurgence will likely first occur within some specific 

(maybe high risk) group and then propagate to other groups [7], this expression suggests that 

an initial signal (e.g., if some 𝑅𝑠[𝑗] > 1) could be masked by non-resurging groups (which are, 

from this perspective, contributing background noise). 

 

As the epidemic size in a resurging group will likely be smaller than those of groups with past 

epidemics that are now being stabilised or controlled, this exacerbates the sensitivity bounds 
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explored earlier via Eq. (2). We can verify this further loss of sensitivity by examining how the 

overall posterior distribution depends on those of the component groups as follows, with ⊛ 

as a repeated convolution operation and Ω𝑗 as the posterior distribution for the jth group. 

𝑅𝑠[𝑗] ∼ Ω𝑗(𝑖𝜏(𝑠)[𝑗], 𝜆𝜏(𝑠)[𝑗]),          𝑅̅𝑠 ∼ ⊛𝑗=1
𝑝 𝛼𝑗Ω𝑗 .    (5) 

While Eq. (5) holds generally, we assume gamma posterior distributions, leading to statistics 

analogous to Eq. (2). We plot these sensitivity results at 𝑝 = 2 and 3 in Fig 4 , where group 1 

features resurgence and other groups either contain stable or falling incidence. We find that 

as p grows (and additional distributions convolve to generate 𝑅̅𝑠) we lose sensitivity (posterior 

distributions overlap more for a given relative change in incidence (Δ𝜆𝜏(𝑠)[1] =
𝑖𝜏(𝑠)[1]− 𝜆𝜏(𝑠)[1]

𝜆𝜏(𝑠)[1]
). 

Reductions in either the weight (𝛼1), epidemic size (𝜆𝜏(𝑠)[1]) or other 𝑅𝑠[𝑗 ≠ 1], further 

desensitise the resurgence signals i.e., decrease the gradient of detection probability curves. 

This is summarised by noting that if 𝑅𝑠[1] = max𝑗 𝑅𝑠[𝑗], then the sensitivity from Eq. (2) is 

only matched when the resurging group dominates (𝛼1 ≈ 1) or if other groups have analogous 

R i.e., 𝑅𝑠[1] ≈ 𝑅𝑠[𝑗]. Delays in detecting resurgence can therefore be severe. Heterogeneity 

on its own, however, does not force asymmetry between detecting control and resurgence. 
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Fig 4: Influence of heterogeneities in transmission. We investigate how differences in 

transmissibility among groups (e.g., due to demographic or spatial factors) fundamentally limit 

the ability to detect resurgence from a specific group (in this example group 1 with reproduction 

number 𝑅𝑠[1]). Panel A shows that the grouped posterior distribution becomes less sensitive 

to a fixed relative change in group 1 incidence, 𝛥𝜆𝜏(𝑠)[1] =
𝑖𝜏(𝑠)[1]− 𝜆𝜏(𝑠)[1]

𝜆𝜏(𝑠)[1]
  (the level of change 

increases from blue to red). Posterior distributions over 𝑅̅𝑠 (the overall reproduction number 

across groups) are more overlapped (and tighter in variance) as p rises, for fixed 𝑅𝑠[1] (top). 

Panel B plots how overall resurgence detection probability P(𝑅̅𝑠 > 1) depends on the weight 

(𝛼1, top, 0.05–1) and epidemic size (𝜆𝜏(𝑠)[1], middle, 20–80, 𝑝 = 2) as well as changes in 

𝑅𝑠[3] (bottom, 0.5–1.2, 𝑝 = 3). Decreases in 𝛼1 (red to blue) or 𝜆𝜏(𝑠)[1] mean other groups 

mask the resurging dynamics in group 1, reducing sensitivity (curves become less steep). In 

the latter case the P(𝑅̅𝑠 > 1) (green with solid line at median of 𝜆𝜏(𝑠)[1] range) is always more 

conservative than P(𝑅𝑠[1] > 1) (black with solid median line). As 𝑅𝑠[3] falls (red to blue) the 

ability to detect resurgence also lags relative to that from observing group 1 (black). 
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Discussion 

Probing the performance limits of noisy biological systems has yielded important insights into 

the real-time estimation and control of parameters in biochemistry and neuroscience [49–51].  

Although models from these fields share dynamic similarities with those in epidemiology, there 

has been relatively little investigation of how real-time estimates of pathogen transmissibility, 

parametrised by R, might be fundamentally limited. This is surprising since R is among key 

parameters considered in initiatives aiming to better systematise real-time epidemic response 

[41,52]. Here we explored what limits may exist on our ability to reliably detect or measure the 

change-points in R that signify resurgence and control. By using a combination of Bayesian 

sensitivity analyses and minimum MSE filtering and smoothing algorithms, we discovered 

striking asymmetries in innate detection sensitivities. We found that, arguably, the most crucial 

transitions in epidemic transmissibility are possibly the most inherently difficult to detect.  

 

Specifically, resurgence, signified by an increase in R from below to above 1, can possibly be 

detected only 5–10 times later than an equivalent decrease in R that indicated control (Fig 2, 

Fig 3 and S1 Appendix Fig A). As this lag can be of the order of the mean generation time 

of the pathogen under study, even when case reporting is perfect and optimised detection 

algorithms are applied, this represents a potentially sharp bottleneck to real-time responses 

for highly contagious diseases. Intuition for this result came from observing that sensitivity to 

R change-points will weaken (due to noise masking the signal) with declining epidemic sizes 

or case incidence, and increasing ‘true’ R, both of which likely occur in resurgent settings due 

to periods of subcritical spread (Eq. (2) and Fig 1). The converse applies to control, which is 

usually enforced in larger (and less intrinsically noisy) incidence regimes. Furthermore, we 

found that these latencies and sensitivity issues would only exacerbate when heterogeneous 

groupings across geography or demography (Eq. (4), (5) and Fig 4) are considered. 

 

An interesting corollary of these results occurs if we consider the detection of an upward shift 

in R at large incidence. If this increase affects the majority of cases (i.e., Eq. (2) applies), then 

we would detect it without significant delay because epidemic curves are now inherently less 

noisy. However, if incidence is large and a resurgence occurs in some subset of the cases 

(i.e., the upward R-shift is localised to group j and Eq. (5) applies) then we would still face the 

innate delay of a mean generation time together with further loss of sensitivity due to the cases 

in groups other than j acting as background noise. This scenario might realistically occur when 

a new pathogenic variant emerges (e.g., the alpha COVID-19 variant appeared during a high 

incidence period in the UK [53]) or when specific age groups sustain resurgence (e.g., the 20-

49 age group for COVID-19 in the USA [7]). These detection delays limit our ability to rapidly 
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identify and target interventions at resurgent groups. Our work emphasises that correlations 

among incidence, transmissibility parameters underlying this incidence and heterogeneous 

groups contributing to that incidence can fundamentally constrain our response sensitivity. 

 

Practical real-time analyses often involve grouping or data aggregation [9,13] and are subject 

to reporting and other latencies (e.g., if notifications, hospitalisations or deaths are used as 

proxies for infection incidence), which introduce additive delays on top of those we uncovered 

[14,54]. Consequently, we argue that while case data may provide robust signals for 

pinpointing when epidemics are under control (and assessing impacts of interventions), they 

are insufficient, on their own, to sharply resolve resurgence at low incidence. This does not 

devalue methods seeking to better characterise real-time R changes [1,2,13,28], but instead 

contextualises how such inferences should be interpreted when informing policy. Given the 

intrinsic delays in detecting resurgences, which might associate with critical epidemiological 

changes such as variants of concern or shifts in population behaviours [6,7], there might be 

grounds for conservative policies (e.g., those of New Zealand and Australia for COVID-19 

[55]) that trade off early interventions against the expense of false alarms. While the value of 

such policies ultimately depends on many complex economic, political and socio-behavioural 

factors, our study, together with works that show how lags in enacting interventions can induce 

drastic costs [33–36], provides a first step towards dissecting some of these trade-offs. 

 

Moreover, our analyses suggest that designing enhanced surveillance systems, which can 

comprehensively engage and integrate diverse data sources [30,31] may be more important 

than improving models for processing case data. Fusing multiple and sometimes novel data 

sources, such as wastewater or cross-sectional viral loads [18,32], may present the only truly 

realistic means of minimizing the innate bottlenecks to resurgence detection that we have 

demonstrated. Approaches aimed at improving case-based inference generally correct for 

reporting biases or propose more robust measures of transmissibility, such as time-varying 

growth rates [14,41,56]. However, as our study highlights limits that persist at the gold 

standard of perfect case reporting and, further it is known that under such conditions growth 

rates and R are equally informative [57], these lines of investigation are unlikely to minimise 

the detection limits that we have exposed. 

 

There are three main limitations of our results. First, as we only considered renewal model 

epidemic descriptions with assumed generation times, which predominate real-time R studies, 

our work necessarily neglects the often-complex contact network structures that can mediate 

infection spread [58] or lead to intervention-induced generation time changes [39]. However, 

other analyses using somewhat different approaches to ours (e.g., Hawkes processes [59]) 
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show apparently similar sensitivity asymmetries. There is evidence that renewal models may 

be as accurate as network models for inferring R [60], while being easier to run and fit in real 

time. They are also known to be equivalent to various compartmental models [61]. We do not 

examine the influence of generation time changes, as data on those are rarely available for 

routine, real-time analyses. However, as the ratio of the resurgence to control lags is 5–10, 

we expect this asymmetry to be robust to generation time changes, which are relatively smaller 

[39]. Given the flexibility of our model and that the asymmetry we discovered is contingent on 

low-incidence data being noisier and typical of resurgence settings, which is a model agnostic 

point, we expect that the intrinsic limits we have exposed are general and not model artefacts. 

 

Second, while we analysed one common and important definition of resurgence that depends 

on effective reproduction numbers, other more recent definitions of epidemic re-emergence 

exist that are linked to complex dynamic characteristics of diseases such as critical slowing 

down [62]. Our aim was to understand and expose limitations of the most common surveillance 

data types (incidence) and the most prominent epidemic summary statistics (time-varying or 

effective reproduction numbers), which are among those informing policy [41], so we did not 

examine such metrics. Testing to see if these other characteristics also show asymmetry could 

be an interesting follow-up study but would require different modelling approaches. Last, we 

did not include any explicit economic modelling. While this is outside the scope of this work it 

is important to recognise that resurgence detection threshold choices (i.e., how we decide 

which fluctuations in incidence are actionable) imply some judgment about the relative cost of 

true positives (timely resurgence detections) versus false alarms [12]. Incorporating explicit 

cost structures could mean that delays in detecting resurgence are acceptable. We consider 

this the next investigative step in our aim to probe the limits of real-time performance. 
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Supporting Information 

S1 Appendix: Methods and Additional Figures. This provides derivations of all equations 

presented in the main text (key intermediate expressions are given as Eq. (A) and Eq. (B)) 

and additional Figs A-C. Fig A: Resurgence and control dynamics of COVID-19. We repeat 

the simulations from Fig 2 but for realisations of COVID-19 epidemics. Fig B: Incidence curves 

for COVID-19. We present the simulated counts of daily new cases that underlie the results 

of Fig A. Fig C: Incidence curves for Ebola virus disease. We present the counts of daily new 

cases  that underlie the results of Fig 2 of the main text. 

 

Data availability statement 

All data and code used to generate the analyses and figures of this work are freely available 

at: https://github.com/kpzoo/resurgence-detection. 

 

Author contributions 

Conceptualisation, Formal Analysis, Investigation and Methodology, Software and Writing – 

original draft: KVP. Validation: CAD. Writing – review and editing: KVP and CAD. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 11, 2022. ; https://doi.org/10.1101/2021.09.08.21263270doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.08.21263270
http://creativecommons.org/licenses/by-nc-nd/4.0/

