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ABSTRACT

Gastric cancer is one of the deadliest cancers worldwide. Accurate prognosis is essential for effective clinical assessment and
treatment. Spatial patterns in the tumor microenvironment (TME) are conceptually indicative of the staging and progression of
gastric cancer patients. Using spatial patterns of the TME by integrating and transforming the multiplexed immunohistochemistry
(mIHC) images as Cell-Graphs, we propose a novel graph neural network-based approach, termed Cell-Graph Signature
or CGSignature, powered by artificial intelligence, for digital staging of TME and precise prediction of patient survival in gastric
cancer. In this study, patient survival prediction is formulated as either a binary (short-term and long-term) or ternary
(short-term, medium-term, and long-term) classification task. Extensive benchmarking experiments demonstrate that the
CGSignature achieves outstanding model performance, with Area Under the Receiver-Operating Characteristic curve (AUROC) of
0.960±0.01, and 0.771±0.024 to 0.904±0.012 for the binary- and ternary-classification, respectively. Moreover, Kaplan-Meier
survival analysis indicates that the ’digital-grade’ cancer staging produced by CGSignature provides a remarkable capability
in discriminating both binary and ternary classes with statistical significance (p-value < 0.0001), significantly outperforming
the AJCC 8th edition Tumor-Node-Metastasis staging system. Using Cell-Graphs extracted from mIHC images, CGSignature
improves the assessment of the link between the TME spatial patterns and patient prognosis. Our study suggests the feasibility
and benefits of such artificial intelligence-powered digital staging system in diagnostic pathology and precision oncology.

Gastric cancer (GC) accounted for 768,793 deaths in 2020,
representing the fourth deadliest cancer globally1. The 5-year
survival rate of GC is around 20%2. More accurate prog-
nosis can greatly assist clinical decision-making, especially
regarding which patients would benefit from aggressive treat-

ment. The Tumor-Node-Metastasis (TNM) staging system3

is the most prevalent cancer staging system primarily used
in hospitals and medical centers worldwide, which reflects
the information of the primary tumor, affected lymph nodes,
and metastasis. Many current treatment recommendations and



guidelines are based on the TNM stages. However, significant
differences in clinical outcomes have been observed in GC
patients with the same TNM stage and similar treatment regi-
mens4–6. These findings indicate the TNM staging system has
limitations and accordingly, cannot be used to accurately pre-
dict prognosis of cancer patients. As such, new strategies that
can provide more tailored staging information and improve
prognosis predictions are highly desirable.

Recent years have seen numerous data-driven, machine
learning-based studies of cancer prognosis. For instance, Yu
et al. introduced prognosis prediction of lung adenocarci-
noma and squamous cell carcinoma of stage I, and their model
can distinguish the shorter-term survivors from longer-term
survivors (p < 0.003 and p = 0.023)7. Mobadersany et al.
presented survival convolutional neural network (SCNN), and
their developed histology image-based SCNN reached compa-
rable performance on astrocytomas of grade III and IV with
histology grading or molecular subtyping8. In another study,
Jiang et al. proposed the GC-SVM classifier as a powerful
survival predictor using the data of immunomarkers and could
predict the adjuvant chemotherapy benefit of gastric cancer
patients with stages II and III9. Wulczyn et al. conducted a
survival prediction study involving multiple cancers based
on deep learning, and as a result, their model was capable
of making significant survival predictions for five out of ten
cancers and could effectively stratify cancer patients of stages
II and III10. Jiang et al. developed a convolutional neural
network-based classifier from H&E images to predict the
prognosis of stage III colon cancer patients11. Dimitriou et
al. introduced a K-nearest neighbor-based method to pre-
dict the mortality of stage II colorectal cancer patients using
immunofluorescence images12. Although these prognosis pre-
diction studies achieved promising performance using H&E
staining histology or immunohistochemistry staining images,
they were often restricted to specific subtypes or stages of the
corresponding cancers. Moreover, these studies also did not
consider any spatial information from the tumor microenvi-
ronment (TME).

Cell distribution in TME is not random but rather it is as-
sociated with the underlying functional state13. Therefore,
the exploration of the TME of cancer samples would offer
critical insights into the key spatial patterns associated with
the growth, cancer progression, and thus patient prognosis14.
Recent advent multiplexed immunohistochemistry (mIHC)
staining technique enables systematic investigation of the
TME15, 16 and supports extraction of enriched spatial informa-
tion from the TME, including the cell location, cell types, cell
and nucleus morphological information, and related optical
information14, 17. Researchers have applied the mIHC tech-
nique to analyze the TME of pancreatic cancer and found that
spatial distribution of cytotoxic T cells in proximity to can-
cer cells correlates with increased overall patient survival14.
Barua et al. applied a statistical scoring based method, G-
cross function, to measure the patterns of two different cell
types, such as T-reg and CD8, and found that high infiltration

of T-reg in the core tumor area is an independent predictor of
worse overall survival (OS) in patients of non-small cell lung
cancer17. However, these studies only considered the spatial
features of limited cell types and only used handcrafted fea-
tures. Therefore, comprehensive and quantitative methods that
assess the relationships between spatial features descriptive
of cell distribution and prognosis are currently lacking.

Inspired by the concept of the Cell-Graph13, 18 and the suc-
cess of graph neural networks (GNN)19–21, especially their
applications to the analysis of biology data22, 23, we hypothe-
size that intricate spatial distribution information of the TME
is informative for the prediction of the OS of GC patients
and a GNN model can effectively capitalize on the useful
patterns generated by Cell-Graphs. To validate this hypoth-
esis, we have developed a novel GNN-based approach for
predicting the prognosis of GC patients using Cell-Graph
data, which we call the Cell-Graph Signature or CGSignature.
The overall workflow is illustrated in Figure 1 and Figure ??.
In this study, we formulate prognosis prediction as a clas-
sification problem by predicting the patient’s survival time
interval rather than a continuous time frame or a risk score and
develop a workflow to perform the following three-fold tasks.
Firstly, it extracts the comprehensive spatial and morphologi-
cal information from mIHC images. Secondly, it further uses
the extracted spatial information to stratify patients into ei-
ther binary (short-term and long-term) or ternary (short-term,
medium-term, and long-term) classes. Finally, it conducts the
Kaplan-Meier survival analysis to verify the clinical signifi-
cance of the CGSignature.

CGSignature represents a powerful survival predictor under
comprehensive and extensive benchmarking tests of gastric
cancer across all subtypes and stages. Specifically, CGSignature
can effectively stratify short-term, medium-term, and long-
term GC survivors at the early diagnosis stage, and achieved
the area under the receiver-operating characteristic curve (AU-
ROC) values of 0.960±0.01 in terms of binary classification,
and 0.771±0.024 to 0.904±0.012 in terms of ternary clas-
sification, respectively. In the follow-up survival analysis,
CGSignature outperformed the AJCC 8th edition TNM stag-
ing system on the testing cohort in terms of the Harrell’s
Concordance-Index24, Hazard Ratio (HR), and p-value.

Results
Clinical characteristics and data-binning of the pa-
tient cohort
We collected the data of 172 gastric cancer patients from
Shanghai Ruijin Hospital, affiliated with the School of
Medicine, Shanghai Jiao Tong University. The clinical charac-
teristics of this cohort are illustrated in Table ??. This cohort
contains 124 males, 47 females, and one case without gender
information. With respect to the survival status, 113 cases
were recorded as "death" while 59 patients as "live". The sta-
tistical summary of their TNM (the AJCC 8th edition) stages
are provided in Table ??. In particular, the patient numbers
of the TNM stages of I, II, III, and IV are 14, 52, 95, and 3,
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Figure 1. An overall workflow of graph neural network-based prognosis prediction using Cell-Graphs. (a) Specimen processing:
The tumor tissues were extracted from gastric cancer, and stained with seven different biomarkers including DAPI, Pan-CK, CD8,
CD68, CD163, Foxp3, and PD-L1. (b) Image pre-processing: sub-sampling and cell-graph construction were conducted for
image pre-processing. (c) An illustration for the cohort, 172 gastric cancer patients were collected. (d) Data split. The training,
validation and testing datasets were split with the percentages of 64%, 16%, and 20%, respectively. (e) Model construction: four
different GNN model architectures, including GCNSag, GCNTopK, GINSag, and GINTopK, were constructed and compared.
Multi-run model training, five-fold cross-validation, and independent test were conducted to evaluate the performance of
the constructed GNN models. (f) Data binning: overall survival time ranged from 0 to 88 months, and two data binning
strategies were applied to generate binary- and ternary-class datasets. (g) Model architecture: The four models shared the
same architecture but employed different types of convolutional unit and pooling layer, which consists of four consecutive
convolutional layer and pooling layer blocks, followed by a summary layer and three fully-connected layers, prior to the
generation of the final classification outcome. Architecture of the best-performing GINTopK model is illustrated herein, which
outperformed the other three model architectures and also achieved the best performance on the test dataset. The corresponding
number of hidden layers or feature dimensions are indicated at the bottom of each box. Here, FC stands for "fully connected
layer".

respectively. The OS time of the cohort ranges from 0 to 88
months. Two data-binning strategies were applied to segment
the patient OS into binary- or ternary-class datasets. More
specifically, patients with OS time shorter than 24 months and

longer than 48 months were categorized as short-term, and
long-term in the binary-class dataset. The patients whose OS
time is between 24 months and 48 months were removed from
the training dataset but used in subsequent survival analyses.
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More details can be found in the section of Survival anal-
ysis and performance comparison with the TNM staging
system. In the ternary-class dataset, patients were classified
into short-term, medium-term, and long-term classes, using
the thresholds of 12 and 60 months. Here, the data-binning
thresholds were chosen to take into account the relative class
balance and clinical importance. We did not optimize the data
binning threshold, which, however, can be conducted when
more data becomes available. Model training and subsequent
analysis were performed using these two datasets.

Workflow overview
Figure 1 illustrates an overall workflow and the model ar-
chitecture of the proposed CGSignature approach. As shown
in Figure 1a, the mIHC technique was used to stain the GC
tissue samples. Specifically, the nuclear counterstain, DAPI,
was used for cell nuclei staining, and six antibodies of Pan-
CK, CD8, CD68, CD163, Foxp3, and PD-L1 were used as
annotation indicators for six different types of cells. After
digitalization, cell locations, types, and related optical and
morphological features were extracted using the digital pathol-
ogy software. After this procedure, we obtained the CSV files
in which each row corresponds to each cell with the node fea-
tures shown in Table 3. Based on these CSV files as the input,
we developed a workflow (details can be seen in Algorithm
??) to process the raw data and build the GNN-based model
to predict the patient OS interval using the features extracted
from mIHC images.

The key steps of the workflow are as follows: (1) Image
pre-processing: Sub-sampling and Cell-Graph generation
were performed at this step. Specifically, each mIHC image
was firstly segmented into multiple non-overlapping regions
with no more than 100 cells. For each region, we built a graph
where each cell was represented as a node and the reciprocal
of the Euclidean distance of each cell-cell pair was used to
establish edges between them with the distance of less than 20
µm. Detailed information can be found in the section “Cell-
Graph construction” of Methods. Then, we extracted a total
of 35 features (as shown in Table 3) for each cell as the node
attributes, including 5 optical features for each biomarker
and 5 morphological features for each cell. Such generated
cell-based graph is referred to as Cell-Graph13, 18. There are
approximately 90 Cell-Graphs constructed for each mIHC
image (for each patient). Cell-Graphs originated from the
same mIHC image share the same label with the correspond-
ing patient. (2) Data split: After Cell-Graph construction,
the whole dataset was partitioned into the training, valida-
tion, and test sets with the ratio of 0.64 : 0.16 : 0.20 at
the patient level. In addition, we also generated the files
for performing five-fold cross-validation by generating five
non-overlapping training-validation subsets and evaluating
the model performance on these 5-fold subsets. (3) Hyper-
parameter optimization: We utilized the Hyperopt toolkit25

from the Ray software package26 to tune the hyperparame-
ters of GNN models. The optimized hyperparameters were

then used for the follow-up model training and performance
evaluation. (4) Model performance evaluation and data
visualization: To comprehensively assess the capability and
reliability of our GNN model, we evaluate model performance
using multi-run model training, five-fold cross-validation, and
independent test. The test results were visualized by gen-
erating the receiver-operating characteristic (ROC) curves,
confusion matrix, and boxplots of Accuracy, F1-Score, and
Matthews Correlation Coefficient (MCC). Performance met-
rics are defined in Section “Metrics of model performance
evaluation” in the Supplementary material.

Performance benchmarking of different GNN mod-
els for prognosis prediction
We constructed four different types of GNN models and exam-
ined their performance for predicting the OS of gastric cancer
patients, including GINTopK, GINSAG, GCNTopK and GC-
NSAG. Here, GIN21 and GCN27 are two graph convolution
computational units (differences can be seen in Figure ??),
whereas TopKPooling20, 28, 29 and SAGPooling29, 30 are two
graph pooling computational units. The graph convolutional
and pooling layers are the core components of the GNN ar-
chitecture. Five-fold cross-validation was conducted to assess
the model of each GNN model on both binary- and ternary-
classification tasks. The results are averaged on ten repetitions
of five-fold cross-validation for GINTopK on binary classifi-
cation (as shown in Figure ??) to circumvent the randomness
of the model during training. In this procedure, Accuracy,
F1-Score, MCC, and AUROC were calculated to evaluate the
performance. Figure 2a illustrates the performance results
of binary classification on five-fold cross-validation. As we
observe, the median values of both Accuracy and F1-score for
the four GNNs ranged from 0.83 to 0.92, while the median
values of MCC ranged from 0.66 to 0.84, respectively. Figure
2b shows the performance results of ternary classification on
five-fold cross-validation. We can see that the ternary-class
classification models achieved the median values of Accu-
racy ranging from 0.76 to 0.82, F1-score from 0.64 to 0.72,
and MCC from 0.46 to 0.5, respectively. According to the
results shown in Figures 2a and 2b, GINTopK slightly out-
performed the other three GNN models on both binary- and
ternary-classifications. Therefore, GINTopK was selected as
the best-performing GNN model and employed for subsequent
performance benchmarking and survival analysis.

ROC curves of GINTopK on the binary- and ternary-
classification tasks are illustrated in Figure 2c and Figure 2d,
respectively. The binary-class GINTopK model achieved the
AUROC value of 0.96±0.01 on five-fold cross-validation. In
contrast, the ternary-class GINTopK classifier reached the AU-
ROC values of 0.834±0.015, 0.771±0.024, and 0.904±0.012
for short-term (<12 months), medium-term (>12 and <60
months), and long-term (>60 months) on five-fold cross-
validation, respectively (Figure 2d). Moreover, the perfor-
mance results of binary-class GINTopK model on ten repe-
titions of five-fold cross-validation are displayed in Figure
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Table 1. Overall Kaplan-Meier survival analysis based on the predictions of binary- and ternary-classification by CGSignature.
The classification results were compared with Harrell’s Concordance-Index (C-Index), Hazard Ratio (HR), and p-value. For the
convenience of survival analysis comparison, the variables of TNM stages were regrouped into TNM-2 (I+II vs. III), TNM-3 (I
vs. II vs. III), and TNM-6 (I, IIA, IIB, IIIA, IIIB, IIIC), while "CGSignature+TNM-2" denotes a four-class variable by combining
the classes of TNM-2 and binary-class CGSignature.

Variable C-Index (95% CI) HR (95% CI) p-value

Binary-class
test cohort

TNM-2
(I+II vs. III) 0.659 (0.577 – 0.740) 5.276 (2.147 – 12.966) <0.0001

TNM-6
(I, IIA, IIB, IIIA, IIIB, IIIC) 0.714 (0.623 – 0.805) 1.873 (1.388 – 2.529) 0.00081

CGSignature
(Low vs. High) 0.699 (0.637 – 0.762) 0.217 (0.108 – 0.438) <0.0001

CGSignature + TNM-2 0.740 (0.661 – 0.819) 2.412 (1.650 – 3.525) <0.0001

Ternary-class
test cohort

TNM-3
(I vs. II vs. III) 0.632 (0.510 – 0.753) 3.169 (1.335 – 7.522) 0.019

TNM-6
(I, IIA, IIB, IIIA, IIIB, IIIC) 0.681 (0.535 – 0.827) 1.708 (1.212 – 2.407) 0.028

CGSignature
(Low vs. Medium vs. High) 0.823 (0.748 – 0.899) 0.204 (0.107 – 0.389) <0.0001

??. We can see that the median values of both Accuracy and
F1-score were within the range of 0.90-0.93 (MCC values
ranged from 0.80 to 0.86), thereby suggesting the stability of
our proposed GINTopK model.

In Figure 3, the performance results of the GINTopK model
on the independent test are visualized using ROC curves and
confusion matrix. It can be seen that the model achieved simi-
lar performance with that on five-fold cross-validation in terms
of AUROC values on both binary- and ternary-classification
tasks. In terms of the confusion matrix, 96% and 89% of
the short-term and long-term patients could be accurately pre-
dicted using the binary-classification model. The true positive
percentages of ternary-class model were 81%, 59%, and 85%,
corresponding to the short-term, medium-term, and long-term
classes (Figure 3).

Taken together, outstanding performance of the GINTopK
model on both cross-validation and independent test indicate
that our proposed GNN approach is capable of effectively
capturing the underlying prognostic patterns from the well-
constructed Cell-Graphs. The captured prognostic patterns
by GNN model are characteristic of the spatial information
of cell locations and types of the TME, which incorporates
more potentially informative features than the TNM staging
system.

Ablation studies and prognostic value of different
types of cell features
To examine the effect of node features of different cell types
on model performance, we further performed ablation studies
to assess the contribution of features to the binary- and ternary-
classification performance by removing each type of features
in an iterative manner. Thirty-five node features of seven types
were used in this study, including DAPI, Pan-CK, CD8, CD68,

Foxp3, PD-L1, and morphological features. We first evaluated
the performance of the GNN model trained using all these
features, and then, evaluated the performance of the models
trained using the remaining features after removing each type
of features from the all-feature set in turn. For each iteration,
we trained the models five times with random initialization of
the weights using the same dataset and calculated the mean
and standard deviation of Accuracy. The results are shown in
Table 2, where the feature contribution was measured by the
accuracy change compared with that of the all-feature model.
Note that when a type of feature is removed, an accuracy in-
crease means that including the feature type reduced accuracy,
and an accuracy decrease means that the feature type played
an important role in attaining the all feature accuracy.

According to Table 2, the variant models trained using
these feature subsets and all-feature set achieved comparable
Accuracy values in both binary and ternary classifications. In
the binary classification, the DAPI features and morphological
features made more important contributions to the model
performance compared with other types of features (e.g. the
Accuracy dropped by 0.035 and 0.025, respectively), which
reflect the nucleus differences of optical and morphology of
the TME. Thus, inclusion of these two types of features helped
to better distinguish the long-term from short-term patients.
In the case of ternary classification, we can see that the GNN
models trained without the of DAPI and morphology features
achieved the lowest Accuracy, which is consistent with the
observation in the binary classification.

Survival analysis and performance comparison
with the TNM staging system
To further investigate the prognostic values and clinical im-
portance of the predictions produced by CGSignature, we con-
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Figure 2. Model performance of four GNNs on five-fold cross-validation. (a) and (b) show the Boxplots of performance
metrics of Accuracy, F1-score, and MCC on five-fold cross-validation. (c) and (d) illustrate the ROCs of GINTopK binary- and
ternary-models on five-fold cross-validation.

ducted the Kaplan-Meier survival analysis using the patient-
level results of both binary- and ternary-classifications. For
each patient, we first collected the predicted results of all the
subsampled Cell-Graphs. Next, we calculated the class per-
centages of these predictions, and took the class with the maxi-
mum percentage as the final patient-level prediction of the cor-

responding patient. Using these patient-level predicted results
(‘digital-grade’) of binary-classification (with predicted class
labels of CGSignature = 0 and CGSignature = 1) and ternary-
classification (with predicted class labels of CGSignature = 0,
CGSignature = 1, and CGSignature = 2), we conducted the sur-
vival analysis and plotted their Kaplan-Meier curves, shown
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Figure 3. Performance assessment of the GINTopK model in terms of ROC curves and confusion matrix on the independent
test. The left column shows the ROC curves of binary- and ternary-classification, while the right column displays the confusion
matrix of the model predictions on the binary- and ternary-classification tasks.

in Figure 4. More specifically, when using the binary-class
predictions, the median survival time of patient test cohorts
predicted as CGSignature = 0 and CGSignature = 1 were about
18 months and 42 months, respectively. The hazard ratio was
0.217 (95% CI: 0.108 – 0.438), the C-Index was 0.699 (95%
CI: 0.637 – 0.762), and the p-value was less than 0.0001,
indicating that CGSignature has statistically significant prog-
nostic power in separating the two groups of patient cohorts.
When using the ternary-class predictions, the median sur-
vival time of patient cohorts predicted as CGSignature = 0 and
CGSignature = 1 were around 7 months and 28 months, re-

spectively. The endpoint survival rate of CGSignature = 2 was
approximately 92.3% (Figure 4b). The hazard ratio and C-
Index were 0.204 (95% CI: 0.107 – 0.389) and 0.823 (95%
CI: 0.748 – 0.899), respectively, with the p-value less than
0.0001.

We further compared the patient survival analysis based
on predictions of CGSignature with the AJCC 8th edition TNM
staging system and showed the results in Table 1. In the
TNM staging system, there were eight groups of IA, IB, IIA,
IIB, IIIA, IIIB, IIIC, IVA, and IVB. As no patients of stage IV
were included in the binary-class test cohort and only one
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Figure 4. Kaplan-Meier survival analysis of patient overall survival based on the ‘digital grade’ (patient-level predictions)
producted by CGSignature in terms of (a) binary- and (b) ternary-classification. As can be seen from Figure 4, Kaplan-Meier
survival analysis demonstrates that the ‘digital grade’ cancer staging produced by CGSignature provides a remarkable capability
in discriminating both binary (short-term, long-term) and ternary (short-term, medium-term, and long-term) classes with
C-Index (Binary: 0.699 (95% CI: 0.637 – 0.762), Ternary: 0.823 (95% CI: 0.748 – 0.899)), Hazard Ratio (Binary: 0.217 (95%
CI: 0.108 – 0.438), Ternary: 0.204 (95% CI: 0.107 – 0.389)), and the p-values < 0.0001.
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Table 2. Ablation studies of the major types of features used
by the GNN models in both binary and ternary-classification.
The relative importance and contribution of the features was
measured by the accuracy change compared with that of the
all-feature model.

Feature sets ACC of binary ACC of ternary

All-features 0.917±0.012 0.719±0.020
No-DAPI 0.882±0.022 0.710±0.018
No-PD-L1 0.921±0.014 0.718±0.006
No-CD68 0.911±0.011 0.717±0.010
No-FOXP3 0.918±0.017 0.719±0.016
No-CD8 0.910±0.006 0.732±0.023
No-Pan-CK 0.927±0.023 0.714±0.016
No-morphology 0.892±0.009 0.706±0.021

patient of stage IV was included in ternary-class test cohort,
we excluded the patients of stage IV and those without OS
information. Finally, 51 patients (including 20 uncategorized
patients) and 35 patients were retained for binary- and ternary-
class survival analysis, respectively. The detailed statistical
information of the testing cohorts can be found in Table ??.

To make a fair comparison, three specific criteria were
adopted to aggregate the TNM stages into TNM-2 (I, II vs.
III), TNM-3 (I vs. II vs. III), and TNM-6 (I vs. IIA vs. IIB
vs. IIIA vs. IIIB vs. IIIC). The survival analysis results are
provided in Table 1 and Figures ??-??. According to Table 1
and Figure ??, the C-Index of the binary-class CGSignature
was 0.699 (p-value < 0.0001), outperforming TNM-2 with an
increase of 0.04. We further combined the TNM-2 with binary-
class CGSignature for survival analysis (Figure ??), which
achieved the highest C-Index of 0.748 (p-value < 0.0001),
which was higher than TNM-6 by 0.034 (Figure ??). In
ternary-class survival analysis, we compared the results of
TNM-3, TNM-6, and the ternary-class CGSignature. More
specifically, C-Index of the ternary CGSignature was 0.823 (p-
value < 0.0001, Figure 4b), which was superior to the TNM-
3 (Figure ??) and TNM-6 (Figure ??) with an increase of
0.191 and 0.142, respectively. These results demonstrate the
CGSignature is capable of discriminating and stratifying gas-
tric cancer patients into groups of different prognosis better
than the TNM staging system. Moreover, we note that the
prognostic power can be even further enhanced by integrating
the CGSignature predictions and the TNM stages for survival
analysis, such as the CGSignature +TNM− 2 in Table 1 and
Figure ??.

To summarize, by combining the spatial information from
the mIHC images, CGSignature has demonstrated outstanding
performance in survival analysis, and achieved a better or at
least comparable performance when comparing with the TNM
staging system. The results suggest that effective prognostic
features can indeed be captured by CGSignature, which sug-
gests a powerful method complementary to the current TNM

staging system.

Framelet decomposition for cell-graph
To examine the capacity of Cell-Graph to capture useful spa-
tial features from mIHC images, we conducted a framelet de-
composition on the whole mIHC images. The framelet trans-
forms (including framelet decomposition and reconstruction)
have proved an important tool for distilling multi-resolution
information in low-pass and high-passes from the graph
data31–35.

We extracted low-pass and high-pass information of six
types of features, corresponding to six different biomark-
ers DAPI, PAN-CK, CD8, CD68, FOXP3, and PD-L1. Ta-
bles ??-?? show the low-pass and high-pass coefficients of
the framelet decomposition on mIHC images of short-term,
medium-term and long-term survivors on the entire mIHC
images. For the selected samples, no significant differences
were observed from the low-pass channel. However, major
differences can be observed from the high-pass channel on the
selected samples. More specifically, remarkable signal differ-
ences can be seen from the high-pass channel-1 and channel-2
in terms of the features of Cell Area and Nucleus Perimeter
(summarized in Table ??-??). These differences highlight the
important prognostic value of cell morphological information
of the TME, which is consistent with the prognostic value of
different types of cell features.

Discussion
In this study, we developed the first GNN-based approach,
Cell-Graph Signature (CGSignature), which is capable of pre-
dicting the prognosis of gastric cancer patients from Cell-
Graphs extracted from mIHC images. Extensive benchmark-
ing tests on multi-run model training, 5-fold cross-validation,
and independent test demonstrate that CGSignature can accu-
rately predict the prognosis on both binary- and ternary-class
classification tasks. We designed and compared the perfor-
mance of four different GNN architectures, including GINSag,
GCNTopK, GCNSag, and GINTopK. As a result, GINTopK
achieved the best performance when compared with the other
three GNN architectures (GINSag, GCNTopK, and GCNSag)
on the same datasets. Feature ablation studies showed that
the nucleus optical feature (DAPI) and cell morphological
features are essential node features for and contributed most
to the prognosis prediction, which indicate the potential piv-
otal roles of nuclear and cell morphology in gastric cancer
progression. In survival analysis, CGSignature clearly outper-
formed the AJCC 8th TNM staging system in terms of C-Index
(0.823, 95% CI: 0.748-0.899) using the ternary-classification
model. In particular, we notice that CGSignature achieved bet-
ter or comparable performance with the TNM staging system
when using the binary-classification model. These results of
survival analysis indicate that CGSignature provides more prog-
nostic power than the existing TNM staging system and can
help pinpoint patients who may benefit from more tailored
and personalized therapy. Moreover, wavelet decomposition
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results suggest that Cell-Graphs can indeed capture certain
important spatial features informative for classifying patient
survival. Although many previous studies of prognosis pre-
diction also achieved promising results, the majority of such
studies were only limited to a specific subtype or stage of can-
cers. Nevertheless, in this study, we show that the proposed
CGSignature method is applicable to gastric cancer patients of
all subtypes across all TNM stages. Moreover, CGSignature
achieved a better performance when stratifying test patient
cohorts into different groups of prognosis, which has proven
a powerful prognostic predictor for gastric cancer.

One caveat of the current study is that we could only obtain
a limited size of the mIHC image data, and accordingly, the
performance of the CGSignature was only benchmarked on the
limited size of the gastric cancer patient dataset. Thus, in
future studies, it would be important to evaluate the perfor-
mance of graph neural networks based on Cell-Graph data
from mIHC images in much larger and/or multi-centre pa-
tient cohorts, as well as additional tumor types (in addition
to gastric cancer), when more data become available. Explo-
ration of the prognostic value of the CGSignature method on
datasets of other cancer types would surely be needed to ver-
ify its utility and capability. Additionally, future extension of
the capability of CGSignature by using whole-slide images and
other biomarkers in mIHC/mIF staining, for example, holds
great potential for a more comprehensive analysis of the tumor
microenvironment15; this will in turn serve to better inform
the training of more accurate GNN models. The continuing
development of cutting-edge, robust, and broadly-applicable
Cell Graph-based biomarker discovery algorithms is valuable
and desirable to better inform and transform the medical care
of cancer patients.

Methods
Dataset
The gastric cancer samples were collected and stained with
mIHC technique and prepared as two batches of tissue mi-
croarray36, in which all the samples were arranged in the
matrix configuration. Then the two tissue microarrays were
scanned by digital microscope (brand: Vectra Polaris) under
the magnification of 40X with each pixel represents 0.5 µm.
Totally, 181 mIHC images of cancer tissues were curated as
the initial datasets. After excluding patients whose follow-up
data were not available, 172 mIHC images were retained and
used for model training and benchmarking. The overall sur-
vival time of the patients ranges from 0 to 88 months, as shown
in Figure 1f. Detailed clinical characteristics and statistical
summary of the cohort are provided in Table ??. Fifty-nine pa-
tients were still alive at the time of the last follow-up. All the
images were stained using multiplexed immunohistochemistry
of seven colors and reagents to identify the specific cell types.
In this study, cells were stained with antibodies of Pan-CK,
Foxp3, CD8, PD-L1, CD68, CD163, and DAPI. The dataset
was randomly partitioned into the training, validation, and test
subsets with the ratios of 0.64, 0.16, and 0.20 at the patient

level. In addition, datasets for five-fold cross-validation were
also prepared.

Label generation
In this study, the survival prediction was formulated as a
classification problem in the form of either binary- or ternary-
classification. To explore the prognostic value of the Cell-
Graphs extracted from the gastric cancer TME, the sur-
vival time of the cohort was categorized into two and three
classes, and used as labels for training binary- and ternary-
classification models based on graph neural networks. In
binary-classification, 82 patients with survival time of less
than 24 months were annotated as short-term while 70 patients
with survival time of longer than 48 months were annotated as
long-term. 20 patients with survival time between 24 and 48
months were removed from the training dataset, and denoted
as uncategorized patients. For the ternary-classification, 12
months and 50 months were respectively used as the thresh-
olds to divide patients into short-, medium-, and long-term,
with the corresponding patient numbers of 51, 60, and 61,
respectively.

Cell segmentation
After digitization, the mIHC images were pre-processed using
the pathology software HALO (Indica Labs) for cell segmen-
tation and feature extraction. The extracted information was
subsequently saved as a CSV file in which each row represents
the features of a cell (as shown in Table 3), including the cell
locations, optical features of stained cells, and morphology
features. Thirty-five of such features were selected as the node
features for each cell. Detailed information can be found in
the Node attributes section.

Sub-sampling
Each mIHC staining image contains around 7,000∼ 13,000
cells. In particular, we conducted the sub-sampling when
generating the Cell-Graphs. By treating each cell as a node in
the Cell-Graph, we limited the graph size with no more than
100 nodes. A non-overlap sliding window was then applied
to extract the local regions that contained approximately 100
cells from the mIHC images. As a result, we obtained 16951
Cell-Graphs, which would be used for GNN model training
and testing. The extracted Cell-Graphs from one mIHC image
were annotated with the same label as that of the correspond-
ing mIHC image. The performance of the GNN models was
firstly assessed at the Cell-Graph level; After that, the predic-
tion outputs of all Cell-Graphs were aggregated to generate
the votes for the final prediction outcome at the patient level.

Cell-Graph construction
According to the previous study on the TME17, we assumed
that the maximum effective distance was 20 µm between
immune and tumor cells, which is equivalent to 40 pixels in
the magnification of this study. We calculated the Euclidean
distance between any pair of cells, and used this distance
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to define the edge weight between them according to the
equations (1) and (2) shown below.

For the ith and jth cells with Cartesian coordinates (xi,yi)
and (x j,y j) (which use pixel as the unit) in the same mIHC
image, their Euclidean distance can be calculated as follows:

d(i, j) =
√
(xi− x j)2 +(yi− y j)2. (1)

The weight between the ith and jth cells is assigned as follows:

wi, j :=
{

40/d(i, j), d(i, j)≤ 40 pixel,
0, otherwise. (2)

where 0 denotes that there is no interaction between the cell i
and j. After sub-sampling, a number of Cell-Graphs (up to
100 nodes) were extracted and annotated, with the weight (2)
of the edge between a given pair of cells.

Node attributes
Graph neural network (GNN) is a powerful deep learning
approach which can efficiently extract features from graph-
structured data. In the present study, we focused on distilling
five morphology features and 30 optical features generated by
six staining biomarkers as the attributes of the node for each
cell, including DAPI, PAN-CK, CD8, CD68, FOXP3, and PD-
L1. The five morphology features include cell area, cytoplasm
area, nucleus area, nucleus perimeter, and nucleus roundness.
The optical features of each biomarker are comprised of posi-
tive, positive nucleus, positive cytoplasm, nucleus intensity,
and cytoplasm intensity. As a result, a total of 35 features
were extracted for each cell. The detailed list of the features
and their types are listed in Table 3. All the features were
linearly normalized to the range of [0,1] prior to training the
GNN models.

Architecture of the designed graph neural networks
Graph-structured data are usually represented in the form
of (xi,Ai), where xi denotes the feature of the node for the
ith graph sample while Ai represents its adjacency matrix.
A GNN has the similar network architecture to that of the
traditional convolutional neural network. To address the clas-
sification task in this study, we designed the GNN model
architecture of CGSignature, which contained four layers of
two-layer graph convolution plus one-layer graph pooling,
followed by three-layer fully connected layers (MLP), before
generating the prediction output (Figure 1).

The graph convolutional layer is responsible for extracting
an array of features from the last output array, which mimics
the role of CNN convolution. It changes the dimension d of
the feature array but does not change the number of nodes
Ni. The output of graph convolutional layers is passed on
to the graph pooling which compresses the node number by
a fractional proportion while in this process usually the key
structural information and node features are preserved. The
MLP readout will then output the label class.

Graph convolution communicates the structural information
of the data to the deep network model via the message passing

Table 3. The list of node attributes and their variable types.
Each type of features are comprised of three Boolean variables
and two float variables. More specifically, these Boolean
variables were identified by the pathology software based on
the float values of Nucleus Intensity and Cytoplasm Intensity
of each biomarker. In addition, five different morphology
features were also extracted and used as the node attributes.

Feature name Feature type

DAPI Positive Boolean
DAPI Positive Nucleus Boolean
DAPI Positive Cytoplasm Boolean
DAPI Nucleus Intensity Float
DAPI Cytoplasm Intensity Float

PD-L1 (Opal 520) Positive Boolean
PD-L1 (Opal 520) Positive Nucleus Boolean
PD-L1 (Opal 520) Positive Cytoplasm Boolean
PD-L1 (Opal 520) Nucleus Intensity Float
PD-L1 (Opal 520) Cytoplasm Intensity Float

CD68 (Opal 540) Positive Boolean
CD68 (Opal 540) Positive Nucleus Boolean
CD68 (Opal 540) Positive Cytoplasm Boolean
CD68 (Opal 540) Nucleus Intensity Float
CD68 (Opal 540) Cytoplasm Intensity Float

Foxp3 (Opal 570) Positive Boolean
Foxp3 (Opal 570) Positive Nucleus Boolean
Foxp3 (Opal 570) Positive Cytoplasm Boolean
Foxp3 (Opal 570) Nucleus Intensity Float
Foxp3 (Opal 570) Cytoplasm Intensity Float

CD8 (Opal 620) Positive Boolean
CD8 (Opal 620) Positive Nucleus Boolean
CD8 (Opal 620) Positive Cytoplasm Boolean
CD8 (Opal 620) Nucleus Intensity Float
CD8 (Opal 620) Cytoplasm Intensity Float

Pan-CK (Opal 690) Positive Boolean
Pan-CK (Opal 690) Positive Nucleus Boolean
Pan-CK (Opal 690) Positive Cytoplasm Boolean
Pan-CK (Opal 690) Nucleus Intensity Float
Pan-CK (Opal 690) Cytoplasm Intensity Float

Cell area (µm2) Float
Cytoplasm area (µm2) Float
Nucleus area (µm2) Float
Nucleus perimeter (µm) Float
Nucleus roundness Float

between the nodes of graphs and thus is the key to successfully
capturing the geometric feature of the data. In this work,
we adopted the GINConv21 as the graph convolution and
TopKPool20 as the graph pooling method, respectively. The
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convolutional layer for GIN can be aggregated by

Xoutput = MLP
(
(A+(1+ ε) · I) ·Xin

)
.

where Xin ∈ RN×d is the d-feature matrix on the nodes of the
graph with N nodes for the input layer, and A ∈ RN×N is the
adjacency matrix of the graph. W is the filter weight parameter
matrix with the size of m×n to be learned by the GNNs, where
n is the number of hidden neurons. GINConv is a special
neural message passing operator for GNN aggregation.

Our GNN model was trained by connecting multiple layers
of graph convolution activated by a ReLU (Rectifier Linear
Unit)37. The graph pooling, which is used between two con-
secutive layers, serves to reduce the dimensionality of the
feature map so that the network has appropriate amounts of
parameters to circumvent over-fitting38. Here we used Top-
KPooling20 for graph pooling.

There exist different types of GNN models in the ma-
chine learning literature39. Specifically, we tested the per-
formance of the GINConv+TopKPool model with the other
three popular GNN models, i.e. GINConv+SAGPool, GC-
NConv+TopKPool, and GCNConve+SAGPool. The re-
sults showed that the chosen model (GINConv+TopKPool)
achieved the highest AUROC value and stable performance.
Refer to Figures 2a and 2b for detailed results.

Hyperparameter optimization
We fine tuned the hyperparameters for the GNN models with
the assistance of HyperOPT25 and Ray26, where the network
architecture and batch size were fixed. The hyperparameters
were searched within the range as shown in Table 4. More
specifically, the best-performing model used the following
hyperparameters: learning rate 5e−4, weight decay rate 1e−4,
number of hidden neurons 512, pooling ratio 0.5, number of
hidden layers 4, batch size 256, and epochs 200 with the early
stopping strategy.

Table 4. Search space for the hyperparameters of GNN mod-
els.

Hyperparameter Searching space

Learning rate 1e-4, 5e-4, 1e-3
Weight decay (L2) 1e-4, 5e-4, 1e-3
Hidden units 256,512
Pooling ratio 0.5,0.65,0.75

Prediction aggregation to assess the patient-level
performance
The model performance was evaluated at the Cell-Graph level.
After the model was optimized, the patient-level performance
of the model was calculated by aggregating the prediction
results produced by the optimized model. In particular, we fed
Cell-Graphs of test dataset to the optimal model to predict the
label for each of them. Since hundreds of Cell-Graphs were

sub-sampled from the mIHC images of the patient, hundreds
of the predictions were also made for a given patient. To
generate the patient-level prediction of a patient, we first cal-
culated the proportion of Cell-Graphs belonging to a specific
class, and then classified the patient as the class that received
the largest proportion of the Cell-Graphs.

Framelet analysis to facilitate interpretation of the
model prediction
From the mathematical perspective, the framelet sys-
tem31–33, 35 refers to a set of functions that provide a multi-
scale representation of graph structured data, which has a
similar property to the traditional wavelets in the Euclidean
space. Using the framelet transforms, we are able to decom-
pose the graph features into low-pass and high-pass frequen-
cies as the extracted features to train network models, via the
framelet-based graph convolution.

Suppose {(λ`,u`)}N
j=1 are the pairs of the eigenvalue and

eigenvector for L of graph G with N nodes. The (undec-
imated) framelets at the scale level j = 1, . . . ,J for graph
G with the above scaling functions can be defined, for
n = 1, . . . ,r, as follows:

ϕ j,p(v) =
N

∑
`=1

α̂

(
λ`

2 j

)
u`(p)u`(v)

ψ
n
j,p(v) =

N

∑
`=1

β̂ (n)

(
λ`

2 j

)
u`(p)u`(v).

(3)

where ϕ j,p and ψr
j,p are the low-pass and high-pass framelets

translated at the graph node p. In the framelet analysis above,
we have shown the low-pass and high-pass framelet coeffi-
cients v j,p and wr

j,p for a signal f on graph G . They are

the projections
〈

ϕ j,p, f
〉

and
〈

ψr
j,p, f

〉
of the graph signal

onto framelets at the scale j and node p. The construction of
framelet system and the framelet transforms rely on the filter
bank (a collection of filters) to calculate framelet coefficients.
Here we used the filter bank of the Haar-type filters for the
experiments.31, 35. The dilation factor is 2 j with the dilation
(base) 2 for a natural number j, where j indicates the scale
level and 2 j is the scale of the framelet. A bigger value of j
indicates that the corresponding framelet coefficient carries
more detailed information of the graph signal.

The above framelet system is a tight frame, which pro-
vides an exact representation of the L2 function on the graph.
This guarantees that the framelet coefficients have a unique
representation of a graph signal. Accordingly, the framelet co-
efficients can fully reflect the feature of the signal. Moreover,
the coefficients decompose the signal at multi scales and can
be used to observe whether a particular scale, or the high-pass
or low-pass frequencies contain a more important feature of
the data.

Ethics declaration
This study was approved by the Shanghai Ruijin Hospital
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the patient private data during the experimental analysis.

Data availability
The data used for the main analyses presented here is available
for non-commercial use and can be accessible by request.

Code availability
All the related scripts and code are publicly available and
can be download at https://github.com/docurdt/
Cell-Graph_Signature.git.
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12. Dimitriou, N., Arandjelović, O., Harrison, D. J. & Caie,
P. D. A principled machine learning framework improves
accuracy of stage ii colorectal cancer prognosis. NPJ
digital medicine 1, 1–9 (2018).

13. Yener, B. Cell-graphs: image-driven modeling of
structure-function relationship. Commun. ACM 60, 74–84
(2016).

14. Carstens, J. L. et al. Spatial computation of intratumoral
t cells correlates with survival of patients with pancreatic
cancer. Nat. communications 8, 1–13 (2017).

15. Berry, S. et al. Analysis of multispectral imaging
with the astropath platform informs efficacy of pd-1
blockade. Science 372, DOI: 10.1126/science.aba2609
(2021). https://science.sciencemag.org/content/372/6547/
eaba2609.full.pdf.

16. Lu, M. Y., Sater, H. A. & Mahmood, F. Multiplex
computational pathology for treatment response predi-
cation. Cancer Cell 39, 1053–1055, DOI: https://doi.org/
10.1016/j.ccell.2021.07.014 (2021).

17. Barua, S. et al. Spatial interaction of tumor cells and
regulatory t cells correlates with survival in non-small
cell lung cancer. Lung Cancer 117, 73–79 (2018).

18. Gunduz, C., Yener, B. & Gultekin, S. H. The cell graphs
of cancer. Bioinformatics 20, i145–i151 (2004).

19. Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. &
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks 20, 61–80 (2008).

20. Gao, H. & Ji, S. Graph U-Nets. In ICML, 2083–2092
(2019).

21. Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful
are graph neural networks? (2019). 1810.00826.

22. Wang, J. et al. scgnn is a novel graph neural network
framework for single-cell rna-seq analyses. Nat. commu-
nications 12, 1–11 (2021).

23. Zhao, T., Hu, Y., Valsdottir, L. R., Zang, T. & Peng,
J. Identifying drug–target interactions based on graph
convolutional network and deep neural network. Briefings
bioinformatics 22, 2141–2150 (2021).

24. Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L.
& Rosati, R. A. Evaluating the Yield of Medical Tests.
JAMA: The J. Am. Med. Assoc. DOI: 10.1001/jama.1982.
03320430047030 (1982).

25. Bergstra, J., Yamins, D. & Cox, D. D. Hyperopt: A
python library for optimizing the hyperparameters of ma-
chine learning algorithms. In Proceedings of the 12th
Python in science conference, vol. 13, 20 (Citeseer, 2013).

26. Nishihara, R. et al. Real-time machine learning: The
missing pieces (2017). 1703.03924.

13 / 14

https://github.com/docurdt/Cell-Graph_Signature.git
https://github.com/docurdt/Cell-Graph_Signature.git
10.1038/ncomms12474
10.1073/pnas.1717139115
10.1158/1078-0432.CCR-18-0848
10.1371/journal.pone.0233678
10.1371/journal.pone.0233678
10.1126/science.aba2609
https://science.sciencemag.org/content/372/6547/eaba2609.full.pdf
https://science.sciencemag.org/content/372/6547/eaba2609.full.pdf
https://doi.org/10.1016/j.ccell.2021.07.014
https://doi.org/10.1016/j.ccell.2021.07.014
1810.00826
10.1001/jama.1982.03320430047030
10.1001/jama.1982.03320430047030
1703.03924


27. Kipf, T. N. & Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR (2017).
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