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Abstract7

The ongoing SARS-CoV-2 pandemic has seen an unprecedented amount of rapidly generated genome8

data. These data have revealed the emergence of lineages with mutations associated to transmissibility9

and antigenicity, known as variants of concern (VOCs). A striking aspect of VOCs is that many of them10

involve an unusually large number of defining mutations. Current phylogenetic estimates of the evolutionary11

rate of SARS-CoV-2 suggest that its genome accrues around 2 mutations per month. However, VOCs can12

have around 15 defining mutations and it is hypothesised that they emerged over the course of a few months,13

implying that they must have evolved faster for a period of time. We analysed genome sequence data from the14

GISAID database to assess whether the emergence of VOCs can be attributed to changes in the evolutionary15

rate of the virus and whether this pattern can be detected at a phylogenetic level using genome data. We fit a16

range of molecular clock models and assessed their statistical fit. Our analyses indicate that the emergence of17

VOCs is driven by an episodic increase in the evolutionary rate of around 4-fold the background phylogenetic18

rate estimate that may have lasted several weeks or months. These results underscore the importance of19

monitoring the molecular evolution of the virus as a means of understanding the circumstances under which20

VOCs may emerge.21

Keywords: SARS-CoV-2 molecular evolution, variants of concern, molecular clock, Bayesian model22

selection.23

1 The molecular clock of SARS-CoV-224

Genome sequence data of viruses have been extensively used to track the evolution and spread of these25

pathogens. The ongoing SARS-CoV-2 pandemic has seen an unprecedented number of genomes generated26

that have been used to gain rapid insight into epidemiological spread (Dellicour et al., 2021), identify the time27

of origin (Pekar et al., 2021), and to track mutations of functional importance. Most concerning mutations28
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occur in the spike protein and may increase transmissibility (Kraemer et al., 2021), or disease severity (Harvey29

et al., 2021), although vaccines are likely still effective against them (Dearlove et al., 2020). Such lineages30

are known as variants of concern (VOCs) and they are characterised at a genomic level by a number of fixed31

mutations in the S1 subunit of the spike protein, the most common of which are mutations N501Y and D614G32

(Eurosurveillance, 2021), with the the latter presenting evidence increased transmissibilty and favoured by33

selection (Volz et al., 2021). For a lineage to be formally classified as a VOC there must be evidence of an34

impact in transmissibility, virulence, and/or immunity (Mascola et al., 2021).35

SARS-CoV-2 lineages are classified using a dynamic nomenclature system, known as PANGO (Rambaut36

et al., 2020). Recently the World Health Organisation assigned variants of concern letters of the greek37

alphabet (Konings et al., 2021). At present the United States CDC recognises four variants of concern;38

Alpha (PANGO lineage B.1.1.7) first identified in the UK, Beta (PANGO lineage B.1.351) first identified in39

South Africa, Gamma (PANGO lineage P.1) first identified in Brazil, and Delta (PANGO lineage B.1.617.2)40

first identified in India (CDC, 2021).41

The mechanisms under which VOCs have emerged is not entirely clear, but their defining mutations are42

well characterised. Variant Alpha has 14 protein-altering mutations and three deletions, with eight of these43

being in the spike protein. One of the deletions ∆H69/∆V70 enhances infectivity in vitro and has been44

detected in immunocompromised patients where immune escape occurred (Kemp et al., 2021, Plante et al.,45

2021). Variant Beta has nine protein-altering mutations with five altering the receptor binding domain.46

(Tegally et al., 2021). Variant Gamma has 17 mutations, with 10 found in the spike protein and including47

N501Y and E484K (Faria et al., 2021). Importantly, Alpha, Beta and Gamma share several important48

mutations, including N501Y and E404K, which likely enhance affinity to human the ACE2 receptor (Nelson49

et al., 2021). Variant Delta is characterised by 7 mutations in the spike protein, several of which have been50

associated with altered immune response and increased viral replication, viral load, likely leading to increased51

viral fitness (CDC, 2021).52

The sheer number of mutations observed in these four VOCs is much higher than what would be expected53

under phylogenetic estimates of the nucleotide evolutionary rate of SARS-CoV-2, which range from around54

7×10-4 to 1.1×10-3 subs/site/year (Duchene et al., 2020, Ghafari et al., 2021), meaning that only about 255

mutations would accumulate per month along a lineage. In these circumstances, the 14 mutations in Alpha56

would require a period of at least six months, a time that is inconsistent with its first detection in September57

2020, because it would have had to evolve from around March 2020 with most defining mutations undetected58

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.21262799doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.29.21262799
http://creativecommons.org/licenses/by-nc-nd/4.0/


for many months.59

1.1 Bayesian molecular clock models60

We investigated whether the emergence of variants of concern is associated with an increase in the evolutionary61

rate that can be detected using phylogenetic analyses of genome data and in the absence of dense intrahost62

or transmission chain sampling. To this end, we analysed publicly available nucleotide sequence data from63

GISAID (Elbe and Buckland-Merrett, 2017, Shu and McCauley, 2017) under a range of molecular clock64

models that describe the evolutionary rate along branches in phylogenetic trees, shown in the Supplementary65

material. We consider each model as a hypothesis for which we can assess statistical support using Bayesian66

model selection techniques. Critically, our analyses do not intend to detect signatures of natural selection, nor67

to identify genomic regions with higher mutation rates, which have been described elsewhere (Abdool Karim68

and de Oliveira, 2021, Harvey et al., 2021). Instead, our framework serves to characterise the main patterns69

of evolutionary rate variation in the genome of the virus that underpin the emergence of VOCs.70

The simplest molecular clock model is known as strict molecular clock (SC; Zuckerkandl, 1962, Zuck-71

erkandl and Pauling, 1965) that posits a single evolutionary rate for all branches in a phylogenetic tree, and72

thus serves as a ’null’ model. A more complex model is the uncorrelated relaxed clock that assumes that73

branch rates are independent and identically distributed draws from a statistical distribution (Drummond74

et al., 2006), for which we considered either a lognormal or a Γ distribution (UCLN and UCG, respectively).75

We also considered a range of fixed local clock models (FLC; Yoder and Yang, 2000). These models require76

an a priori definition of a set of ’background’ branches and a set of branches with different rates, known as77

’foreground’. For example, foreground branches can be defined based on some biological expectation (e.g.78

Worobey et al., 2014), and thus represent a formal evolutionary hypothesis. The evolutionary rate is constant79

for a given group of branches, although there exist approaches where branches can be assigned a range of80

relaxed molecular clocks (Fourment and Darling, 2018). These models differ in their number of parameters81

and biological assumptions (Supplementary material Table S1; reviewed in Bromham et al., 2018 and Ho and82

Duchêne, 2014).83

We specified six configurations of the FLC model, where the evolutionary rate could vary within VOC84

clades (FLC clades model in Supplementary material Figure S1) or along the stem (FLC stems+clades), only85

at stem branches (FLC stems), or where these rates could be shared among all VOCs (FLC shared stems,86

FLC shared clades and FLC shared clades+stems in Supplementary material Figure S1).87
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Models in which the rate only changes along the stem branches of VOCs represent a situation where88

the evolutionary rate may increase for a short period of time before returning to the background rate. In89

contrast, models where the clade also undergoes a rate change would imply that VOCs have a rate that is90

statistically different from the background.91

An alternative approach to the FLC is the random local clock (RLC; Drummond and Suchard, 2010).92

The evolutionary rate can change at particular nodes in the tree and the location of such changes and actual93

rates are inferred. The RLC is a general form of all local clock models, where the simplest form is the strict94

clock, as a case of no rate changes (Bromham et al., 2018, Ho and Duchêne, 2014).95

1.2 Bayesian hypothesis testing96

We conducted model testing by calculating the log marginal likelihood, a measure of statistical fit, and97

ranking the models accordingly. The difference in log marginal likelihoods between two models is known as98

the log Bayes factor (Sinsheimer et al., 1996) and measures the relative support for two models given the99

data. In general, a log Bayes factor of at least 1.1 is considered as ’substantial evidence’ in favour of a model,100

with 2.3 being ’strong’ and 4.6 ’decisive’ (Kass and Raftery, 1995). We considered two marginal likelihood101

estimators, path sampling and stepping-stone sampling Gelman and Meng (1998), Lartillot and Philippe102

(2006), Xie et al. (2011).103

2 Results104

2.1 Model selection105

The FLC shared stems model had the highest statistical fit, with a log Bayes factor of over 3 compared to106

the next best-fitting model (3.85 with path-sampling and 3.97 with stepping-stone sampling; Table 1). The107

next model with highest log marginal likelihood was the FLC stems. These two models assume that the stem108

branches of VOC have a rate that differs from the background and they only differ in that the FLC stems109

model allows each VOC stem branch to have its own rate.110

The uncorrelated relaxed clocks had very similar performance, but ranked well below the best model,111

with a log Bayes factor of at least -6 relative to the FLC shared stems model 1. The log Bayes factors for112

the remaining models were at least -15, implying ’strong’ evidence against them, relative to the FLC shared113

stems.114
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Interestingly, FLC models where VOC clades were defined as foreground had decisively lower statistical115

performance than those where only stem branches were labelled as foreground (Table 1). In fact, even the116

SC model, which is generally considered unrealistic for empirical data, had a log Bayes factor of at least 4117

with respect to FLC shared clades and the FLC clades+stems Table 1.118

Table 1: Model selection results for complete genomes. Estimates of log marginal likelihoods using path
sampling and stepping-stone (ps logML and ss logML, respectively). log Bayes factors (BF) are shown for
the best-fitting model, relative to all others (larger numbers mean lower statistical fit), and thus they are 0.0
for the top model.

Model ps logML ss logML ps rank ss rank ps BF ss BF

FLC shared stems -55427.65 -55428.17 1 1 0 0
FLC stems -55431.50 -55432.14 2 2 -3.85 -3.97

UCG -55433.64 -55434.26 3 3 -6.00 -6.01
UCLN -55434.32 -55434.69 4 4 -6.67 -6.52

FLC shared clades+stems -55443.30 -55443.50 5 5 -15.64 -15.34
SC -55443.53 -55444.21 6 6 -15.88 -16.04

FLC shared clades -55449.89 -55450.52 7 7 -22.23 -22.35
FLC clades+stems -55453.91 -55454.58 8 8 -26.25 -26.41

FLC -55461.87 -55462.54 9 9 -34.21 -34.38

2.2 Rates of evolution of variants of concern119

The FLC shared stems model had a mean background evolutionary rate of 0.58×10-3 subs/site/year (95%120

CI: 0.51 - 0.65×10-3), while that for the VOC stems was 2.45×10-3 subs/site/year (95% CI: 1.15 - 4.72×10-3).121

As such, the VOC stems rate was around 4 fold higher than the background (mean 4.25, 95% CI: 2.61 - 8.19)122

(Fig 1).123

Although the FLC stems model that assigned each VOC stem branch a different rate had very high124

uncertainty, it also suggested much higher rates for these branches. The mean background rate under this125

model was 0.55×10-3 subs/site/year (95% CI: 0.49 - 0.62×10-3). The corresponding values for VOC were126

8.47×10-3 subs/site/year (95% CI: 1.93 - 82.37×10-3) for Alpha, 1.71×10-3 (95% CI: 0.34 - 33.20×10-3) for127

Beta, 2.76×10-3 (95% CI: 1.21 - 13.23×10-3) for Gamma, and 1.54×10-3 (95% CI: 0.62 - 7.35×10-3) for Delta.128

Clearly, these estimates were several fold higher than that of the background branches, and in spite of their129

high uncertainty least 0.90 of the posterior density was above the mean background rate (Fig 1).130

The coefficient of rate variation for both relaxed clock models, UCG and UCLN, was indicative of depar-131

ture from clocklike evolution in the data. To investigate whether VOC stem branch rates differed from the132

rest, we extracted individual branch rates and compared the VOC stem branch rates to the mean of all other133
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Figure 1: Violin plots for posterior statistics of fixed local clock models (FLC). (A) is for a FLC where the
stem branches of VOCs share an evolutionary rate that is different to that of the background (model ’FLC
shared stems’ in Supplementary material Table S1 and Fig S1. The evolutionary rate for variants of concern
(VOC) stem branches is shown in orange and the background in grey. The dashed line represents the mean
background rate and the dotted lines are the 95% credible interval. (B) is the ratio of the evolutionary rate
for VOC stem branches and the background under the same model and the dashed line represents a value
of 1.0 where the background and VOC stem rate would be the same. (C) and (D) show the corresponding
statistics for the FLC stems model, where the stem branch of every VOC has a different rate. Abbreviation
’B.’ stands for background.
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branches. We found evidence that VOC stem branch rates were higher than the mean of other branches,134

with higher means values, but very high uncertainty and 95% credible intervals that overlapped with the135

mean of other branches (Fig 2).136

The mean evolutionary rate of branches other than the VOC stems was 0.65×10-3 subs/site/year (95%137

CI: 0.58 - 0.77×10-3) in the UCLN and 0.69 ×10-3 subs/site/year (95% CI: 0.60 - 0.80×10-3) for the UCG. In138

contrast, the VOC stem mean evolutionary rates for the UCLN were: 1.29×10-3 subs/site/year (95% credible139

interval, CI: 0.76 - 2.56×10-3) for Alpha , 0.64×10-3 (95% CI: 0.32 - 1.57×10-3) for Beta, 1.29×10-3 (0.82140

- 2.40×10-3) for Gamma, and 1.06×10-3 (95% CI: 0.50 - 2.38×10-3) for Delta, and with comparable values141

for the UCG. The percentile where VOC stems rates fell with respect to other branches also supported the142

finding that their rates were particularly high in most cases. In the UCLN, for Alpha 0.96 of posterior density143

had the stem rate in the top 75% of fastest evolving branches, with the corresponding numbers for the other144

VOCs being 0.25, 0.98, and 0.81 Beta, Gamma, and Delta, respectively, and with comparable values in the145

UCG (0.92, 0.45, 0.96, and 0.91).146

The RLC model produced less clear results than the other molecular clock models. The maximum147

a posteriori number of rate changes was 4, with the 95% CI ranging between 2 and 5. However, the148

posterior probability of rate changes in VOC stem branches or clades was 0.0. Instead, rate changes were149

not consistently found on particular branches. It is conceivable that this model poses a heavy penalty on150

rate changes. In particular, there is a very large number of local clock configurations in these data, which151

may be impossible to visit under this model and may result in low statistical power to assess support for our152

hypotheses here. This model, however, had an evolutionary rate estimate that was comparable to that of153

other models (mean 0.60×10-3 subs/site/year; 95% CI: 0.49 - 0.72×10-3).154
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Figure 2: Violin plots of posterior statistics for the uncorrelated relaxed clocks with lognormal (UCLN) and
gamma (UCG) distributions (see Supplementary material). The top row, (A) through (C), is for the UCLN
and the bottom row, (D) through (F), is for the UCG. (A) and (D) show the coefficient of rate variation,
which is the standard deviation of branch rates divided by the mean rate, and indicates clocklike behaviour
when it is abutting zero (Drummond et al., 2006, Ho et al., 2015). In (B) and (E) the evolutionary rate is
shown for the stem branches of variants of concern (VOC) and for the mean of background branches (i.e.
those that are not the stems of VOCs), abbreviated as ’B.’. The dashed line denotes the mean background
rate, while the dotted lines represent the upper and lower 95% credible interval. (C) and (F) shows the
percentile in which stem branches for VOCs fall with respect to other branches. Note that the densities have
been smoothed, but the maximum values are 100.
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2.3 Emergence time and expected genome substitutions155

We estimated the duration of time along VOC stem branches and the inferred total number of nucleotide156

substitutions along the complete genome. We focus on the best fitting model (FLC shared stems), with157

similar results for the second best model (FLC stems). The duration of time along these branches represents158

the time required before VOCs started to diversify, but it is important to note that they are contingent on159

sampling bias, and could therefore be shorter than estimated here. Under the FLC shared stems model, the160

stem branch leading up to VOs were; 14 weeks (95% CI:6 - 24) for Alpha, 4 (95% CI: 2 - 8) for Beta, 17161

(95% CI: 8 - 28) for Gamma, and 6 (3 - 11) for Delta (Supplementary material Fig S2).162

The expected number of substitutions along the complete genome were; 21 (95% CI: 14 - 32) for Alpha,163

6 (95% CI:3 - 11) for Beta, 26 (95% CI: 18 - 35) for Gamma, and 9 (95% CI: 6 - 16) for Delta. Although,164

these numbers are loosely associated with the defining mutations, they are not directly comparable because165

they involve substitutions along the entire genome and they correspond to the inference from a standard166

phylogenetic substitution model (the GTR+Γ in this case).167

3 Discussion168

Our mean rate estimates over all lineages are somewhat lower than earlier estimates (Duchene et al., 2020),169

which is consistent with the notion that the virus has had time to evolve and remove transient deleterious170

mutations since its emergence (Ghafari et al., 2021). However, the molecular evolutionary rate of SARS-CoV-171

2 displays substantial variation among lineages, a pattern that has been apparent since early phylogenetic172

analyses of the virus (Duchene et al., 2020). Evolutionary rate variation is sometimes stochastic in nature173

and pinpointing its causes is often difficult in empirical data.174

Our explicit hypothesis testing framework suggest that the emergence of VOCs explains much of the175

evolutionary rate variation in the virus. This model testing framework has been previously used to understand176

viral evolution among host species in influenza (Worobey et al., 2014), and the host range SARS-CoV-2 and177

closely related viruses (MacLean et al., 2021). We suggest that model testing may be preferable to using178

highly parametric models, such as relaxed molecular clock models for this purpose, because they tend to179

have very high variance in parameters of interest, such as evolutionary rates of particular branches. Recent180

advances in random local clock models may provide increased sensitivity (Fisher et al., 2021) of this family181

of models.182

We find compelling evidence that episodic, instead of long-term, increases in the evolutionary rate un-183
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derpin the emergence of VOCs, a process that is probably driven the action of natural selection. All models184

where VOC clades were assigned a different rate to the background had poor statistical fit, even when com-185

pared to the SC ’null’ model, providing further support for such rate increases to occur over a short period186

of time. The increase in evolutionary rate required to give rise to the four VOCs examined was estimated187

to be around 4-fold compared to the background, although such estimates may carry high uncertainty when188

estimated for individual stem branches. Under these circumstances the number of mutations required to189

give rise to a VOC, such as Alpha, would have accumulated in about three months, with some variants190

requiring less a few weeks, such as Beta and Delta. These timescales appear plausible in chronic infections of191

SARS-CoV-2 (Harvey et al., 2021, Kemp et al., 2021), but other circumstances are also likely, such as when192

transmission low and selection favours mutations that increase transmissibility between hosts.193

Our genomic analyses demonstrate that signatures of increased evolutionary rates are detectable using194

phylogenetic methods and genome surveillance data, but the precise mechanism (ecological or intrahost) of195

how VOCs have emerged is still unclear. To elucidate these processes will require dense sampling between196

transmission chains, specifically in settings where transmission is unlikely and intra-host sequence data is197

available. An other important area that is currently under intense investigation is how natural selection198

shapes the emergence and persistence of VOCs (Tegally et al., 2021). Such studies may benefit from using199

explicit codon evolution models and careful partitioning among genes to model mutational heterogeneity. We200

recommend that further research focuses on early detection and understanding of the circumstances under201

which viral lineages with epidemiological impacts, such as VOCs, emerge.202

4 Materials and methods203

4.1 Data set construction204

We downloaded 100 randomly selected sequences from the latest global NextStrain SARS-CoV-2 build (Had-205

field et al., 2018), from the GISAID database (Elbe and Buckland-Merrett, 2017, Shu and McCauley, 2017).206

This set of sequences did not include any of those belonging to the four VOCs (Alpha, Beta, Gamma, or207

Delta) and we also excluded samples drawn from non human hosts. We downloaded 20 randomly selected208

sequences from the four VOCs to generate a data set of 180 genomes, which we aligned using MAFFT (Ka-209

toh and Standley, 2013). Importantly, we ensured that the sequences consisted of complete genomes, with210

no stretches of more than 10 Ns and excluding those with low coverage (see Supplementary material). To211
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verify that samples classified as VOCs were correctly assigned as such, we estimated a phylogenetic tree using212

maximum likelihood as implemented in IQ-TREE2 (Minh et al., 2020), using the GTR+Γ substitution model213

and with approximate Bayes branch support (Anisimova et al., 2011). We ensured that all VOC samples214

that were monophyletic with other VOC samples with an approximate Bayes support <0.95.215

4.2 Bayesian phylogenetic analyses216

Our Bayesian analyses require specifying a substitution model, a tree, prior, priors for all parameters in217

BEAST 1.10 (Suchard et al., 2018). We chose the GTR+Γ4 substitution model and a coalescent exponential218

tree prior. Although the tree prior is not necessarily realistic here, it is expected to have little impact in219

molecular clock estimates Ritchie et al. (2017). It can accommodate changes in population size via the220

exponential growth function and it is fully parametric, such that setting proper priors for all parameters is221

possible. To calibrate the molecular clock we specified the sequence sampling times. The FLC models require222

constraining monophyly in VOCs, which we also did for other clock models to ensure that the prior on tree223

topology was the same.224

We used the default priors for the substitution model. The coalescent exponential tree prior has two225

parameters, the scaled population size, Φ, and the growth rate r. The scaled population size is proportional226

to the number of infected individuals at present divided by the twice the coalescent rate, λ, (i.e. Φ = I(0)
2λ )227

and the growth rate is inversely proportional to the doubling time by a factor of log(2) (doubling time =228

log(2)
r ) (Boskova et al., 2014, Volz et al., 2009). We used priors with relatively low information content for229

these two parameters. For Φ we used an exponential distribution with mean 105, while for r we used a230

Laplace distribution with location 0 and scale 100. For all molecular clock rates we used a continuous-time231

Markov chain reference prior (Ferreira and Suchard, 2008). The UCLN and UCG models have an additional232

parameter; the standard deviation of the lognormal distribution, and the shape of the Γ distribution. For233

these parameters we specified an exponential prior with mean 0.33. We ran our analyses for using a Markov234

chain Monte Carlo of length 5×107, sampling every 5×103 and discarding 10% of the chain as burn-in. We235

repeated the analyses once to verify convergence of independent chains and we ensured that the effective236

sample size of all parameters was at least 200.237
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4.3 Marginal likelihood estimation238

We used two techniques to infer the log marginal likelihood; path-sampling and stepping-stone (Gelman and239

Meng, 1998, Lartillot and Philippe, 2006, Xie et al., 2011), which have been found to have high performance240

in differentiating models in phylogenetics (Baele et al., 2012, 2013, Fourment et al., 2020), reviewed by241

Baele and Lemey (2014), Oaks et al. (2019). We chose these estimators over the more recently developed242

and highly accurate generalised stepping-stone because it requires a working genealogical distribution (Baele243

et al., 2016), which is not trivial here due to the monophyletic constraints. Our estimation setup had 200244

path steps distributed according to quantiles from a β distribution with parameter α=0.3, with each of the245

resulting 201 power posterior inferences running for 106 iterations. We repeated these analyses three times246

to assess their variance. Our model testing approach considered the UCLN, SC, and all FLC models in Table247

1 and Supplementary material. We did not calculate log marginal likelihoods for the RLC because this is a248

model averaging method, where the number of parameters is less tractable than in other models. As a result249

it is difficult to conceive proper priors for all parameters, which is a fundamental aspect of Bayesian model250

selection.251
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E. André, M. Gilbert, et al. A phylodynamic workflow to rapidly gain insights into the dispersal history285

and dynamics of sars-cov-2 lineages. Molecular biology and evolution, 38(4):1608–1613, 2021.286

A. J. Drummond and M. A. Suchard. Bayesian random local clocks, or one rate to rule them all. BMC287

Biology, 8(1):1–12, 2010.288

A. J. Drummond, S. Y. W. Ho, M. J. Phillips, and A. Rambaut. Relaxed phylogenetics and dating with289

confidence. PLoS Biology, 4(5):e88, 2006.290

13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.21262799doi: medRxiv preprint 

https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
https://doi.org/10.1101/2021.08.29.21262799
http://creativecommons.org/licenses/by-nc-nd/4.0/


S. Duchene, L. Featherstone, M. Haritopoulou-Sinanidou, A. Rambaut, P. Lemey, and G. Baele. Temporal291

signal and the phylodynamic threshold of sars-cov-2. Virus evolution, 6(2):veaa061, 2020.292

S. Elbe and G. Buckland-Merrett. Data, disease and diplomacy: Gisaid’s innovative contribution to global293

health. Global Challenges, 1(1):33–46, 2017.294

Eurosurveillance. Updated rapid risk assessment from ecdc on the risk related to the spread of new sars-cov-2295

variants of concern in the eu/eea–first update. Eurosurveillance, 26(3):2101211, 2021.296

N. R. Faria, T. A. Mellan, C. Whittaker, I. M. Claro, D. d. S. Candido, S. Mishra, M. A. Crispim, F. C.297

Sales, I. Hawryluk, J. T. McCrone, et al. Genomics and epidemiology of the p. 1 sars-cov-2 lineage in298

manaus, brazil. Science, 372(6544):815–821, 2021.299

M. A. Ferreira and M. A. Suchard. Bayesian analysis of elapsed times in continuous-time markov chains.300

Canadian Journal of Statistics, 36(3):355–368, 2008.301

A. A. Fisher, X. Ji, A. Nishimura, P. Lemey, and M. A. Suchard. Shrinkage-based random local clocks with302

scalable inference. arXiv preprint arXiv:2105.07119, 2021.303

M. Fourment and A. E. Darling. Local and relaxed clocks: the best of both worlds. PeerJ, 6:e5140, 2018.304

M. Fourment, A. F. Magee, C. Whidden, A. Bilge, F. A. Matsen IV, and V. N. Minin. 19 dubious ways to305

compute the marginal likelihood of a phylogenetic tree topology. Systematic Biology, 69(2):209–220, 2020.306

A. Gelman and X.-L. Meng. Simulating normalizing constants: From importance sampling to bridge sampling307

to path sampling. Statistical Science, pages 163–185, 1998.308

M. Ghafari, L. du Plessis, J. Raghwani, S. Bhatt, B. Xu, O. Pybus, and A. Katzourakis. Purifying selec-309

tion determines the short-term time dependency of evolutionary rates in sars-cov-2 and ph1n1 influenza.310

medRxiv, 2021.311

J. Hadfield, C. Megill, S. M. Bell, J. Huddleston, B. Potter, C. Callender, P. Sagulenko, T. Bedford, and312

R. A. Neher. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics, 34(23):4121–4123,313

2018.314

W. T. Harvey, A. M. Carabelli, B. Jackson, R. K. Gupta, E. C. Thomson, E. M. Harrison, C. Ludden,315

R. Reeve, A. Rambaut, S. J. Peacock, et al. Sars-cov-2 variants, spike mutations and immune escape.316

Nature Reviews Microbiology, 19(7):409–424, 2021.317

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 31, 2021. ; https://doi.org/10.1101/2021.08.29.21262799doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.29.21262799
http://creativecommons.org/licenses/by-nc-nd/4.0/
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