Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Fundamental limits on inferring epidemic resurgence in real time using effective reproduction numbers

View ORCID ProfileKris V. Parag, View ORCID ProfileChristl A. Donnelly
doi: https://doi.org/10.1101/2021.09.08.21263270
Kris V. Parag
1MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kris V. Parag
  • For correspondence: k.parag{at}imperial.ac.uk
Christl A. Donnelly
1MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
2Department of Statistics, University of Oxford, Oxford, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Christl A. Donnelly
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

We find that epidemic resurgence, defined as an upswing in the effective reproduction number (R) of the contagion from subcritical to supercritical values, is fundamentally difficult to detect in real time. Inherent latencies in pathogen transmission, coupled with smaller and intrinsically noisier case incidence across periods of subcritical spread, mean that resurgence cannot be reliably detected without significant delays of the order of the generation time of the disease, even when case reporting is perfect. In contrast, epidemic suppression (where R falls from supercritical to subcritical values) may be ascertained 5–10 times faster due to the naturally larger incidence at which control actions are generally applied. We prove that these innate limits on detecting resurgence only worsen when spatial or demographic heterogeneities are incorporated. Consequently, we argue that resurgence is more effectively handled proactively, potentially at the expense of false alarms. Timely responses to recrudescent infections or emerging variants of concern are more likely to be possible when policy is informed by a greater quality and diversity of surveillance data than by further optimisation of the statistical models used to process routine outbreak data.

Author summary The timely detection of epidemic resurgence (i.e., upcoming waves of infected cases) is crucial for informing public health policy, providing valuable signals for implementing interventions and identifying emerging pathogenic variants or important population-level behavioural shifts. Increases in epidemic transmissibility, parametrised by the time-varying reproduction number, R, commonly signify resurgence. While many studies have improved computational methods for inferring R from case data, to enhance real-time resurgence detection, few have examined what limits, if any, fundamentally restrict our ability to perform this inference. We apply optimal Bayesian detection algorithms and sensitivity tests and discover that resurgent (upward) R-changes are intrinsically more difficult to detect than equivalent downward changes indicating control. This asymmetry derives from the often lower and stochastically noisier case numbers that associate with resurgence, and induces detection delays on the order of the disease generation time. We prove these delays only worsen if spatial or demographic differences in transmissibility are modelled. As these fundamental limits exist even if case data are perfect, we conclude that designing integrated surveillance systems that fuse potentially timelier data sources (e.g., wastewater) may be more important than improving R-estimation methodology and deduce that there may be merit (subject to false alarm costs) in conservative resurgence response initiatives.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

KVP and CAD acknowledge funding from the MRC Centre for Global Infectious Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported by the European Union. CAD thanks the UK National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections in partnership with Public Health England (PHE) for funding (grant HPRU200907). The funders had no role in study design, data collection and analysis, decision to publish, or manuscript preparation.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

N/A

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • Reworked figures and clearer and more nuanced discussion of results.

Data Availability

All data and code used to generate the analyses and figures of this work are freely available at: https://github.com/kpzoo/resurgence-detection.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted February 11, 2022.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Fundamental limits on inferring epidemic resurgence in real time using effective reproduction numbers
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Fundamental limits on inferring epidemic resurgence in real time using effective reproduction numbers
Kris V. Parag, Christl A. Donnelly
medRxiv 2021.09.08.21263270; doi: https://doi.org/10.1101/2021.09.08.21263270
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Fundamental limits on inferring epidemic resurgence in real time using effective reproduction numbers
Kris V. Parag, Christl A. Donnelly
medRxiv 2021.09.08.21263270; doi: https://doi.org/10.1101/2021.09.08.21263270

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (427)
  • Allergy and Immunology (753)
  • Anesthesia (220)
  • Cardiovascular Medicine (3281)
  • Dentistry and Oral Medicine (362)
  • Dermatology (274)
  • Emergency Medicine (478)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1164)
  • Epidemiology (13340)
  • Forensic Medicine (19)
  • Gastroenterology (897)
  • Genetic and Genomic Medicine (5130)
  • Geriatric Medicine (479)
  • Health Economics (781)
  • Health Informatics (3253)
  • Health Policy (1138)
  • Health Systems and Quality Improvement (1189)
  • Hematology (427)
  • HIV/AIDS (1014)
  • Infectious Diseases (except HIV/AIDS) (14613)
  • Intensive Care and Critical Care Medicine (910)
  • Medical Education (475)
  • Medical Ethics (126)
  • Nephrology (522)
  • Neurology (4901)
  • Nursing (261)
  • Nutrition (725)
  • Obstetrics and Gynecology (880)
  • Occupational and Environmental Health (795)
  • Oncology (2516)
  • Ophthalmology (722)
  • Orthopedics (280)
  • Otolaryngology (346)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (540)
  • Pediatrics (1298)
  • Pharmacology and Therapeutics (548)
  • Primary Care Research (554)
  • Psychiatry and Clinical Psychology (4193)
  • Public and Global Health (7482)
  • Radiology and Imaging (1702)
  • Rehabilitation Medicine and Physical Therapy (1010)
  • Respiratory Medicine (979)
  • Rheumatology (478)
  • Sexual and Reproductive Health (495)
  • Sports Medicine (424)
  • Surgery (546)
  • Toxicology (71)
  • Transplantation (235)
  • Urology (203)