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Abstract 38 

Japanese encephalitis constitutes a significant burden of disease across Asia, particularly in India, with 39 

high mortality in children. This zoonotic mosquito-borne disease is caused by the Flavivirus, Japanese 40 

encephalitis virus (JEV), and circulates in wild ardeid bird and domestic pig reservoirs both of which 41 

generate sufficiently high viremias to infect vector mosquitoes, which can then subsequently infect 42 

humans. The landscapes of these hosts, particularly in the context of anthropogenic ecotones and 43 

resulting wildlife-livestock interfaces, are poorly understood and thus significant knowledge gaps in the 44 

epidemiology and infection ecology of JEV persist, which impede optimal control and prevention of 45 

outbreaks. The current study investigated the landscape epidemiology of JEV outbreaks in India over the 46 

period 2010 to 2020 based on national human disease surveillance data. Outbreaks were modelled as an 47 

inhomogeneous Poisson point process. Outbreak risk was strongly associated with the habitat suitability 48 

of ardeid birds and pig density, and shared landscapes between fragmented rainfed agriculture and both 49 

river and freshwater marsh wetlands. Moreover, risk scaled with Ardeidae habitat suitability, but was 50 

consistent across scale with respect to pig density and rainfed agriculture-wetland mosaics. The results 51 

from this work provide a more complete understanding of the landscape epidemiology and infection 52 

ecology of JEV in India and suggest important priorities for control and prevention across fragmented 53 

terrain comprised of wildlife-livestock interface that favours spillover to humans.    54 
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Introduction 72 

Japanese encephalitis virus (JEV) is one of the most substantial causes of childhood encephalitis in 73 

Asia(1). While most infections are asymptomatic or mild (approximately 1 in 250 infections present with 74 

severe clinical disease), mortality is high among those presenting with encephalitis(1). In India, a country 75 

with a high burden of disease caused by JEV, 13.7% of 63,854 acute encephalitis cases from 2010 to 76 

2017 were due to JEV and over 17% of these cases died(2). Although the annual occurrence of Japanese 77 

encephalitis (JE) is high, there is considerable heterogeneity in its occurrence across the country with the 78 

northeast being a perennial hotspot for outbreaks, although additional far-removed areas of intractable 79 

endemicity also persist(2). Japanese encephalitis virus is a mosquito-borne zoonotic Flavivirus with 80 

enzootic and endemic transmission in animal and human hosts, respectively, although such baseline 81 

transmission is regularly punctuated with more substantial outbreaks(3,4). Outbreaks in India are 82 

generally seasonal following monsoon flooding, but transmission can and does happen at any time of 83 

the year with rural populations typically at highest risk although some urban locations also experience 84 

outbreaks(2). 85 

The infection ecology of JEV is complex and incompletely understood in many landscapes. As a 86 

result, viral transmission is often poorly controlled. Culex tritaeniorhynchus is the most important vector 87 

for JEV across Asia(4,5) and has a wide distribution in India(5,6). In addition to this highly efficient 88 

vector, there are at least four other important vectors (Cx. vishnui, Cx. gelidus, Cx. fuscocephala, and Cx. 89 

pseudovishnui) that also exhibit wide distribution across South and Northeast India(6,7). Given the wide 90 

range of suitable habitats for these mosquitoes, exposure to JEV vectors is extensive throughout the 91 

country. Wading bird species in the Ardeidae family are the primary reservoirs and maintenance hosts 92 

for JEV(8–11), while domestic pigs are key amplifying hosts that frequently accelerate spillover to 93 

humans(12–17). This general distinction between host groups notwithstanding, high viremias have been 94 

shown in several Ardeidae species, so these maintenance hosts may also simultaneously act as 95 



amplifying hosts depending on the nature of their interface with humans or pigs(4). Moreover, some 96 

heron species can readily adapt to some agricultural practices (e.g. rice paddies), increasing contact 97 

between people and domestic animals in these settings(18). Interestingly, specific maintenance host-98 

mosquito vector-amplifying host interactions have been identified showing Cx. tritaeniorhynchus 99 

zoophilic feeding preferences for herons and domestic pigs, which may further highlight the importance 100 

of interface and the potential for an efficient bridge to human spillover in landscapes that favour these 101 

interactions(4). 102 

The biotic factors described above define the vectors and hosts in which JEV circulates and the 103 

nature of interspecies interaction that may drive viral transmission dynamics in hosts, but there are 104 

equally important abiotic factors that can influence JEV transmission such as wetlands and rainfed 105 

agriculture. Heterogenous wetlands not only provide a spectrum of favourable habitat for vectors, they 106 

also demarcate critical habitat for key ardeid reservoirs(19). Rainfed agricultural mosaics tend to 107 

comprise agricultural systems that 1) are engaged by poorer, subsistence communities, and 2) exhibit 108 

far less control of water distribution in the landscape(20). Both wetland habitat and rainfed mosaics can 109 

influence mosquito habitats by way of their distribution of water in the landscape, and, since both 110 

landscapes can be sensitive to the modulating effects of climate, these could represent important vector 111 

foci(21). Moreover, rainfed crop mosaics that lie within or adjacent to wetland habitat may present 112 

ecotones of particular risk since these often also present landscapes occupied by key animal hosts and 113 

may therefore exhibit multiplicities of JEV transmission (Figure 1). In India, while some states have been 114 

recognised as hotspots of annual JEV outbreaks, the landscape epidemiology of JEV has not been 115 

thoroughly described in these and other areas of occurrence. The heterogeneity of risk is particularly 116 

noteworthy since viable mosquito vectors can be found in most parts of the country. As such, the 117 

delineation of JEV outbreak risk across India requires a broader consideration of diverse landscapes, 118 

which represent mosaics of wetland habitat, rainfed agriculture, and animal hosts (Figure 1).  119 



Finally, a complete understanding of the epidemiology and infection ecology of JEV requires an 120 

understanding of the differential scaling of biotic and abiotic drivers of JEV activity across landscapes. 121 

There is some evidence to suggest that biotic interactions between organisms, and abiotic interactions 122 

between organisms and their environment (or environmental filtering), may scale differently with 123 

respect to some ecological relationships, particularly with respect to pathogen transmission (22). Under 124 

this framework, biotic interactions may dominate at more local scale, whereas abiotic interactions can 125 

exhibit greater influence at broader scale. However, there is considerable variation with respect to such 126 

phenomena, wherein some relationships may show consistency across scale or may show the reverse 127 

between biotic and abiotic feature dominance at scale(23). The scaling of risk is an added dimension of 128 

JEV epidemiology that has gone unexplored and represents a further critical knowledge gap. Because 129 

the scaling of associations may have consequences for epidemiological and ecological inference, or the 130 

scale of interventions that may be deployed as a result, it is necessary to examine how associations 131 

between biotic and abiotic features may scale differently.  132 

The current study sought to identify the key landscape features of JEV outbreaks in India. In 133 

particular, this investigation examined the associations between JEV occurrence in humans and the 134 

distribution of maintenance and amplifying animal hosts, wetland hydrogeography and flow dynamics, 135 

rainfed agriculture, and climate. These associations were further interrogated at both local and broad 136 

scale to determine whether JEV risk scales differently for biotic and abiotic landscape features. While 137 

considerable heterogeneity in risk was anticipated, it was hypothesised that river wetlands and rainfed 138 

agriculture with high pig density and high Ardeidae suitability would drive the landscape epidemiology 139 

of JEV.  140 

 141 

 142 

 143 



Methods 144 

Data sources 145 

The National Centre for Disease Control's Integrated Disease Surveillance Programme (IDSP) 146 

maintains ongoing surveillance of JEV infections under the administration of India's Ministry of Health 147 

and Family Welfare(24). There were 294 laboratory-confirmed and location-unique outbreaks of JEV 148 

reported at village level (spatial resolution of 1 arc minute, or approximately 2 km) to the IDSP between 149 

1 January, 2010 and 31 December, 2020. These were included as the primary training data in the current 150 

study. As a test of the external validity of these surveillance data, a secondary dataset (n = 27) 151 

comprising all available independent, laboratory-confirmed community surveys of human and mosquito 152 

infection conducted within the same time period as the IDSP surveillance and with published location 153 

data were used to test the performance of models trained with the IDSP surveillance data(25–28). 154 

JE infections often disproportionally affect communities of lower socioeconomic status with 155 

limited access to health care, so this study adjusted for potential reporting bias of JEV infections using 156 

the distribution of health system performance as a representation of the local capacity to detect cases 157 

(see modelling description below). The infant mortality ratio (IMR) was chosen as a proxy for health 158 

system performance since it has been validated as representative of health infrastructure and health 159 

system performance and used to assess health service delivery and performance in diverse 160 

settings(29,30). Moreover, the IMR is correlated with the Inequality-Adjusted Human Development 161 

Index (IHDI) and the Human Development Index (HDI) and is therefore an important representation of 162 

the economic, social, and environmental structural determinants of population health(29,31). The raster 163 

of the IMR was obtained from the Socioeconomic Data and Applications Center (SEDAC) repository(32). 164 

Human population density was derived from the Global Rural-Urban Mapping Project estimates for the 165 

2010 population(33) to represent the baseline population at the beginning of the period under study. 166 

The raster data product was obtained from the SEDAC repository. 167 



The Global Biodiversity Information Facility (GBIF) was used to acquire all observations of 168 

Ardeidae species (241,784 individual observations of 15 species) between 1 January 2010 and 31 169 

December 2020 across India so each species' distribution could be modelled(34). Pig density data were 170 

obtained from the Gridded Livestock of the World(35) (GLW). While pigs been have been demonstrated 171 

as key amplifying hosts for JEV, some evidence suggests that poultry may also act as bridging hosts to 172 

human spillover in some settings(11,36,37), so we additionally included poultry density in these analyses 173 

obtained from the same GLW source. For some regions of the world these data demonstrate non-174 

negligible spatial heterogeneity in error. However in India, the estimates were adjusted by animal 175 

censuses at the 2nd and 3rd stage administration levels, corresponding to the district and taluk, 176 

respectively, which represented a high level of data verification at a sub-state scale(35). 177 

Due to potential differential accessibility, the background points used to model Ardeidae species 178 

distributions were weighted by the human footprint (HFP) (see modelling description below) to correct 179 

for potential spatial reporting bias in the observations of these birds. Human footprint raster data were 180 

acquired from the SEDAC registry(38) and quantified according to a 2-stage classification system(39). 181 

First, a metric for human influence was constructed based on the following eight categories: (1) 182 

population density, (2) road proximity, (3) rail line proximity, (4) navigable river poximity, (5) coastline 183 

proximity, (6) artificial light at night, (7) rural versus urban location, and (8) land cover. These categories 184 

were scored and summed to generate the human influence index (HII), which ranges from 0 (absence of 185 

human impact) to 64 (maximum human impact). The ratio of the range of minimum and maximum HII in 186 

the local terrestrial biome to the range of minimum and maximum HII across all biomes, expressed as a 187 

percentage, is then calculated to produce the HFP metric(39). 188 

The structure of water movement through the landscape was quantified using hydrological flow 189 

accumulation obtained from the Hydrological Data and Maps based on SHuttle Elevation Derivatives at 190 

multiple Scales (HydroSHEDS) information system (https://hydrosheds.cr.usgs.gov/), which is derived 191 



from elevation data of the Shuttle Radar Topography Mission(40). Hydrological flow accumulation 192 

measures the quantity of upland area draining into each 500 × 500 m area. 193 

Wetlands were classified using the surface water data from the Global Lakes and Wetlands 194 

Database(41). Wetland types represented in the current study comprised: coastal wetland, river, 195 

controlled water reservoir, lake, freshwater marsh, swamp, or intermittent wetland(42). To quantify 196 

proximity to each wetland type, the proximity function in the QGIS geographic information system was 197 

used to create distance rasters for each wetland class(43). The pixel values of these rasters represent 198 

the distance in kilometres between each wetland type and all other pixels within the geographic extent 199 

under study. The distance rasters were then used to investigate the relationships between distinct 200 

wetland environments and JEV outbreaks. 201 

Agriculture data were obtained from the Global Food Security Support Analysis Data (GFSAD) 202 

project to describe the geographic extent of crops that employ rainfed water distribution systems at a 203 

resolution of 30 arc seconds(44). Two primary classes of rainfed agricultural systems were represented: 204 

dominant rainfed crops and fragmented rainfed crop mosaics. A third class, highly fragmented rainfed 205 

crop mosaics, was also available but was highly correlated and exhibited considerable overlap with 206 

fragmented mosaics and yielded very similar relationships, so this class was considered redundant and 207 

not included in this investigation. As with the wetland classes described above, distance rasters were 208 

created for both the dominant rainfed crop and fragmented rainfed crop classes using the proximity 209 

function in QGIS. 210 

Climate data were obtained from the WorldClim Global Climate database(45). This investigation 211 

examined seasonal measures of precipitation due to the distinct seasonal pattern in JEV outbreaks, as 212 

particularly marked by monsoon-associated precipitation. Accordingly, rasters for the mean driest 213 

quarter precipitation and wettest quarter precipitation, as well as the mean annual temperature, were 214 

used in this analysis. 215 



Statistical Analyses 216 

Ardeidae species distribution modelling. An ensemble approach comprising both boosted 217 

regression trees (BRT) and random forests (RF) models was used to estimate the landscape suitability of 218 

each of the 15 Ardeidae species. Species distribution models (SDMs) based on these machine learning 219 

frameworks partition the data space according to algorithms that optimise homogeneity among 220 

predictors and a response (e.g. species presence), whereby optimised decision trees are iteratively 221 

determined and can capture complex interactions between predictors(46–49). Each SDM under the two 222 

distinct modelling frameworks (BRT and RF) was fit using five-fold cross-validation. To prevent artificial 223 

spatial clustering of observation data, the data were thinned to include only one observation per pixel in 224 

the analysis (S1 Table 1). Mean annual precipitation, mean annual temperature, isothermality, and 225 

proximity to surface water comprised the environmental features included in the SDMs. These variables 226 

exhibited low correlation with each other (all Pearson’s r < 0.5) and therefore their inclusion together in 227 

the models was justified. Model performance, based on the area under the receiver operating 228 

characteristic curve (AUC), and model fit, based on the deviance, were used to evaluate each of the two 229 

SDM frameworks (BRT and RF) for each ardeid species. Subsequently, an ensemble landscape suitability 230 

was estimated for each species from the two SDM frameworks using their weighted mean, with weights 231 

based on AUC(50). Potential spatial sampling bias in the GBIF database was adjusted for by sampling 232 

background points proportional to the human footprint as a proxy for landscape accessibility. The 233 

landscape suitability for each species was modelled at a spatial resolution of 30 arc seconds (~1 km). 234 

Individual species are presented with their number of field observations (and thinned analytical 235 

observations) and model metrics in S1 Table 1.  236 

After modelling the distributions of individual Ardeidae species’ landscape suitability, a 237 

composite of ardeid suitability was calculated based on the mean of all individual species suitability 238 

distributions. The degree of niche overlap(51) between each individual species landscape suitability and 239 



the composite species suitability was evaluated to determine the extent of heterogeneity between the 240 

species-specific environmental niches. More specifically, niche overlap was assessed to determine (1) if 241 

heterogeneity was too extensive to justify a composite representation of Ardeidae species landscape 242 

suitability, (2) if a small number of ardeid species demonstrating divergent landscape suitability should 243 

be considered individually in concert with a composite representation of landscape suitability for the 244 

remaining species, or (3) if the species demonstrated sufficient overlap in their environmental niches to 245 

justify a composite representation of Ardeidae species landscape suitability alone. The sdm package(50) 246 

in the R platform(52) was used for fitting each model and the derivation of the two-model ensembles to 247 

each species and the dismo package was used to compare niche overlap(53). 248 

JEV outbreak modelling. The JEV outbreaks were fitted as a point process using homogeneous 249 

and inhomogeneous Poisson models(54). This framework allows for the assessment of spatial 250 

dependencies among the outbreaks and, where such dependencies are identified, these can be 251 

evaluated with respect to environmental features that may account for the observed dependencies. 252 

First, JEV outbreaks were fitted as a homogeneous Poisson process, with conditional intensity, 253 

λ(u,X) = β,  (1) 254 

where u designates the geographic locations of outbreaks, X, and β represents the intensity parameter. 255 

Intensity is defined as the number of points in a subregion of a defined geographic extent. The 256 

homogeneous Poisson model is the null model representing complete spatial randomness (CSR). Under 257 

CSR, the expected intensity is proportional to the area of the subregion under consideration(54), i.e., 258 

there is no spatial dependency. 259 

Second, the model with the assumption of CSR was compared to an inhomogeneous Poisson 260 

process, which incorporates spatial dependency of the outcome (JEV outbreaks) into the model 261 

structure and has conditional intensity, 262 

λ(u,X) = β(u).  (2) 263 



With this model, the intensity is represented as a function of the location, u, of the JEV 264 

outbreaks. The inhomogeneous Poisson model supported substantive spatial dependency in JEV 265 

outbreak intensity as this was a markedly better fit than the CSR model and also demonstrated 266 

significant divergence from CSR in the K-function (see results below). Given the identified spatial 267 

dependence in JEV outbreaks, simple and multiple inhomogeneous Poisson models with environmental 268 

features were fitted with conditional intensity, 269 

λ(u,X) = ρ (Z(u)),  (3) 270 

where ρ is the parameter representing the association between the point intensity and the feature Z at 271 

location u. The models’ background points were sampled proportional to IMR, as described above, to 272 

control for potential reporting bias in the JEV infection surveillance. 273 

As above for the SDMs, the outbreak occurrences were thinned to prevent over-fitting of the 274 

models. The data were thinned so that no more than one event was included within each pixel under 275 

the two spatial scales investigated at 1.0 and 10.0 arc minutes, respectively (see below). In addition, the 276 

environmental covariates were aggregated for these same two spatial scales, 1.0 and 10.0 arc minutes, 277 

respectively. Human population density was included in all models as an offset so that the models 278 

appropriately represented epidemiological risk. The crude associations between JEV outbreaks and 279 

mean dry quarter precipitation, mean wet quarter precipitation, mean annual temperature, hydrological 280 

flow accumulation, proximity to each wetland type, proximity to rainfed agricultural systems, the 281 

composite landscape suitability of Ardeidae species, pig density, and poultry density were initially 282 

assessed individually with a separate simple inhomogeneous Poisson model (S2 Table 2). Features 283 

demonstrating bivariate associations with confidence intervals that did not include 0 were included as 284 

covariates in the multiple inhomogeneous Poisson models (S3 Figure 1, S4 Figure 2, S5 Figure 3). The 285 

features included as covariates in the multiple inhomogeneous Poisson models demonstrated low 286 

correlation (all values of the Pearson’s r were <0.5) and so were deemed appropriate to be included 287 



together in the models. The associations between JEV outbreaks and landscape features were 288 

represented by relative risks, which were computed from the regression coefficients of the 289 

inhomogeneous Poisson models. Interaction between fragmented rainfed agriculture and the two 290 

dominant wetland types, river and freshwater marsh, were examined separately using a river-rainfed 291 

crops model and a freshwater marsh-rainfed crops model with a corresponding interaction term 292 

included in each model, respectively. In this way, the interaction between fragmented rainfed 293 

agriculture and both river and freshwater marsh wetlands was used to evaluate the impact of their 294 

shared landscape mosaics on JEV risk.  The Akaike information criterion (AIC) assessed model fit, while 295 

the AUC assessed model performance. Importantly, model performance was tested against an 296 

independent, laboratory-confirmed dataset derived from the community-based surveys described 297 

above. The use of independent data for testing model performance provides a test of the external 298 

validity of the results thereby improving model assessment considerably. Model selection was based on 299 

a comparison the fit (based on AIC) of the full model to reduced model groups nested on three broad 300 

environmental domains (hydrogeography, animal hosts, and climate). These were also compared against 301 

a stepwise selection procedure with the full point process model to see if there was any divergence in 302 

model selection(55,56). Assessment of K-functions fitted to the JEV outbreaks before and after point 303 

process modelling with the specified environmental features was used to determine if these features 304 

adequately accounted for the observed spatial dependencies. 305 

As described above, the influence of biotic and abiotic features have been shown to scale 306 

differently for some pathogen systems(22). To account for such scaling in the current investigation, 307 

models were fitted and assessed at local (1.0 arc minutes) and broad (10.0 arc minutes) scales. Likewise, 308 

model fit (AIC) and performance (AUC) were also compared across scales. The R statistical software 309 

version 3.6.1 was used to perform the analyses(52). Point process models were fitted and K-functions 310 



estimated using the spatstat package(55,56). The silhouette images of Ardeidae, pigs, mosquitoes, and 311 

rice in Figure 1 were acquired from phylopic.org and used under Creative Commons license. 312 

 313 

Results 314 

The landscape suitability of individual Ardeidae species demonstrated a high degree of overlap 315 

with the composite landscape suitability (niche overlap > 88% for all species, and > 96% for all but one 316 

species; S1 Table 1), so the composite measure of Ardeidae suitability was used in the modelling of JEV 317 

outbreaks. 318 

At 1.0 arc minute (~ 2 km), the best fitting and performing models of JEV outbreak risk under 319 

fragmented rainfed mosaics with freshwater marsh and fragmented rainfed mosaics with river were the 320 

reduced models 7 and 8, respectively, which excluded poultry (S6 Table S3; Table 1). These final models 321 

were further supported by the stepwise selection procedure implemented with the point process 322 

models. Japanese encephalitis virus outbreaks were strongly associated with both Ardeidae suitability 323 

(Table 1 Model 1 - RR = 1.14, 95%C.I. 1.07 – 1.21; Model 2 - RR = 1.13, 95%C.I. 1.06 – 1.21) and pig 324 

density (Model 1 - RR = 1.41, 95%C.I. 1.33 – 1.51; Model 2 - RR = 1.40, 95%C.I. 1.31 – 1.49), whereby an 325 

increasing presence of both in the landscape was associated with increased risk. Proximity to 326 

fragmented rainfed agricultural mosaics (Table 1, Model 1 - RR = 0.978 and Model 2 - RR = 0.979) was 327 

associated with increased risk of JEV outbreaks (inverse associations indicate increasing distance from 328 

this feature was associated with decreasing risk and vice versa), but not proximity to major non-329 

fragmented rainfed agricultural systems (S2 Table 2). Importantly, proximity to both river and 330 

freshwater marsh wetlands were also strongly associated with increased risk, and each modified the 331 

association between JEV outbreaks and fragmented rainfed crop mosaics, such that proximity to the 332 

rainfed mosaics was associated with risk only in locations where the mosaics were shared with, or 333 

adjacent to, the two wetland habitats (Table 1). As expected, climate, especially precipitation, was also 334 



strongly associated with JEV outbreaks. Estimates of the distribution of JEV outbreak risk with 95% 335 

confidence limits are presented in Figure 3. The spatial dependency apparent in JEV outbreaks as 336 

estimated by the homogenous K-function (left panels, Figure 4) was largely accounted for by the final 337 

inhomogeneous Poisson models (right panels, Figure 4). 338 

At 10.0 arc minutes JEV outbreaks continued to demonstrate strong associations with pig 339 

density, wetlands and fragmented rainfed mosaics, and precipitation, however Ardeidae suitability and 340 

temperature did not continue to manifest influence at this broad scale (S7 Table 4). 341 

 342 

Discussion 343 

This is the first investigation of JEV outbreaks to consider the impact of shared landscapes with 344 

key wildlife and domesticated animal reservoirs for JEV, while simultaneously assessing the convergence 345 

of natural wetland habitat with rainfed agriculture. Moreover, these landscape features were evaluated 346 

at multiple scales to determine whether their influence manifested differently at local and broad scales. 347 

Both wild ardeid and domestic pig hosts were strongly associated with JEV outbreak risk at local scale. 348 

However, at broad scale only pigs continued to manifest a broad footprint in the landscape. River and 349 

freshwater marsh systems and their shared landscapes with fragmented rainfed agriculture were also 350 

strongly associated with outbreak risk at both local and broad scale. These differences in risk between 351 

animal hosts and the environment demonstrate the importance of considering the ways in which biotic 352 

and abiotic features, respectively, comprise complex risk landscapes for JEV that vary with scale. 353 

Moreover, these could have potentially important policy implications for the control and prevention of 354 

outbreaks. For example, factors that dominate locally such as the sharing of space between ardeid birds 355 

and domestic pigs might be ideally targeted for intervention by local municipalities, whereas factors that 356 

dominate at broader scale, such as veterinary surveillance of pigs or the development of a novel pig 357 

vaccination program, may be more effectively targeted and resourced by state or national authorities. 358 



The family Ardeidae comprises the wading birds, herons (including egrets) and bitterns. Ardeid 359 

birds have been recognised as key maintenance hosts for JEV(8–11). Domestic pigs, conversely, are 360 

important amplification hosts due to the high viremia associated with porcine infection(12–17). Pigs are 361 

also important since these are livestock animals and typically occupy space in close proximity to 362 

humans, although several heron species, such as the cattle egret, Bubulcus ibis, are also capable of 363 

thriving in anthropogenic landscapes(57). Therefore, as expected, both of these wild and domesticated 364 

animal hosts were strongly associated with outbreak risk at local scale in the current study. Interestingly, 365 

the influence of Ardeidae suitability appeared to manifest only at local scale, whereas pig density was 366 

associated with risk at local and broad scale. The difference in scaling of ardeid and pig hosts may reflect 367 

differences in the influence of Ardeidae-pig interfaces at different scales, whereby the influence of 368 

domestic pigs on JEV outbreaks may manifest regionally beyond the local impact of their interface with 369 

ardeid hosts, whereas the influence of the ardeid hosts may be confined to their local interface with 370 

pigs. Importantly, the current study did not observe and assess specific interactions between ardeid 371 

birds and pigs across India, which precludes any definitive conclusions about the roles of these hosts in 372 

the infection ecology of JEV at different scales of influence. Field investigations of interspecific 373 

interactions in local settings will be required to verify the results from the current study and ultimately 374 

define how different classes of hosts operate with respect to viral circulation and spillover at scale.    375 

Wetlands can provide important habitat for mosquitoes and therefore increased outbreak risk 376 

associated with the provision of a stable source of surface water in these habitats is intuitive. 377 

Nevertheless, wetland systems are not homogeneous geomorphologically or ecologically, and neither 378 

were they homogeneous with respect to JEV occurrence as clearly demonstrated by the lack of 379 

association between outbreak risk and proximity to any surface water type (S2 Table 2). Instead, river 380 

and freshwater marsh wetlands dominated JEV outbreak risk, with both also demonstrating interaction 381 

with fragmented rainfed agriculture suggesting that shared landscapes of wetland habitat and 382 



fragmented rainfed mosaics may be particularly important to the landscape epidemiology of JEV 383 

outbreaks. These associations are intuitive because wetland-rainfed agricultural mosaics may represent 384 

landscapes of more seasonally stable precipitation compared to rainfed crops that are far removed from 385 

wetland habitat. This was further supported by the strong and independent association with 386 

precipitation that was observed at both local and broad scale. Furthermore, fragmented rainfed mosaics 387 

within or adjacent to wetlands may also demarcate landscapes with limited control of water dispersal 388 

following inundation(20), which is particularly relevant to the annual monsoon flooding and which 389 

corresponds to the season of highest JEV incidence. It is also important to note that rainfed agriculture is 390 

typically a system employed by resource-limited subsistence farmers, with fragmented agricultural 391 

landscapes often corresponding to more economically disadvantaged communities(20), and which also 392 

tend to represent a preponderance of the annual JEV incident cases(2). Therefore, not only do these 393 

findings provide further insight into the epidemiology of JEV outbreaks, they also identify vulnerable 394 

communities that are likely to be at greatest risk and which may yield maximum benefit from targeted 395 

resource allocation to prevent future outbreaks. 396 

As expected, increasing precipitation was associated with increased JEV outbreak risk at both 397 

local and broad scale. Interestingly, temperature was inversely associated JEV outbreak risk at local 398 

scale, but demonstrated no association at broad scale. While JEV outbreaks were widely distributed 399 

across India, there was a preponderance of occurrence in the wettest areas of the country, which also 400 

tend to coincide with areas of slightly lower mean annual temperature and may reflect this inverse 401 

association at local scale. Alternatively, areas of more extreme heat in India may exist within a 402 

temperature spectrum that is less favourable to the provision of habitat for reservoirs and vectors, to 403 

vector development and longevity, to the extrinsic incubation period in vectors, or the areas of highest 404 

temperature regimes may simply be coincident with precipitation and humidity regimes that are less 405 

favourable(4). Regardless, these associations are based on climate rather than weather. As such, future 406 



work will need to explore the effects of specific weather events and patterns with the requisite 407 

temporal resolution to link fluctuations in precipitation and temperature with individual JEV outbreaks. 408 

For example, one study examined a long-term time series of JEV occurrence and found that increases in 409 

both rainfall and temperature were associated with increased risk(21). However, this work was limited 410 

to one district in one state, so more work will require examination across many more of India’s 411 

heterogenous landscapes to better understand how weather fluctuation may operate in different 412 

landscapes. Nevertheless, the association between JEV and precipitation has shown broad geographical 413 

consistency as manifested in China, for example, where cases were mostly concentrated in landscapes 414 

with annual precipitation greater than 400 mm irrespective of whether these landscapes were 415 

characterised by warm-temperate, semitropical or tropical climate regimes(58). 416 

It is important to acknowledge and discuss some additional limitations attending this work. First, 417 

although the national IDSP surveillance system was used to capture all reported outbreaks under 418 

investigation, we recognise that reporting bias may still be present. To correct for potential reporting 419 

bias, rather than randomly selecting background points for the point process models, background 420 

sampling was instead weighted by the distribution of IMR as a robust indicator of health system 421 

accessibility and infrastructure. Second, the species distribution models used to construct Ardeidae 422 

suitability were based on human observations and so are also subject to reporting bias, insofar as bird 423 

accessibility is likely to impact reporting effort. Reporting bias in Ardeidae observations was corrected by 424 

weighting the sampling of background points by HFP as an indicator of accessibility. In addition, while 425 

this study was able to estimate the landscape suitability of several Ardeidae species, there were some 426 

species for which there were too few observations to validly model suitability. As such, we concede that 427 

this work is not an exhaustive representation of all possible species niches and therefore some aspects 428 

may yet remain undescribed by these findings. Third, the climate measures interrogated in the models 429 

presented were based on decadal averages over the period from 1950 to 2000, which assumes 430 



homogeneity over this time period as well as over the period of JEV outbreak surveillance under 431 

investigation. However, the current study sought to model the influence of climate features in the 432 

landscape rather than specific weather events, so these assumptions were deemed appropriate. 433 

This study showed that JEV risk in India was strongly associated with the distribution of animal 434 

hosts and the shared landscapes between fragmented rainfed agriculture and river and freshwater 435 

marsh wetlands. Importantly, animal hosts operated with different degrees of influence at local and 436 

broad scale, which may provide unique opportunities to target distinct aspects of JEV landscape 437 

epidemiology with differential resource allocation by local and state (or national) municipalities, 438 

respectively, to optimise control and prevention of JEV outbreaks. For example, the World Health 439 

Organisation has outlined potential forms of landscape manipulation and modification, such as the 440 

rotation or synchronisation of crop cycles, alternating crop varieties with variable growing seasons, or 441 

mechanical intervention on water movement through the landscape to subvert vector breeding(59). 442 

Moreover, the mitigation of vector abundance directly associated with rainfed agriculture may be 443 

negated where wetland habitat is present (i.e. in fragmented mosaics) representing a refuge for 444 

mosquitoes from control measures and therefore a need for increased attention. Alternatively, there 445 

may be opportunities for the repositioning of livestock animal pens at sites more distal to human 446 

residences, or locations of agricultural activity, to limit the vector-animal-human interface(59). These 447 

kinds of hyperlocal interventions could be ideally suited to administration by local municipalities such as 448 

the sub-district taluks (tehsils), particularly since such interventions often require working closely with 449 

affected communities. In contrast, broader interventions such as those involving resource-intensive 450 

vaccination campaigns of humans (or livestock) may be more effectively orchestrated at the state or 451 

national levels. The findings highlight the importance of developing collaborative surveillance 452 

infrastructure for vectors, animals, and humans across scale such that an effective surveillance system 453 

will require operation and communication within and between taluks, districts, and states. These 454 



surveillance systems should also remain adaptive to the influence of land use change, climate change, 455 

and urbanisation that may also influence future risks of JEV in India. 456 

 457 

 458 

 459 

 460 

 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 



References 483 

1.  Organization WH. Japanese encephalitis vaccines: WHO position paper. Wkly Epidemiol Rec. 484 

2015;90:69–87.  485 

2.  National vectorborne Disease Control Program, Ministry of Health and Family Welfare G of I. 486 

Statewise number of AES/JE cases and deaths from 2010–2017. 2017;  487 

3.  Mackenzie JS, Barrett A, Deubel V. The Japanese Encephalitis Serological Group of Flaviviruses: a 488 

Brief Introduction to the Group. In: Mackenzie JS, Barrett A, Deubel V, editors. Japanese 489 

Encephalitis and West Nile Viruses. Berlin: Springer-Verlag; 2002. p. 1–10.  490 

4.  Endy TP, Nisalak A. Japanese Encephalitis Virus: Ecology and Epidemiology. In: Mackenzie JS, 491 

Barrett A, Deubel V, editors. Japanese Encephalitis and West Nile Viruses. Berlin: Springer-Verlag; 492 

2002. p. 11–48.  493 

5.  Longbottom J, Browne AJ, Pigott DM, Sinka ME, Golding N, Hay SI, et al. Mapping the spatial 494 

distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: 495 

Culicidae) within areas of Japanese encephalitis risk. Parasites and Vectors. 2017;10(1):1–12.  496 

6.  Samy AM, Alkishe AA, Thomas SM, Wang L, Zhang W. Mapping the potential distributions of 497 

etiological agent, vectors, and reservoirs of Japanese Encephalitis in Asia and Australia. Acta Trop 498 

[Internet]. 2018;188(August):108–17. Available from: 499 

https://doi.org/10.1016/j.actatropica.2018.08.014 500 

7.  Thankachy S, Dash S, Sahu SS. Entomological factors in relation to the occurrence of Japanese 501 

encephalitis in Malkangiri district, Odisha State, India. Pathog Glob Health [Internet]. 502 

2019;113(5):246–53. Available from: https://doi.org/10.1080/20477724.2019.1670926 503 

8.  Rodrigues FM, Guttikar SN, Pinto BD. Prevalence of antibodies to Japanese encephalitis and West 504 

Nile viruses among wild birds in the Krishna-Godavari Delta, Andhra Pradesh, India. Trans R Soc 505 

Trop Med Hyg. 1981;75(2):258–62.  506 

9.  Jamgaonkar A V., Yergolkar PN, Geevarghese G, Joshi GD, Joshi M V., Mishra AC. Serological 507 

evidence for Japanese encephalitis virus and West Nile virus infections in water frequenting and 508 

terrestrial wild birds in Kolar District, Karnataka State, India. A retrospective study. Acta Virol. 509 

2003;47(3):185–8.  510 

10.  Buescher EL, Scherer WF, Rosenberg MZ, Kutner LJ. Immunologic studies of Japanese encephalitis 511 

virus in Japan. IV. Maternal antibody in birds. J Immunol. 1959;83:614–9.  512 

11.  Bhattacharya S, Basu P. Japanese Encephalitis Virus (JEV) infection in different vertebrates and its 513 

epidemiological significance: a Review. Int J Fauna Biol Stud [Internet]. 2014;1(6):32–7. Available 514 

from: https://pdfs.semanticscholar.org/51c4/860d8c66c5fa9d730143e836b8db0b21c1a4.pdf 515 

12.  Baruah A, Hazarika R, Barman N, Islam S, Gulati B. Mosquito abundance and pig seropositivity as 516 

a correlate of Japanese encephalitis in human population in Assam, India. J Vector Borne Dis. 517 

2018;55(4):291–6.  518 

13.  Borah J, Dutta P, Khan SA, Mahanta J. Epidemiological concordance of Japanese encephalitis virus 519 

infection among mosquito vectors, amplifying hosts and humans in India. Epidemiol Infect. 520 

2013;141(1):74–80.  521 



14.  Kakkar M, Chaturvedi S, Saxena VK, Dhole TN, Kumar A, Rogawski ET, et al. Identifying sources, 522 

pathways and risk drivers in ecosystems of Japanese Encephalitis in an epidemic-prone north 523 

Indian district. PLoS One. 2017;12(5):1–17.  524 

15.  Chen B, Beaty B. Japanese encephalitis vaccine (2-8 strain) and parent (SA 14 strain) viruses in 525 

Culex tritaeniorhynchus mosquitoes. Am J Trop Med Hyg. 1982;31:403–7.  526 

16.  Komada K, Sasaki N, Inoue Y. Studies of live attenuated Japanese encephalitis vaccine in swine. J 527 

Immunol. 1968;100:194–200.  528 

17.  Ghimire S, Dhakal S, Ghimire NP, Joshi DD. Pig Sero-Survey and Farm Level Risk Factor 529 

Assessment for Japanese Encephalitis in Nepal. Int J Appl Sci Biotechnol. 2014;2(3):311–4.  530 

18.  Le Flohic G, Porphyre V, Barbazan P, Gonzalez J-P. Review of Climate, Landscape, and Viral 531 

Genetics as Drivers of the Japanese Encephalitis Virus Ecology. Johansson MA, editor. PLoS Negl 532 

Trop Dis [Internet]. 2013 Sep 12 [cited 2021 Aug 27];7(9):e2208. Available from: 533 

https://dx.plos.org/10.1371/journal.pntd.0002208 534 

19.  del Hoyo J, Elliott A, Vicens JS, Christie DA. Handbook of the Birds of the World [Internet]. Elliott 535 

A, Vicens JS, del Hoyo J, editors. Vols. 1-17. Barcelona: Lynx Edicions; 2013 [cited 2020 Jun 23]. 536 

Available from: https://www.lynxeds.com/product-category/by-categories/encyclopedias/hbw/ 537 

20.  Devendra C. Rainfed agriculture: its importance and potential in global food security. Utar Agric 538 

Sci J. 2016;2(2):4–17.  539 

21.  Singh H, Singh N, Mall RK. Japanese Encephalitis and Associated Environmental Risk Factors in 540 

Eastern Uttar Pradesh: A time series analysis from 2001 to 2016. Acta Trop [Internet]. 541 

2020;212(May):105701. Available from: https://doi.org/10.1016/j.actatropica.2020.105701 542 

22.  Cohen JM, Civitello DJ, Brace AJ, Feichtinger EM, Ortega CN, Richardson JC, et al. Spatial scale 543 

modulates the strength of ecological processes driving disease distributions. Proc Natl Acad Sci 544 

[Internet]. 2016;113(24):E3359–64. Available from: 545 

http://www.pnas.org/lookup/doi/10.1073/pnas.1521657113 546 

23.  Becker DJ, Washburne AD, Faust CL, Mordecai EA, Plowright RK. The problem of scale in the 547 

prediction and management of pathogen spillover. Philos Trans R Soc B Biol Sci. 548 

2019;374(1782):20190224.  549 

24.  National Centre for Disease Control, Directorate General of Health Services, Ministry of Health 550 

and Family Welfare. Integrated Disease Surveillance Programme(IDSP) [Internet]. [cited 2020 Sep 551 

3]. Available from: https://idsp.nic.in/ 552 

25.  Balakrishnan A, Thekkekare R, Sapkal G, Tandale B. Seroprevalence of Japanese encephalitis virus 553 

&amp; West Nile virus in Alappuzha district, Kerala. Indian J Med Res [Internet]. 2017 Jul 1 [cited 554 

2021 Jul 21];146(7):70. Available from: http://www.ijmr.org.in/text.asp?2017/146/7/70/219461 555 

26.  Dwibedi B, Mohapatra N, Rathore S, Panda M, Pati S, Sabat J, et al. An outbreak of Japanese 556 

encephalitis after two decades in Odisha, India. Indian J Med Res [Internet]. 2015 Dec 1 [cited 557 

2021 Jul 21];142(7):30. Available from: http://www.ijmr.org.in/text.asp?2015/142/7/30/176609 558 

27.  Ramesh D, Muniaraj M, Samuel Pp, Thenmozhi V, Venkatesh A, Nagaraj J, et al. Seasonal 559 

abundance & role of predominant Japanese encephalitis vectors Culex tritaeniorhynchus & Cx. 560 

gelidus Theobald in Cuddalore district, Tamil Nadu. Indian J Med Res [Internet]. 2015 Dec 1 [cited 561 



2021 Jul 21];142(7):29. Available from: http://www.ijmr.org.in/text.asp?2015/142/7/23/176607 562 

28.  Nyari N, Singh D, Kakkar K, Sharma S, Pandey SN, Dhole TN. Entomological and serological 563 

investigation of Japanese encephalitis in endemic area of eastern Uttar Pradesh, India. J Vector 564 

Borne Dis. 2015;52(4):321–8.  565 

29.  Reidpath DD, Allotey P. Infant mortality rate as an indicator of population health. J Epidemiol 566 

Community Health [Internet]. 2003 May 1 [cited 2020 Jul 14];57(5):344–6. Available from: 567 

https://pubmed.ncbi.nlm.nih.gov/12700217/ 568 

30.  Choi J, Ki M, Kwon HJ, Park B, Bae S, Oh C-M, et al. Health Indicators Related to Disease, Death, 569 

and Reproduction. J Prev Med Public Heal [Internet]. 2019 Jan 31 [cited 2020 Jul 14];52(1):14–20. 570 

Available from: http://jpmph.org/journal/view.php?doi=10.3961/jpmph.18.250 571 

31.  Ignacio Ruiz J, Nuhu K, Tyler McDaniel J, Popoff F, Izcovich A, Martin Criniti J. Inequality as a 572 

powerful predictor of infant and maternal mortality around the world. PLoS One [Internet]. 2015 573 

Oct 21 [cited 2020 Jul 14];10(10). Available from: https://pubmed.ncbi.nlm.nih.gov/26488170/ 574 

32.  Center for International Earth Science Information Network - CIESIN - Columbia University. Global 575 

Subnational Infant Mortality Rates, Version 2 [Internet]. Palisades; 2019. Available from: 576 

https://doi.org/10.7927/H4PN93JJ 577 

33.  Center for International Earth Science Information Network - CIESIN - Columbia University, 578 

International Food Policy Research Institute - IFPRI, The World Bank  and CI de AT-C. Population 579 

Density Grid, v1: Global Rural-Urban Mapping Project (GRUMP), v1 | SEDAC [Internet]. Palisades, 580 

NY: NASA Socioeconomic Data and Applications Center (SEDAC). [cited 2014 Oct 23]. Available 581 

from: http://sedac.ciesin.columbia.edu/data/set/grump-v1-population-density 582 

34.  GBIF. GBIF occurrence download - Ardeidae India [Internet]. Global Biodiversity Information 583 

Facility. 2021. Available from: https://doi.org/10.15468/dl.s99zmx 584 

35.  Robinson TP, Wint GRW, Conchedda G, Van Boeckel TP, Ercoli V, Palamara E, et al. Mapping the 585 

global distribution of livestock. PLoS One [Internet]. 2014 Jan [cited 2015 May 26];9(5):e96084. 586 

Available from: 587 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4038494&tool=pmcentrez&rendert588 

ype=abstract 589 

36.  Ogata M, Nagao Y, Jitsunari F, Kitamura N, Okazaki T. Infection of herons and domestic fowls with 590 

Japanese encephalitis virus with specific reference to maternal antibody of hen (epidemiological 591 

study on Japanese encephalitis 26). Acta Med Okayama. 1970;24:175–84.  592 

37.  Bhattacharya S, Chakraborty S, Chakraborty S, Ghosh K, Palit A, Mukherjee K, et al. Density of 593 

Culex vishnui and appearance of JE antibody in sentinel chicks and wild birds in relation to 594 

Japanese encephalitis cases. Trop Geogr Med [Internet]. 1988 [cited 2021 Aug 13];38(1):46–50. 595 

Available from: https://pubmed.ncbi.nlm.nih.gov/3008391/ 596 

38.  Socioeconomic Data and Applications Center | SEDAC. Methods[» Last of the Wild, v2 | SEDAC 597 

[Internet]. [cited 2014 Dec 23]. Available from: 598 

http://sedac.ciesin.columbia.edu/data/collection/wildareas-v2/methods 599 

39.  Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo A V, Woolmer G. The Human Footprint 600 

and the Last of the Wild. 2002;52(10).  601 



40.  Lehner B, Verdin K, Jarvis A. HydroSHEDS Technical Documentation [Internet]. 2006. Available 602 

from: http://hydrosheds.cr.usgs.gov 603 

41.  Fund WW. Global Lakes and Wetlands Database [Internet]. Available from: 604 

http://www.worldwildlife.org/pages/global-lakes-and-wetlands-database 605 

42.  Lehner B, Döll P. Development and validation of a global database of lakes, reservoirs and 606 

wetlands. J Hydrol. 2004 Aug;296(1-4):1–22.  607 

43.  QGIS Development Team. QGIS Geographic Information System [Internet]. Open Source 608 

Geospatial Foundation; 2009. Available from: http://www.qgis.org/ 609 

44.  Thenkabail P, Teluguntla P, Xiong J, Oliphant A, Massey R. LP DAAC - GFSAD1KCM [Internet]. 610 

Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010 Global 1 km V001. 2016 611 

[cited 2021 Jul 21]. Available from: https://lpdaac.usgs.gov/products/gfsad1kcmv001/ 612 

45.  WorldClim - Global Climate. Data for current conditions (~1950-2000) | WorldClim - Global 613 

Climate Data [Internet]. WorldClim - Global Climate Data. [cited 2014 Oct 23]. Available from: 614 

http://www.worldclim.org/current 615 

46.  Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008 616 

Jul;77(4):802–13.  617 

47.  Friedman J. Greedy function approximation: a gradient boosting machine. Ann Stat. 618 

2001;29(5):1189–232.  619 

48.  Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.  620 

49.  James G, Witten D, Hastie T, Tibshirani R. An introduction to Statistical Learning. Vol. 7, Current 621 

medicinal chemistry. 2000. 303-321 p.  622 

50.  Naimi B, Araújo MB. sdm: a reproducible and extensible R platform for species distribution 623 

modelling. Ecography (Cop) [Internet]. 2016 Apr 1 [cited 2021 Feb 12];39(4):368–75. Available 624 

from: http://doi.wiley.com/10.1111/ecog.01881 625 

51.  Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: 626 

quantitative approaches to niche evolution. Evolution [Internet]. 2008 Nov [cited 2018 Jun 627 

7];62(11):2868–83. Available from: http://doi.wiley.com/10.1111/j.1558-5646.2008.00482.x 628 

52.  R Core Team. R: A language and environment for statistical computing [Internet]. Vienna: R 629 

Foundation for Statistical Computing; 2016. Report No.: 3.1.3. Available from: https://www.r-630 

project.org/ 631 

53.  Hijmans RJ, Phillips S, Leathwick JR, Elith J. Package “dismo.” The Comprehensive R Archive 632 

Network. 2014. p. 1–65.  633 

54.  Baddeley A, Turner R. Practical Maximum Pseudolikelihood for Spatial Point Patterns (with 634 

Discussion). Aust <html_ent glyph=“@amp;” ascii=“&”/> New Zeal J Stat [Internet]. 2000 Sep 635 

[cited 2014 Oct 23];42(3):283–322. Available from: http://doi.wiley.com/10.1111/1467-636 

842X.00128 637 

55.  Baddeley A, Turner R. spatstat: An R Package for Analyzing Spatial Point Patterns. J Stat Softw 638 

12(6) [Internet]. 2005 [cited 2014 Oct 23]; Available from: http://www.jstatsoft.org/v12/i06/ 639 



56.  Baddeley A, Rubak E, Turner R. Spatial Point Patterns: Methodology and Applications with R 640 

[Internet]. Vol. 11. CRC Press; 2015 [cited 2016 Feb 5]. 810 p. Available from: 641 

https://books.google.com/books?id=rGbmCgAAQBAJ&pgis=1 642 

57.  BirdLifeInternational. Bubulcus ibis [Internet]. The IUCN Red List of Threatened Species 2015: 643 

e.T22697109A60156122. 2015. Available from: 644 

https://www.iucnredlist.org/species/22697109/60156122 645 

58.  HUANG XX, YAN L, GAO XY, REN YH, FU SH, CAO YX, et al. The Relationship between Japanese 646 

Encephalitis and Environmental Factors in China Explored Using National Surveillance Data. Vol. 647 

31, Biomedical and Environmental Sciences. Elsevier Ltd; 2018. p. 227–32.  648 

59.  World Health Organization. Agricultural Development and Vector-Borne Diseases [Internet]. 649 

Training and Information Materials and Vector Biology and Control. 1996. Available from: 650 

https://www.who.int/water_sanitation_health/resources/agridevbegin.pdf 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

 668 

 669 

 670 



Table 1. Adjusted relative risks and 95% confidence intervals for the associations between Japanese 671 

encephalitis virus (JEV) outbreaks and each landscape feature as derived from the best fitting 672 

inhomogeneous Poisson models. Each landscape feature is adjusted for all others in each of the two 673 

models. Models are at a scale of 1.0 arc minutes (~2 km). 674 

Landscape feature Relative risk 95% confidence 

interval 

p-value 

Model 1 – Freshwater marsh-rainfed mosaics interaction    

Ardeidae landscape suitability (deciles)  1.14 1.07 – 1.21 0.00005 

Pig density (deciles) 1.41 1.33 – 1.51 <0.00001 

Distance to river (2 km) 0.74 0.56 – 0.99 0.02 

Distance to freshwater marsh (2 km) 0.71 0.63 – 0.82 <0.00001 

Distance to fragmented rainfed agriculture 0.978 0.969 – 0.987 <0.00001 

Freshwater marsh:fragmented rainfed agriculture 1.008 1.003 – 1.014 0.0007 

Mean precipitation during the wettest quarter (10 cm) 1.008 1.006 – 1.009 <0.00001 

Mean precipitation during the driest quarter (10 cm) 1.14 1.08 – 1.19 <0.00001 

Mean annual temperature (Celsius) 0.90 0.85 – 0.96 0.002 

Model 2 – River-rainfed mosaics interaction    

Ardeidae landscape suitability (deciles)  1.13 1.06 – 1.21 0.00005 

Pig density (deciles) 1.40 1.31 – 1.49 <0.00001 

Distance to river (2 km) 0.63 0.46 – 0.85 0.001 

Distance to freshwater marsh (2 km) 0.78 0.70 – 0.88 <0.00001 

Distance to fragmented rainfed agriculture 0.979 0.971 – 0.987 <0.00001 

River:fragmented rainfed agriculture 1.012 1.006 – 1.017 0.00003 

Mean precipitation during the wettest quarter (10 cm) 1.007 1.006 – 1.009 <0.00001 

Mean precipitation during the driest quarter (10 cm) 1.14 1.09 – 1.19 <0.00001 

Mean annual temperature (Celsius) 0.91 0.86 – 0.97 0.0009 
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Figure legends 687 

Figure 1. Theoretical representation of landscapes with wetland (A) and rainfed crop (B) mosaics and 688 

their potential animal host occupants. Multiple transmission cycles of Japanese encephalitis virus (JEV) 689 

may be realised in such landscapes such as transmission among Ardeidae maintenance hosts (C1), 690 

shared transmission between ardeid birds and domestic pigs at the wildlife-livestock interface (C2), and 691 

concentrated transmission among porcine amplification hosts (C3).   692 

Figure 2. The spatial (left) and temporal (right) distributions of Japanese encephalitis virus (JEV) 693 

outbreaks in India. Outbreaks that occurred during the high incidence period are represented in 694 

burgundy and those that occurred during the low incidence period in khaki. The map does not reflect 695 

the authors’ assertion of territory or borders of any sovereign country including India and is displayed 696 

only to present the distribution of JEV occurrence. 697 

Figure 3. Japanese encephalitis virus (JEV) outbreak risk based on predicted intensity at 1.0 arc minutes 698 

(approximately 2 km). The centre panels depict the distribution of JEV risk for freshwater marsh-699 

fragmented rainfed mosaics (top) and for river-fragmented rainfed mosaics (bottom) models as deciles 700 

of the predicted intensities from the best fitting and performing inhomogeneous Poisson point process 701 

models (Table 1). The left and right panels depict the lower and upper 95% confidence limits, 702 

respectively, for the predicted intensities. The map does not reflect the authors’ assertion of territory or 703 

borders of any sovereign country including India and is displayed only to present the distribution of JEV 704 

occurrence. 705 

Figure 4. Homogeneous (left panels) and inhomogeneous (right panels) K-functions for the Japanese 706 

encephalitis virus (JEV) outbreak point process. The homogeneous K-function is not an appropriate fit 707 

due to the spatial dependency in JEV outbreaks as depicted by the divergent empirical (black line) and 708 

theoretical functions (the latter is the theoretical function under complete spatial randomness, 709 

represented by the dashed red line with confidence bands in grey). In contrast, the freshwater marsh-710 

fragmented rainfed mosaics (top) and river-fragmented rainfed mosaics (bottom) model-based 711 

inhomogeneous K-functions show that the spatial dependency was accounted for by the model 712 

covariates (overlapping empirical and theoretical functions). The x-axes, r, represent increasing radii of 713 

subregions of the window of JEV outbreaks, while the y-axes represent the K-functions. 714 










