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Abstract

Background:
Considering the emergence of SARS-CoV-2 variants and low vaccine access and uptake, mini-
mizing human interactions remains an effective strategy to mitigate the spread of SARS-CoV-2.

The aim of this study was to create a novel multidimensional mobility index to capture the com-
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1 INTRODUCTION

19 plexity of human interaction and evaluate its utility as an early indicator of surges in COVID-19
20 cases.

21 Methods:

22 We used publicly available anonymous cell phone data compiled by SafeGraph, from all coun-
23 ties in Illinois, Ohio, Michigan and Indiana between January st to December 8, 2020. Six
24 metrics of mobility were extracted for each county. Changes in mobility were defined as a
25 time-updated 7-day rolling average. We used an unsupervised machine learning method known
26 as functional principal component analysis (fPCA) to construct the latent mobility index (MI)
27 using the six metrics of mobility. Associations between our MI and COVID-19 cases were es-
28 timated using a quasi-Poisson hierarchical generalized additive model adjusted for population
29 density and the COVID-19 community vulnerability index.

30 Results:

31 Individual mobility metrics varied significantly by counties and by calendar time. More than
32 50% of the variability in the data was explained by the first principal component by each state,
33 indicating good dimension reduction. Following the expiration of stay-at-home orders, mobility
34 increased across all counties and this was particularly evident on weekends. While an individual
35 metric of mobility was not associated with surges of COVID-19, our MI was independently
36 associated with COVID-19 cases in all four states given varying time-lags.

37 Conclusion:

38 Following the expiration of stay-at-home orders, a single metric of mobility was not sensitive
39 enough to capture the complexity of human interactions. Monitoring mobility can be an im-
40 portant public health tool, however, it should be modelled as a multidimensional construct.

a Keywords: COVID-19, Pandemic, SARS-Cov-2, Mobility, Generalized Additive Models

- 1 Introduction

a3 While highly effective vaccines are readily available in the United States, uptake remains low [1]

a2 and interventions aimed at minimizing human contact remain necessary to mitigate the spread of
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1 INTRODUCTION

s SARS-CoV-2 [2, 3, 4, 5]. Decreasing mobility patterns within populations, has been shown to
s be an effective strategy to curb infectious disease transmission. Reducing human interactions is
a7 particularly important given Delta (a variant of concern; that is highly transmissible) is the dominant

a5 SARS-CoV-2 strain driving the current pandemic wave in the United States.

a0 The potential of monitoring population-level mobility patterns using geo-located mobile phone data
so as a public health tool has been demonstrated [6, 7, 8, 9]. In March 2020, worldwide adherence to
51 lockdowns was measured using various mobility metrics [10, 11, 12, 13, 14, 15]. A modelling study
52 from China showed 20-60% reductions in mobility notably controlled the spread of SARS-CoV-
53 2 [16]. A study from Canada showed that reductions in mobility strongly predict future control of
sa SARS-CoV-2 growth rates [5]. However, in the absence of social distancing interventions, the link

ss between changes in population-level mobility and COVID-19 remains unclear [8, 9].

s Population-level mobility, as it pertains to human interaction, is multidimensional. This is partic-
sz ularly true when assessing distinct geographical areas that vary by population density and socioe-
ss conomic factors across the United States [17, 18]. While the measurement of mobility is complex,
so studies to date have used single metrics such as the percentage of people remaining at home or
eo changes in the distance travelled to summarize human interactions and evaluate trends and asso-
61 ciations with COVID-19. These single metrics may oversimplify mobility associated with human
62 interaction. As social distancing policies loosen from strict "lock down" to business-as-normal, the
63 utility of continuously monitoring mobility will require a robust definition that is able to capture
es the complexity of population-level movement [19]. To this end, the aim of this study was to use
es advanced statistical methods to create a novel index that summarizes mobility as a latent construct
66 using a combination of six mobility metrics. We evaluated how our mobility index varied across
67 365 counties in 4 states as a function of time. Finally, we assessed the performance of our mobility
es index by evaluating how mobility correlated with COVID-19 cases compared to a single metric

e from the time stay-at-home orders expired.
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2 METHODS

» 2 Methods

» 2.1 Data Sources
72 Mobility Metrics

73 We used aggregated mobility data publicly available through SafeGraph from January 1st to De-
7 cember 8, 2020, via the Social Distancing Metric database. SafeGraph uses a panel of GPS pings
75 from anonymous mobile devices from a representative sample of the US Census population, to de-
76 rive metrics of mobility. This data includes a range of spatial behaviors from >45 million mobile
7z devices (= 10% of devices in the United States). To enhance privacy, SafeGraph excludes census

78 block group information if fewer than two devices visited an establishment in a month.

79 A priori, we choose six mobility metrics commonly used in the literature as a proxy of human
so contact and that could be attributable to mobility behavior changes as associated with COVID-
s1 19 infections. Each metric is defined for a given day (t) for a given county (j). The metrics (s)

s2 included:

83 The fraction of devices leaving home in a day

84 The fraction of devices away from home for 3-6 hours (Part-time work behaviour)

85 The fraction of devices away from home longer than 6 hours (Full-time work behaviour)

86 The median time spent away from home

87 The median distance traveled from home

88 * The average number of short stops (>3 stops for less than 20 min) (Delivery behaviours).

so  COVID-19 Cases

90 Confirmed COVID-19 cases data were retrieved from the New York Times open-source project [20].
o1 This publicly available dataset aggregates county-level daily counts of diagnosed cases, from health

o2 services official reports.
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2 METHODS

o3 Covariates

o« Demographic variables including population size and population density for each county was col-
os lected from the American Community Survey and the US Census Bureau. We used an aggre-
96 gate measure of social and COVID-19 specific vulnerability to summarize socioeconomic status
o7 at the state and county-level, freely available as the COVID-19 community vulnerability index
9 (CCVI) [21]. Dates for when stay at home orders were enforced and lifted were obtained from
9 the State-level social distancing policies database [22]. There were several entries for each state

1o due to policy revisions or updates. We used the first entry for each state in this database.

o1 2.2 Analysis
102 Population

103 Given the magnitude of the available data, we reduced the number of states in our analysis by
104 simply selecting the four most populous states in the Midwest. We used every county from each of

105 the selected states to avoid any preferential selection.

106 MObility Index

107 We defined mobility as a change of each mobility metric relative to the average of the week before
108 (time-updated rolling average). For each county j = 1,...,365, we index each of the 6 mobility
100 metrics s = 1,...,6 by calendarday ¢t = 1, ..., m;, where m; is the total number of observed days

1o since re-opening in county j. We define the following quantities:

111 * X the scalar value of mobility metric s measured on day ¢ in county j.

112 * X811, the value of mobility metric s measured on days ¢t —8,...,t — 1, i.e., the 7
113 days prior to day ¢ in county j. This is a vector quantity.

114 J Yj,t_&_“,t_lys: the average of the X ;g 11 .
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2 METHODS

us The change from baseline mobility metric s for day ¢ in county j is given by

Xive— Xt .y
AXj s = gibs T A Gt=8,t-1, 0

ij,t—S,...,t—l

us The use of a rolling average is unique to this analysis. Most studies have used a static relative
uz baseline period such as mobility trends between January until February 2020 [6, 23, 24]. This
us common approach does not account for seasonal mobility variability or changes as a result of the
1o pandemic [25, 26, 27]. In contrast our baseline (rolling average) takes into consideration temporal

120 trends that were likely changing with evolving public health policies.

121 Since our hypothesis was each metric could be attributed to a common underlying notion of mobil-
122 ity, we used an unsupervised machine learning method known as functional principal component
123 analysis (fPCA) to create our latent mobility index [28]. Briefly, PCA is a technique for reducing
12« the dimensionality of multiple variables while minimizing information loss. This is done by cre-
125 ating new uncorrelated variables (principal components) that successively maximize variance. A
126 “functional” PCA accounts for the longitudinal nature of the data. We applied fPCA on AX;
127 separately for each county and extracted the first principal component, i.e., the linear combina-
128 tion of individual mobility metrics that explained the most variance. We denote this first principal
120 component by fPCA;;, a score summarizing mobility in each county (j) on a given day (¢). To
130 enable comparability between counties and states, fPCA; ; was scaled as Z-scores, which defined

131 our mobility index (MI) given by:

_ JPCA; — FPCA,,
P /Var(fPCA)

) 2)

12 where fPCA;, = m% W2 fPCA; . and Var(fPCA,;;) are the average and variance of the

133 fPCA scores in county j over the observed time period, respectively.

13« The interpretation of M [ is as follows, M [ = 0, on average there was no change in mobility relative

135 the previous week; M [ = 1 on average there was an increase in mobility by one standard deviation
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2 METHODS

136 relative to the last week, and M I = —1 on average there was a decrease in mobility by one standard
137 deviation relative to the last week. An animation was created to visualize the relative daily changes

138 of M I by counties.

130 Association with COVID-19

For each county j, let y;, be the number of confirmed COVID-19 cases onday ¢t = 1,...,m;,
and qj; = [M1;;_o,..., MI;; 2] denote the vector of lagged occurrences of our mobility index
(defined in Equation (2)) with 0 days and 21 days as minimum and maximum lags, respectively.
In words, the first element of q;; represents the value of our mobility index on day ¢, the second
element represents the value of our mobility index one day prior to ¢, and so on. From the time
“stay at home” orders expired until December 8th 2020, the relationship between daily counts of
COVID-19 cases (y;+) and mobility (q;;), accounting for up to 21 days of lag, was estimated with

a quasi-Poisson hierarchical generalized additive model (HGAM) [29, 30] of the form:

log(E(y;:)) = Bo + s(qj) + s(time;) + s;(time;) + CCV I; + density;, 3)

1o where (3 is the intercept, s(-) are the smooth non-parametric functions of the predictor variables,
wr CCV1; is the COVID-19 community vulnerability index and density; is the population density
12 (people per square kilometer) at the county-level. The term s(q;,) in Equation (3) captures the
13 potentially non-linear and delayed effect of mobility on COVID-19 cases through a cross-basis
12 function [31]. We used penalized cubic regression splines [29] for both dimensions, with interior
us  knots placed at Z-scores of -3, -2,-1,0,1,2,3 for M I;,, and 7 and 14 days for the lag. Given the het-
s erogeneity of COVID-19 epidemiology across counties, models included both a state level calendar
17 time effect s(time;) using thin plate regression splines [32] and a county level calendar time effect
148 sj(timet) using a factor-smoother interaction basis [30]. Population size was used as offset in each

10 model. A separate model was run for each of the selected states.

150 There were two main advantages for using a HGAM to evaluate the association between mobil-
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3 RESULTS

151 ity and COVID-19 cases: (1) it can quantify the non-linear functional relationships over time
152 where the shape of each function varies across counties, and (2) it has the capacity of modelling
153 varying lags [33]. For example, it is estimated that it takes a median of 5 days from SARS-
1s5a CoV-2 infection until the onset of symptoms, followed by an unknown number of days before
155 people get tested and a positive infection is confirmed. This lag can be differential at both the
156 patient-level (develop symptoms and get tested) and also at the county-level (lag in reporting tests).
157 Given this variation, we were able to control for varying lagged exposures (up to 21 days) at the
158 county-level. To evaluate the utility of our mobility index, we compared a dose response rela-
150 tionship between mobility and COVID-19 cases and goodness of fit statistics of our latent MI
160 compared to a single measure of mobility (the fractions of devices leaving the home). All anal-
161 yses were performed using R version 4.0.2 [34] along with the mgcv [29] and d1nm [35] packages.
162 Code and data for reproducing all the results, figures and animation in this paper is available at

163 https://github.com/sahirbhatnagar/covid19-mobility.

s 3  Results

s 3.1 Mobility patterns

166 Daily mobility changes of three hundred sixty-five counties from the four most populous states in
167 the Midwest: Illinois, Ohio, Michigan and Indiana were analyzed between January 1 2020 until
16s  December 8 2020. State-level sociodemographic and economic characteristics were similar across

160 four states and are summarized in Table 1.
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3 RESULTS

Table 1: The sociodemographic and economic characteristics of Illinois (IL), Ohio (OH), Michigan (MI)
and Indiana (IN).

State Order Lift Population Number of Median Cumulative cases Cumulative cases
counties household per capita at per capita until
income opening® Dec 8 ¢
Illinois March 21 April 8 12,741,080 102 $65,030 118 6324
Ohio March 24 April 7 11,689,442 88 $56,111 41 4363
Michigan March 24  April 14 9,995,915 83 $56,697 269 4427
Indiana March 25  April 7 6,691,878 92 $55,746 83 5909

¢ cumulative cases per 100,000 population

1o Figure 1 illustrates the average daily changes of the six mobility metrics between January and De-
i1 cember 2020 of each state (average of all counties) relative to the week before. Overall, each metric
172 had a unique trajectory but trends were similar across four states. Based on the average change,
173 the number of devices not at home and delivery behavior (more than 3 stops lasting for less than
174 20 mins) remained stable throughout time. While changes in work-related metrics and the median
175 time devices remained were not at home varied more. Of the four states, mobility changes were
176 more pronounced in Ohio. Across all states, relative to the previous seven days, mobility increased
177 daily between March and May. Mobility metrics varied considerably by counties ( S1, S2, S3, S4),
178 illustrating how aggregating changes at the state-level may mask granular changes at the county-

179 level.
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Figure 1: The average daily changes from baseline in the six mobility metrics for all counties of each
state between January and December 2020. The baseline was calculated using a rolling average of
the 7 previous days. The solid vertical lines represent the date the stay-at-home orders were put in
place while the dotted vertical lines represent the dates the stay-at-home orders were lifted.

w0 3.2 First fPCA summarizes mobility patterns by counties

181 We created a latent index of mobility by counties as given by Equation (2) which is derived from
1s2 the first fPCA. Table 2 provides the median and inter quartile range of the proportion of variance
1s3  explained by the first fPCA across counties in a given state. We see that over 50% of the variance is
184 explained by the first fPCA for a majority of all the counties analyzed, indicating good dimension
185 reduction. In Supplemental Figures S5, S6, S7 and S8, we provide the absolute correlations between
186 our MI and each individual metric by county for Illinois, Ohio, Michigan and Indiana, respectively.
1s7 We see the correlations are particularly strong with full/part time work behaviour as well as time
188 spent away from home. Importantly, there was significant heterogeneity across counties which

180 would otherwise be missed when aggregating mobility metrics at the state level.
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3 RESULTS

Table 2: Median (inter quartile range) of the proportion of variance explained
by the first fPCA by state. n represents the number of counties in each state.

[linois (n = 102)  Ohio (n =88)  Michigan (n = 83) Indiana (n =92)

0.57 (0.50, 0.63) 0.71(0.67,0.74)  0.61 (0.53, 0.69) 0.65 (0.59, 0.70)

100 Figure 2 compares the changes of the MI from the day stay at home policies expired and July 4"
101 (Independence Day). Blue shades indicate MI <0 (decrease in mobility) and red shade indicate
102 MI>0 (increase in mobility). This graph provide some evidence that our MI is appropriately cap-
103 turing mobility as we would expect there to be more movement on a traditionally busy U.S. holiday
104 compared to earlier on in the pandemic when stay at home orders were lifted. In the Supplemental
105 material, we also provide an animation illustrating the daily changes from reopening to Decem-
106 ber 8. The animation shows substantial difference in mobility patterns across counties that vary
107 from day to day. The most dramatic change over time is increases in mobility from a weekday to a

108 weekend.
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3 RESULTS

lllinois — Reopen lllinois — July 04 Ohio - Reopen Ohio - July 04

Figure 2: M1 values for each county of each state on the day the stay-at-home orders expired (reopen)
and on July 4%, 2020. Blue shades indicate a decrease in mobility (MI < 0) and red shades indicate
an increase in mobility (MI > 0).

w 3.3 Association with COVID-19

200 To evaluate the utility of the MI, we compared its association with COVID-19 cases and a commonly
201 used single metric of mobility (fraction of devices leaving home) (Figure 3). Notably, the single
202 metric was not associated with COVID-19 cases in any state at any lagged time point. While all four
203 states showed a clear dose response of MI and COVID-19 cases following a 10-21 day lag. Across
204 all four states the MI model resulted in significantly better goodness of fit statistics compared to the

205 single metric (Table 3).
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Figure 3: Model results comparing the MI and its association with COVID-19 cases and a com-
monly used single metric of mobility (fraction of devices leaving home). For each state, the left
panel summarizes the multidimensional MI; the right panel represents the percentage of devices

leaving their home (x-axis); y-axis is the adjusted incidence rate ratio of COVID-19, at varying
lagged response (0-21 days) (z-axis).
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4 DISCUSSION

Table 3: Analysis of deviance table comparing the goodness of fit between the MI model (fPCA)
and the fraction of devices leaving home (single) of the four states. Degrees of freedom shown is
for the 2 test statistic.

State Residual deviance Degrees of freedom  Reduction in deviance for the MI model (fPCA)
Illinois (single) 152,581

Ilinois (fPCA) 149,282 3.6 3,299

Ohio (single) 123,551

Ohio (fPCA) 112,975 8.6 10,576

Michigan (single) 261,759

Michigan (fPCA) 250,888 7.0 10,871

Indiana (single) 83,517

Indiana (fPCA) 80,297 1.7 3,220

s 4 Discussion

207 The COVID-19 pandemic is now fueled by highly transmissible variants of concern. Understand-
208 ing the association between mobility and disease transmission can help tailor non-pharmaceutical
200 interventions to mitigate outbreaks and potentially be used as an early indicator for surges in new
210 infections. We leveraged freely available cell phone data with an unsupervised machine learning
211 approach to create a multidimensional index of mobility. Results from our study suggest following
212 the expiration of stay-at-home physical distancing policies, single metrics of mobility were not sen-
213 sitive enough to capture the complexity of human mobility related to disease transmission. Our MI
214 was correlated with COVID-19 cases for Illinois, Ohio, Michigan and Indiana. In comparison, the
215 single metric of mobility (fraction of devices leaving home) was not associated with incident cases.
216 Our results also demonstrate the importance of evaluating changes at a granular level as there was

217 significant heterogeneity within states.

218 The use of mobility data was suggested to be a powerful tool to determine the impact of public

210 health policies [19]. During the initial phase of the pandemic, several studies examined the asso-
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4 DISCUSSION

220 ciation between mobility and COVID-19 [2, 36, 37, 38]. For example Lasry et al. [6] found an
221 association between changes in mobility (% personal mobile devices leaving home) at the state-
22 level and COVID-19 cases during the first COVID-19 wave. However at this time NPI were more
223 homogenous across counties and states. In contrast our study was the first to evaluate the association
224 of mobility and COVID-19 cases following the expiration of stay-at-home orders reflecting mobil-
225 ity behavior that is more reflective of typical population-level movement. We demonstrated among
226 hundreds of counties from four states, time-updated relative changes were associated with increases
227 in COVID-19 cases. Furthermore, results from our study suggest our mobility index should be con-

228 sidered an important confounder when evaluating other non-pharmaceutical interventions.

220 The strength of our study was the use multiple advanced statistical methods to measure mobility
230 and evaluate its association with COVID-19 cases. The fPCA used to create the mobility index ef-
2 fectively captured the heterogeneity of the individual metrics over time and across counties within
232 a given state. The unsupervised nature of this approach prevented the model from overfitting when
233 evaluating the association with cases. Furthermore, we modelled a non-linear functional relation-
23 ship between mobility and COVID-19 cases using a HGAM model while simultaneously fitting
235 different lagged time periods. The expectation that the lag time should vary across states was con-
236 firmed by our results. The use of these methods has been under appreciated in the epidemiological
237 and public health studies; we provide code and data to expand the use as we believe these methods

238 could have wide applications in future research.

239 Our study also has limitations. Although cell phone data was freely available and could help to
240 predict trends during the pandemic, it is only a proxy for human contact. In this study we attempted
2a1 to define a more robust definition of mobility, however it still remains a surrogate exposure. The
242 association between mobility and COVID-19 cases may be underestimated, given our outcome is
243 dependent on testing. Testing capacity has significantly changed throughout the pandemic in the
a2 United States. Seroprevalence studies estimate case detection is underrepresented by a factor of

245 three times [39]. Although we do not believe this underrepresentation to be differential, outcomes
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226 such as COVID-19 related deaths and hospitalizations may be less bias. While the advantage is
247 clear, the utility of these outcomes as a “real-time” public health tool is debatable as the latency
2es  period (time of infection to outcome) is long (>21 days). As with all observational studies, associ-
2¢9 ations should not be interpreted causally. Our model does not take into consideration confounding
250 interventions that could also increase or mitigate transmission such as the proportion of the pop-
251 ulation adhering to physical distancing guidelines, wearing masks, interactions outside vs inside
252 or air quality. To effectively measure social distancing patterns individual wearable technology or
253 trackers, would be more sensitive compared to aggregate data, but this raises ethical and privacy
254 concerns [40]. Recent reports have hypothesized the COVID-19 pandemic may not be following a
255 normal distribution but over dispersed or driven by “super spreader” transmission events which we

256 did not account for in our model [41].

= 5 Conclusion

258 Our study underscores the potential of using freely available cell phone data as public health tool.
250 We show changes in mobility can be used a predictor of surges in COVID-19 cases. However mon-
260 itoring mobility in the absence of strict non-pharmaceutical interventions such as “stay at home”

261 Will require robust definitions.
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