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Abstract14

Background:15

Considering the emergence of SARS-CoV-2 variants and low vaccine access and uptake, mini-16

mizing human interactions remains an effective strategy to mitigate the spread of SARS-CoV-2.17

The aim of this study was to create a novel multidimensional mobility index to capture the com-18

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 30, 2021. ; https://doi.org/10.1101/2021.08.27.21262629doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.08.27.21262629
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 INTRODUCTION

plexity of human interaction and evaluate its utility as an early indicator of surges in COVID-1919

cases.20

Methods:21

We used publicly available anonymous cell phone data compiled by SafeGraph, from all coun-22

ties in Illinois, Ohio, Michigan and Indiana between January 1st to December 8, 2020. Six23

metrics of mobility were extracted for each county. Changes in mobility were defined as a24

time-updated 7-day rolling average. We used an unsupervised machine learning method known25

as functional principal component analysis (fPCA) to construct the latent mobility index (MI)26

using the six metrics of mobility. Associations between our MI and COVID-19 cases were es-27

timated using a quasi-Poisson hierarchical generalized additive model adjusted for population28

density and the COVID-19 community vulnerability index.29

Results:30

Individual mobility metrics varied significantly by counties and by calendar time. More than31

50% of the variability in the data was explained by the first principal component by each state,32

indicating good dimension reduction. Following the expiration of stay-at-home orders, mobility33

increased across all counties and this was particularly evident onweekends. While an individual34

metric of mobility was not associated with surges of COVID-19, our MI was independently35

associated with COVID-19 cases in all four states given varying time-lags.36

Conclusion:37

Following the expiration of stay-at-home orders, a single metric of mobility was not sensitive38

enough to capture the complexity of human interactions. Monitoring mobility can be an im-39

portant public health tool, however, it should be modelled as a multidimensional construct.40

Keywords: COVID-19, Pandemic, SARS-Cov-2, Mobility, Generalized Additive Models41

1 Introduction42

While highly effective vaccines are readily available in the United States, uptake remains low [1]43

and interventions aimed at minimizing human contact remain necessary to mitigate the spread of44
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1 INTRODUCTION

SARS-CoV-2 [2, 3, 4, 5]. Decreasing mobility patterns within populations, has been shown to45

be an effective strategy to curb infectious disease transmission. Reducing human interactions is46

particularly important givenDelta (a variant of concern; that is highly transmissible) is the dominant47

SARS-CoV-2 strain driving the current pandemic wave in the United States.48

The potential of monitoring population-level mobility patterns using geo-located mobile phone data49

as a public health tool has been demonstrated [6, 7, 8, 9]. In March 2020, worldwide adherence to50

lockdowns was measured using various mobility metrics [10, 11, 12, 13, 14, 15]. Amodelling study51

from China showed 20-60% reductions in mobility notably controlled the spread of SARS-CoV-52

2 [16]. A study from Canada showed that reductions in mobility strongly predict future control of53

SARS-CoV-2 growth rates [5]. However, in the absence of social distancing interventions, the link54

between changes in population-level mobility and COVID-19 remains unclear [8, 9].55

Population-level mobility, as it pertains to human interaction, is multidimensional. This is partic-56

ularly true when assessing distinct geographical areas that vary by population density and socioe-57

conomic factors across the United States [17, 18]. While the measurement of mobility is complex,58

studies to date have used single metrics such as the percentage of people remaining at home or59

changes in the distance travelled to summarize human interactions and evaluate trends and asso-60

ciations with COVID-19. These single metrics may oversimplify mobility associated with human61

interaction. As social distancing policies loosen from strict "lock down" to business-as-normal, the62

utility of continuously monitoring mobility will require a robust definition that is able to capture63

the complexity of population-level movement [19]. To this end, the aim of this study was to use64

advanced statistical methods to create a novel index that summarizes mobility as a latent construct65

using a combination of six mobility metrics. We evaluated how our mobility index varied across66

365 counties in 4 states as a function of time. Finally, we assessed the performance of our mobility67

index by evaluating how mobility correlated with COVID-19 cases compared to a single metric68

from the time stay-at-home orders expired.69
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2 METHODS

2 Methods70

2.1 Data Sources71

Mobility Metrics72

We used aggregated mobility data publicly available through SafeGraph from January 1st to De-73

cember 8, 2020, via the Social Distancing Metric database. SafeGraph uses a panel of GPS pings74

from anonymous mobile devices from a representative sample of the US Census population, to de-75

rive metrics of mobility. This data includes a range of spatial behaviors from >45 million mobile76

devices (≈ 10% of devices in the United States). To enhance privacy, SafeGraph excludes census77

block group information if fewer than two devices visited an establishment in a month.78

A priori, we choose six mobility metrics commonly used in the literature as a proxy of human79

contact and that could be attributable to mobility behavior changes as associated with COVID-80

19 infections. Each metric is defined for a given day (t) for a given county (j). The metrics (s)81

included:82

• The fraction of devices leaving home in a day83

• The fraction of devices away from home for 3-6 hours (Part-time work behaviour)84

• The fraction of devices away from home longer than 6 hours (Full-time work behaviour)85

• The median time spent away from home86

• The median distance traveled from home87

• The average number of short stops (>3 stops for less than 20 min) (Delivery behaviours).88

COVID-19 Cases89

ConfirmedCOVID-19 cases data were retrieved from theNewYork Times open-source project [20].90

This publicly available dataset aggregates county-level daily counts of diagnosed cases, from health91

services official reports.92
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2 METHODS

Covariates93

Demographic variables including population size and population density for each county was col-94

lected from the American Community Survey and the US Census Bureau. We used an aggre-95

gate measure of social and COVID-19 specific vulnerability to summarize socioeconomic status96

at the state and county-level, freely available as the COVID-19 community vulnerability index97

(CCVI) [21]. Dates for when stay at home orders were enforced and lifted were obtained from98

the State-level social distancing policies database [22]. There were several entries for each state99

due to policy revisions or updates. We used the first entry for each state in this database.100

2.2 Analysis101

Population102

Given the magnitude of the available data, we reduced the number of states in our analysis by103

simply selecting the four most populous states in the Midwest. We used every county from each of104

the selected states to avoid any preferential selection.105

Mobility Index106

We defined mobility as a change of each mobility metric relative to the average of the week before107

(time-updated rolling average). For each county j = 1, . . . , 365, we index each of the 6 mobility108

metrics s = 1, . . . , 6 by calendar day t = 1, . . . ,mj , wheremj is the total number of observed days109

since re-opening in county j. We define the following quantities:110

• Xj,t,s: the scalar value of mobility metric s measured on day t in county j.111

• Xj,t−8,...,t−1,s: the value of mobility metric s measured on days t− 8, . . . , t− 1, i.e., the 7112

days prior to day t in county j. This is a vector quantity.113

• Xj,t−8,...,t−1,s: the average of the Xj,t−8,...,t−1,s.114
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2 METHODS

The change from baseline mobility metric s for day t in county j is given by115

∆Xj,t,s =
Xj,t,s −Xj,t−8,...,t−1,s

Xsj,t−8,...,t−1
(1)

The use of a rolling average is unique to this analysis. Most studies have used a static relative116

baseline period such as mobility trends between January until February 2020 [6, 23, 24]. This117

common approach does not account for seasonal mobility variability or changes as a result of the118

pandemic [25, 26, 27]. In contrast our baseline (rolling average) takes into consideration temporal119

trends that were likely changing with evolving public health policies.120

Since our hypothesis was each metric could be attributed to a common underlying notion of mobil-121

ity, we used an unsupervised machine learning method known as functional principal component122

analysis (fPCA) to create our latent mobility index [28]. Briefly, PCA is a technique for reducing123

the dimensionality of multiple variables while minimizing information loss. This is done by cre-124

ating new uncorrelated variables (principal components) that successively maximize variance. A125

“functional” PCA accounts for the longitudinal nature of the data. We applied fPCA on ∆Xj,t,s126

separately for each county and extracted the first principal component, i.e., the linear combina-127

tion of individual mobility metrics that explained the most variance. We denote this first principal128

component by fPCAj,t, a score summarizing mobility in each county (j) on a given day (t). To129

enable comparability between counties and states, fPCAj,t was scaled as Z-scores, which defined130

our mobility index (MI) given by:131

MIj,t =
fPCAj,t − fPCAj,t√

V ar(fPCAj,t)
, (2)

where fPCAj,t = 1
mj

∑mj

k=1 fPCAj,k and V ar(fPCAj,t) are the average and variance of the132

fPCA scores in county j over the observed time period, respectively.133

The interpretation ofMI is as follows,MI = 0, on average there was no change in mobility relative134

the previous week;MI = 1 on average there was an increase in mobility by one standard deviation135
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2 METHODS

relative to the last week, andMI = −1 on average there was a decrease in mobility by one standard136

deviation relative to the last week. An animation was created to visualize the relative daily changes137

ofMI by counties.138

Association with COVID-19139

For each county j, let yj,t be the number of confirmed COVID-19 cases on day t = 1, . . . ,mj ,

and qj,t = [MIj,t−0, . . . ,MIj,t−21] denote the vector of lagged occurrences of our mobility index

(defined in Equation (2)) with 0 days and 21 days as minimum and maximum lags, respectively.

In words, the first element of qj,t represents the value of our mobility index on day t, the second

element represents the value of our mobility index one day prior to t, and so on. From the time

“stay at home” orders expired until December 8th 2020, the relationship between daily counts of

COVID-19 cases (yj,t) and mobility (qj,t), accounting for up to 21 days of lag, was estimated with

a quasi-Poisson hierarchical generalized additive model (HGAM) [29, 30] of the form:

log(E(yj,t)) = β0 + s(qj,t) + s(timet) + sj(timet) + CCV Ij + densityj, (3)

where β0 is the intercept, s(·) are the smooth non-parametric functions of the predictor variables,140

CCV Ij is the COVID-19 community vulnerability index and densityj is the population density141

(people per square kilometer) at the county-level. The term s(qj,t) in Equation (3) captures the142

potentially non-linear and delayed effect of mobility on COVID-19 cases through a cross-basis143

function [31]. We used penalized cubic regression splines [29] for both dimensions, with interior144

knots placed at Z-scores of -3, -2,-1,0,1,2,3 forMIj,t, and 7 and 14 days for the lag. Given the het-145

erogeneity of COVID-19 epidemiology across counties, models included both a state level calendar146

time effect s(timet) using thin plate regression splines [32] and a county level calendar time effect147

sj(timet) using a factor-smoother interaction basis [30]. Population size was used as offset in each148

model. A separate model was run for each of the selected states.149

There were two main advantages for using a HGAM to evaluate the association between mobil-150
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3 RESULTS

ity and COVID-19 cases: (1) it can quantify the non-linear functional relationships over time151

where the shape of each function varies across counties, and (2) it has the capacity of modelling152

varying lags [33]. For example, it is estimated that it takes a median of 5 days from SARS-153

CoV-2 infection until the onset of symptoms, followed by an unknown number of days before154

people get tested and a positive infection is confirmed. This lag can be differential at both the155

patient-level (develop symptoms and get tested) and also at the county-level (lag in reporting tests).156

Given this variation, we were able to control for varying lagged exposures (up to 21 days) at the157

county-level. To evaluate the utility of our mobility index, we compared a dose response rela-158

tionship between mobility and COVID-19 cases and goodness of fit statistics of our latent MI159

compared to a single measure of mobility (the fractions of devices leaving the home). All anal-160

yses were performed using R version 4.0.2 [34] along with the mgcv [29] and dlnm [35] packages.161

Code and data for reproducing all the results, figures and animation in this paper is available at162

https://github.com/sahirbhatnagar/covid19-mobility.163

3 Results164

3.1 Mobility patterns165

Daily mobility changes of three hundred sixty-five counties from the four most populous states in166

the Midwest: Illinois, Ohio, Michigan and Indiana were analyzed between January 1 2020 until167

December 8 2020. State-level sociodemographic and economic characteristics were similar across168

four states and are summarized in Table 1.169
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3 RESULTS

Table 1: The sociodemographic and economic characteristics of Illinois (IL), Ohio (OH), Michigan (MI)
and Indiana (IN).

State Order Lift Population Number of

counties

Median

household

income

Cumulative cases

per capita at

openinga

Cumulative cases

per capita until

Dec 8th a

Illinois March 21 April 8 12,741,080 102 $65,030 118 6324

Ohio March 24 April 7 11,689,442 88 $56,111 41 4363

Michigan March 24 April 14 9,995,915 83 $56,697 269 4427

Indiana March 25 April 7 6,691,878 92 $55,746 83 5909
a cumulative cases per 100,000 population

Figure 1 illustrates the average daily changes of the six mobility metrics between January and De-170

cember 2020 of each state (average of all counties) relative to the week before. Overall, each metric171

had a unique trajectory but trends were similar across four states. Based on the average change,172

the number of devices not at home and delivery behavior (more than 3 stops lasting for less than173

20 mins) remained stable throughout time. While changes in work-related metrics and the median174

time devices remained were not at home varied more. Of the four states, mobility changes were175

more pronounced in Ohio. Across all states, relative to the previous seven days, mobility increased176

daily between March and May. Mobility metrics varied considerably by counties ( S1, S2, S3, S4),177

illustrating how aggregating changes at the state-level may mask granular changes at the county-178

level.179
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3 RESULTS

Michigan Indiana
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Figure 1: The average daily changes from baseline in the sixmobility metrics for all counties of each
state between January and December 2020. The baseline was calculated using a rolling average of
the 7 previous days. The solid vertical lines represent the date the stay-at-home orders were put in
place while the dotted vertical lines represent the dates the stay-at-home orders were lifted.

3.2 First fPCA summarizes mobility patterns by counties180

We created a latent index of mobility by counties as given by Equation (2) which is derived from181

the first fPCA. Table 2 provides the median and inter quartile range of the proportion of variance182

explained by the first fPCA across counties in a given state. We see that over 50% of the variance is183

explained by the first fPCA for a majority of all the counties analyzed, indicating good dimension184

reduction. In Supplemental Figures S5, S6, S7 and S8, we provide the absolute correlations between185

our MI and each individual metric by county for Illinois, Ohio, Michigan and Indiana, respectively.186

We see the correlations are particularly strong with full/part time work behaviour as well as time187

spent away from home. Importantly, there was significant heterogeneity across counties which188

would otherwise be missed when aggregating mobility metrics at the state level.189
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3 RESULTS

Table 2: Median (inter quartile range) of the proportion of variance explained
by the first fPCA by state. n represents the number of counties in each state.

Illinois (n = 102) Ohio (n = 88) Michigan (n = 83) Indiana (n = 92)

0.57 (0.50, 0.63) 0.71 (0.67, 0.74) 0.61 (0.53, 0.69) 0.65 (0.59, 0.70)

Figure 2 compares the changes of the MI from the day stay at home policies expired and July 4th190

(Independence Day). Blue shades indicate MI <0 (decrease in mobility) and red shade indicate191

MI>0 (increase in mobility). This graph provide some evidence that our MI is appropriately cap-192

turing mobility as we would expect there to be more movement on a traditionally busy U.S. holiday193

compared to earlier on in the pandemic when stay at home orders were lifted. In the Supplemental194

material, we also provide an animation illustrating the daily changes from reopening to Decem-195

ber 8th. The animation shows substantial difference in mobility patterns across counties that vary196

from day to day. The most dramatic change over time is increases in mobility from a weekday to a197

weekend.198
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3 RESULTS

Michigan − Reopen Michigan − July 04 Indiana − Reopen Indiana − July 04

Illinois − Reopen Illinois − July 04 Ohio − Reopen Ohio − July 04

MI
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−5
−4
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−2
−1
0
1
2

Figure 2: MI values for each county of each state on the day the stay-at-home orders expired (reopen)
and on July 4th, 2020. Blue shades indicate a decrease in mobility (MI < 0) and red shades indicate
an increase in mobility (MI > 0).

3.3 Association with COVID-19199

To evaluate the utility of theMI, we compared its associationwith COVID-19 cases and a commonly200

used single metric of mobility (fraction of devices leaving home) (Figure 3). Notably, the single201

metric was not associated with COVID-19 cases in any state at any lagged time point. While all four202

states showed a clear dose response of MI and COVID-19 cases following a 10-21 day lag. Across203

all four states the MI model resulted in significantly better goodness of fit statistics compared to the204

single metric (Table 3).205
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Figure 3: Model results comparing the MI and its association with COVID-19 cases and a com-
monly used single metric of mobility (fraction of devices leaving home). For each state, the left
panel summarizes the multidimensional MI; the right panel represents the percentage of devices
leaving their home (x-axis); y-axis is the adjusted incidence rate ratio of COVID-19, at varying
lagged response (0-21 days) (z-axis).
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4 DISCUSSION

Table 3: Analysis of deviance table comparing the goodness of fit between the MI model (fPCA)
and the fraction of devices leaving home (single) of the four states. Degrees of freedom shown is
for the χ2 test statistic.

State Residual deviance Degrees of freedom Reduction in deviance for the MI model (fPCA)

Illinois (single) 152,581

Illinois (fPCA) 149,282 3.6 3,299

Ohio (single) 123,551

Ohio (fPCA) 112,975 8.6 10,576

Michigan (single) 261,759

Michigan (fPCA) 250,888 7.0 10,871

Indiana (single) 83,517

Indiana (fPCA) 80,297 1.7 3,220

4 Discussion206

The COVID-19 pandemic is now fueled by highly transmissible variants of concern. Understand-207

ing the association between mobility and disease transmission can help tailor non-pharmaceutical208

interventions to mitigate outbreaks and potentially be used as an early indicator for surges in new209

infections. We leveraged freely available cell phone data with an unsupervised machine learning210

approach to create a multidimensional index of mobility. Results from our study suggest following211

the expiration of stay-at-home physical distancing policies, single metrics of mobility were not sen-212

sitive enough to capture the complexity of human mobility related to disease transmission. Our MI213

was correlated with COVID-19 cases for Illinois, Ohio, Michigan and Indiana. In comparison, the214

single metric of mobility (fraction of devices leaving home) was not associated with incident cases.215

Our results also demonstrate the importance of evaluating changes at a granular level as there was216

significant heterogeneity within states.217

The use of mobility data was suggested to be a powerful tool to determine the impact of public218

health policies [19]. During the initial phase of the pandemic, several studies examined the asso-219
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4 DISCUSSION

ciation between mobility and COVID-19 [2, 36, 37, 38]. For example Lasry et al. [6] found an220

association between changes in mobility (% personal mobile devices leaving home) at the state-221

level and COVID-19 cases during the first COVID-19 wave. However at this time NPI were more222

homogenous across counties and states. In contrast our studywas the first to evaluate the association223

of mobility and COVID-19 cases following the expiration of stay-at-home orders reflecting mobil-224

ity behavior that is more reflective of typical population-level movement. We demonstrated among225

hundreds of counties from four states, time-updated relative changes were associated with increases226

in COVID-19 cases. Furthermore, results from our study suggest our mobility index should be con-227

sidered an important confounder when evaluating other non-pharmaceutical interventions.228

The strength of our study was the use multiple advanced statistical methods to measure mobility229

and evaluate its association with COVID-19 cases. The fPCA used to create the mobility index ef-230

fectively captured the heterogeneity of the individual metrics over time and across counties within231

a given state. The unsupervised nature of this approach prevented the model from overfitting when232

evaluating the association with cases. Furthermore, we modelled a non-linear functional relation-233

ship between mobility and COVID-19 cases using a HGAM model while simultaneously fitting234

different lagged time periods. The expectation that the lag time should vary across states was con-235

firmed by our results. The use of these methods has been under appreciated in the epidemiological236

and public health studies; we provide code and data to expand the use as we believe these methods237

could have wide applications in future research.238

Our study also has limitations. Although cell phone data was freely available and could help to239

predict trends during the pandemic, it is only a proxy for human contact. In this study we attempted240

to define a more robust definition of mobility, however it still remains a surrogate exposure. The241

association between mobility and COVID-19 cases may be underestimated, given our outcome is242

dependent on testing. Testing capacity has significantly changed throughout the pandemic in the243

United States. Seroprevalence studies estimate case detection is underrepresented by a factor of244

three times [39]. Although we do not believe this underrepresentation to be differential, outcomes245
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such as COVID-19 related deaths and hospitalizations may be less bias. While the advantage is246

clear, the utility of these outcomes as a “real-time” public health tool is debatable as the latency247

period (time of infection to outcome) is long (>21 days). As with all observational studies, associ-248

ations should not be interpreted causally. Our model does not take into consideration confounding249

interventions that could also increase or mitigate transmission such as the proportion of the pop-250

ulation adhering to physical distancing guidelines, wearing masks, interactions outside vs inside251

or air quality. To effectively measure social distancing patterns individual wearable technology or252

trackers, would be more sensitive compared to aggregate data, but this raises ethical and privacy253

concerns [40]. Recent reports have hypothesized the COVID-19 pandemic may not be following a254

normal distribution but over dispersed or driven by “super spreader” transmission events which we255

did not account for in our model [41].256

5 Conclusion257

Our study underscores the potential of using freely available cell phone data as public health tool.258

We show changes in mobility can be used a predictor of surges in COVID-19 cases. However mon-259

itoring mobility in the absence of strict non-pharmaceutical interventions such as “stay at home”260

will require robust definitions.261
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Winnebago County Woodford County
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Union County Vermilion County Wabash County Warren County Washington County

Shelby County St. Clair County Stark County Stephenson County Tazewell County
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A COUNTY-LEVEL MOBILITY METRICS
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A COUNTY-LEVEL MOBILITY METRICS
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B CORRELATIONS BETWEEN MI AND INDIVIDUAL METRICS

B Correlations between MI and individual metrics367
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B CORRELATIONS BETWEEN MI AND INDIVIDUAL METRICS
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Figure S5: Illinois
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Figure S6: Ohio
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Figure S7: Michigan
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Figure S8: Indiana
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