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ABSTRACT 

For any given level of overall adiposity – as commonly quantified by body mass index (BMI) within 

clinical practice – individuals vary considerably in fat distribution. We and others have noted that 

increased visceral fat (VAT) is associated with increased cardiometabolic risk, while gluteofemoral fat 

(GFAT) may be protective. Familial partial lipodystrophy (FPLD) – often caused by rare variants in the 

LMNA gene – represents an extreme example of this paradigm, leading to a severe shift to visceral fat 

with subsequent insulin resistance and adverse metabolic profile. By contrast, the inherited basis of 

body fat distribution in the broader population is not fully understood. Here, we studied up to 38,965 

UK Biobank participants with VAT, abdominal subcutaneous (ASAT), and GFAT volumes precisely 

quantified using abdominal MRI. Because genetic associations with these raw depot volumes were 

largely driven by variants known to affect BMI, we next studied six phenotypes of local adiposity: VAT 

adjusted for BMI (VATadjBMI), ASATadjBMI, GFATadjBMI, VAT/ASAT, VAT/GFAT, and ASAT/GFAT. We 

identify 178 unique loci associated with at least one adiposity trait, including 29 newly-identified loci. 

Rare variant association studies extend prior evidence of association for PDE3B as an important 

modulator of fat distribution. Sex-specific analyses of local adiposity traits noted overall higher 

estimated heritability in females, increased effect sizes for identified loci, and 25 female-specific 

associations. Individuals in the extreme tails of fat distribution phenotypes were highly enriched for 

predisposing common variants, as quantified using polygenic scores. Taking GFATadjBMI as an example, 

individuals with extreme values were 3.8-fold (95%CI 2.8 to 5.2) more likely to have a polygenic score 

within the top 5% of the distribution. These results – using more precise and BMI-independent 

measures of local adiposity – confirm fat distribution as a highly heritable trait with important 

implications for cardiometabolic health outcomes. 
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INTRODUCTION 

     Overall fat mass and fat distribution represent two distinct axes of variation that determine the 

health impacts of adipose tissue. Individuals with higher body mass index (BMI) – defining obesity – are 

at elevated risk of type 2 diabetes and cardiovascular events, but increased cardiometabolic risk has also 

been noted in individuals with the same BMI when fat is disproportionally depleted in more favorable 

gluteofemoral fat depots and deposited instead in visceral and ectopic fat depots.1–5 An extreme 

example of this paradigm occurs in Mendelian lipodystrophies, such as those caused by missense 

mutations in the LMNA and PPARG genes.6–10 By contrast, the genetic architecture of more subtle 

variation in fat distribution across the general population warrants further attention. 

     In general, prior studies aiming to elucidate common genetic variation contributing to fat distribution 

can be categorized into three study types: (1) common-variant association studies (CVAS) on 

anthropometric proxies of fat distribution, (2) studies combining CVAS summary statistics of metabolic 

and anthropometric traits, and (3) CVASs on imaging-based measures of fat distribution. The first type 

has been spearheaded by the GIANT consortium and others, which identified over 300 loci associated 

with waist-to-hip ratio adjusted for BMI (WHRadjBMI) in an analysis of nearly 700,000 individuals.11,12 

Another recent CVAS aimed to examine fat distribution using estimates of body composition based on 

stepping on a scale equipped with impedance technology, known to be reasonably accurate for total fat 

volume but less so for fat distribution.13–15 Despite the considerable value of these studies, a central 

limitation is an unclear relationship between each anthropometric trait and each fat depot of biological 

interest –  for example, an increase in WHRadjBMI could be capturing an increase in visceral adipose 

tissue (VAT; around the abdominal organs), an increase in abdominal subcutaneous adipose tissue 

(ASAT; belly fat under the skin), or a decrease in gluteofemoral adipose tissue (GFAT; hip and thigh fat), 

or some combination of these perturbations.16,17  
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     A second category of studies has aimed to gain further resolution into anthropometric loci by 

combining summary statistics of metabolic and anthropometric traits, generating clusters of 

metabolically favorable and unfavorable loci.18–22 These studies have succeeded in establishing a 

common variant basis for metabolically distinct fat depots, with seminal work demonstrating that an 

insulin resistance polygenic score is associated with lower hip circumference in the general population, 

and that individuals with familial partial lipodystrophy type 1 (FPLD1) have a higher burden of this 

polygenic score.19 Along with their reliance on anthropometric proxies of fat distribution, these studies 

are limited by their inclusion requirement of nominal significance across multiple metabolic traits which 

is likely leading to only a fraction of the genetic architecture of fat distribution being described. 

     Finally, the third category of studies performed CVASs on imaging-derived measurements of fat 

depots. These include CVASs of CT-quantified VAT and ASAT in nearly 20,000 individuals, CVASs on MRI-

quantified VAT and ASAT, and a CVAS of a predicted VAT trait using several anthropometric traits 

trained on over 4,000 DEXA-measured VAT values.23–26 These studies have been important for 

translating insights from anthropometric and metabolic trait CVASs to image-derived measurements of 

the fat depots of interest, but have been limited by (1) the absence of GFAT, which appears to have a 

metabolically protective role in contrast to VAT and ASAT, and frequently (2) a reliance on raw, 

unadjusted fat depot metrics which are highly correlated with both each other and BMI. 

     In this study, we investigate the common and rare variant genetic architecture of local fat depots as 

quantified by MRI in up to 38,965 UK Biobank participants. Beyond study of raw VAT, ASAT, and GFAT 

volumes, we analyze six traits that better reflect local adiposity and fat distribution: VATadjBMI, 

ASATadjBMI, GFATadjBMI, VAT/ASAT, VAT/GFAT, and ASAT/GFAT. This study is the largest imaging-

based study to date to disentangle the genetic architecture of different fat depots using these local 

adiposity metrics and the first CVAS to date of GFAT, a fat depot that appears to confer protection from 

adverse cardiometabolic health.5,27 
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RESULTS 

Visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (ASAT), and gluteofemoral 

adipose tissue (GFAT) volumes were quantified in participants of the UK Biobank using a deep learning 

model trained on two-dimensional projections of body MRIs, as previously described.5 Among those 

with MRI-quantified fat depot volumes, 39,076 had genotyping array data available, enabling common 

variant association studies in up to 38,965 participants after quality control  (Supplementary Figure S1). 

Mean age in the genotyped cohort was 64.5 years, 51% were female, and 97% were white 

(Supplementary Table S1). As expected, significant sex differences in fat depot volumes were observed 

– males had higher mean VAT volume (5.0 L versus 2.6 L), while females had higher ASAT volume (7.9 

versus 5.9 L) and GFAT volume (11.3 versus 9.3 L).28,29 

Six additional adiposity traits – designed to better capture local adiposity and fat distribution – were 

additoinally computed for each individual: VATadjBMI, ASATadjBMI, GFATadjBMI were computed by 

taking sex-specific residuals against age, age squared, body mass index (BMI), and height, while 

VAT/ASAT, VAT/GFAT, and ASAT/GFAT were computed by taking ratios between each pair of fat depots 

(Supplementary Figure S2). While VAT, ASAT, and GFAT volumes were highly correlated with BMI 

(Pearson r ranging from 0.77-0.88), the three BMI-adjusted traits (Pearson r = 0) and three fat depot 

ratios were only modestly correlated with BMI (Pearson r ranging from 0.18-0.56) (Supplementary 

Figure S3A-B), providing useful BMI-independent metrics for downstream analyses. 

Local adiposity traits are highly heritable and genetically distinct from each other 

To quantify the inherited component to each of these adiposity traits, we used the BOLT-LMM 

algorithm to estimate SNP-heritability for each of the 9 adiposity traits. Heritability estimates for VAT, 

ASAT, and GFAT ranged from 0.30-0.35, comparable to that observed for BMI in the same individuals 

(hg
2: 0.31) (Supplementary Table S2). BMI-adjusted fat depots and fat depot ratios tended to have 
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higher heritability compared to unadjusted fat depots and BMI (hg
2 ranging from 0.34-0.41). In contrast, 

waist-to-hip ratio adjusted for BMI (WHRadjBMI), an anthropometric proxy for local adiposity, was less 

heritable than these traits (hg
2: 0.20). In sex-stratified analyses, most adiposity traits were more 

heritable in female as compared to male participants, with the greatest heritability across all analyses 

for GFATadjBMI in females (hg
2: 0.53). 

To study the genetic correlations (rg) between the adiposity and related anthropometric traits, we 

used LD-score regression.30,31 Consistent with observational Pearson correlations, the raw VAT, ASAT, 

and GFAT volumes were highly genetically correlated with BMI (rg ranging from 0.66-0.82), while the 

three adjusted-for-BMI fat depots, VAT/ASAT, and VAT/GFAT exhibited low genetic correlation with BMI 

(rg ranging from -0.16-0.28) (Supplementary Figure S4A-B). In sex-combined analyses, VATadjBMI, 

ASATadjBMI, and GFATadjBMI were genetically correlated with their unadjusted counterparts (rg ranging 

from 0.45-0.59), but nearly independent of one another (rg ranging from -0.24-0.15), suggesting that 

adjusted-for-BMI traits can enable fat depot-specific genetic analyses. Finally, WHRadjBMI exhibited 

positive genetic correlations with VATadjBMI (rg: 0.65) and ASATadjBMI (rg: 0.25), and a negative genetic 

correlation with GFATadjBMI (rg: -0.29), consistent with the perturbations needed in each fat depot to 

drive a change in WHRadjBMI. 

Common variant architecture of adiposity traits 

     We next conducted CVAS for each of the nine adiposity traits – VAT, ASAT, GFAT, VATadjBMI, 

ASATadjBMI, GFATadjBMI, VAT/ASAT, VAT/GFAT, and ASAT/GFAT – in sex-combined and sex-stratified 

groups using BOLT-LMM. After genotyping quality control, we tested associations in up to 38,965 

participants with 11.5 million imputed SNPs with minor allele frequency (MAF) > 0.005. Across all 27 

association studies, 386 locus-trait associations were genome-wide significant at the P-value threshold 

of 5 x 10-8 – 213 of these associations remained significant at a Bonferroni-corrected threshold of 5 x 10-
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8 / 27 = 1.9 x 10-9 (Supplementary Table S4). When loci across multiple traits in high LD were collapsed 

into a single locus (R2 > 0.7), 178 loci remained, 29 of which were newly-identified (defined as R2 < 0.1 

with all genome-wide significant associations with prior adiposity and relevant anthropometric traits in 

the GWAS catalog) (Table 1; Methods; Supplementary Tables S5-6).32 Consistent with heritability 

estimates, the greatest number of loci were identified in association with GFATadjBMI (54 lead SNPs), 

while the fewest were identified in association with ASAT (6 lead SNPs). The greatest genomic inflation 

parameter (λGC) was observed with GFATadjBMI (λGC: 1.14) – the LD-score regression intercept was 1.05, 

consistent with polygenicity rather than significant population structure.30 

     We began by investigating the genetic architecture of VAT, ASAT, and GFAT volumes (Supplementary 

Figure S5). All three traits shared a genome-wide significant association with an intronic FTO variant 

(rs56094641) previously associated with childhood and adult obesity.33–35 ASAT harbored the strongest 

association with this locus (P = 1.3 x 10-22), followed by GFAT (P = 1.2 x 10-12), and finally VAT (P = 3.3 x 

10-10), reflecting the strength of observational and genetic correlation of each fat depot with BMI. Given 

evidence from observational and genetic analyses indicating that a large component of each fat depot 

volume trait is accounted for by BMI – or “overall adiposity” – we limited further common variant 

analyses to the three adjusted-for-BMI traits and three fat depot ratios, aiming to study the genetic 

architecture of “local adiposity”. 

     For VATadjBMI, 30 genome-wide significant associations were identified (P < 5 x 10-8) (Figure 1; 

Supplementary Figure S6). The two most strongly associated variants were an intronic CDCA2 variant 

(rs11992444; P = 1.3 x 10-29) previously associated with WHRadjBMI and serum triglycerides, and an 

intronic PEPD variant (rs10406327; P = 3.3 x 10-24) previously associated with waist circumference 

adjusted for BMI (WCadjBMI) and type 2 diabetes.12,36–38 Newly-identified loci in association with 

VATadjBMI included an intronic GPR158 variant (rs1329254; P = 1.4 x 10-8), and an intronic ARHGEF3 

variant exclusively in females (rs1500714; P = 1.8 x 10-8). Prior work has similarly noted female-specific 
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effects of variation in this gene including an association with postmenopausal osteoporosis in humans 

and ARHGEF3-KO mice being found to have improved muscle regeneration following injury, with an 

enhanced rate in females, although the role of this gene on fat distribution is uncertain.39,40  

     The strongest association with ASATadjBMI was an intronic ADAMTSL3 variant (rs768397327; P = 2.2 

x 10-17), which was in near-perfect linkage disequilibrium (R2 = 0.97) with another intronic ADAMTSL3 

variant (rs11856122) previously associated with bioelectrical impedance-derived arm fat ratio, leg fat 

ratio, and trunk fat ratio, suggesting that this may be a general subcutaneous adiposity signal (Figure 1; 

Supplementary Figure S7).13 Another genome-wide significant signal was observed with an intronic 

PPARG variant (rs527620413; P = 6.8 x 10-11). Rare variants in PPARG have previously been associated 

with familial partial lipodystrophy.6,7 The minor alleles at this locus (MAF = 0.12), which additionally 

consisted of rs17036328 and rs71304101 (R2 > 0.90), led to a signature of increasing ASATadjBMI (beta = 

0.071), increasing GFATadjBMI (beta = 0.062), decreasing VAT/ASAT ratio (beta = -0.08), and decreasing 

VAT/GFAT ratio (beta = -0.058). These data suggest that common variation at PPARG can lead to 

adiposity variation along the lipodystrophy axis – for this locus, the minor alleles associated with an 

“anti-lipodystrophic” phenotype. FST is another gene that promotes adipogenesis and may have a causal 

role in insulin resistance – an intronic variant in FST (rs55744247) associated with ASATadjBMI (P = 5.1 x 

10-10), but not VATadjBMI (P = 0.80) or GFATadjBMI (P = 0.25).41 Finally, a newly-identified intronic 

DMRT2 variant (rs6474550; P = 1.3 x 10-9) associated with ASATadjBMI. In a study investigating fat 

depot-specific transcriptome signatures before and after exercise, DMRT2 was one of three genes with 

higher expression in ASAT versus GFAT both before and after exercise.42  

     The top GFATadjBMI signal was an intronic RSPO3 variant (rs72959041; P = 3.2 x 10-32) that has 

previously been shown to be a top signal for WHRadjBMI (Figure 1; Supplementary Figure S8).12 Recent 

work clarified this SNP as the causal variant at the locus and suggested that the minor allele 

concurrently reduces leg fat mass and increases android fat mass43. Our results confirm and further 
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clarify these findings – the minor allele (MAF = 0.05) led to marked reduction of GFATadjBMI (beta = -

0.195; P = 3.2 x 10-32) and increased of VATadjBMI (beta = 0.118; P = 7.8 x 10-13), but a nonsignificant 

effect on ASATadjBMI (beta = -0.029; P = 0.09). Three independent intronic COBLL1 variants (R2 < 0.1) 

were associated with GFATadjBMI (rs13389219; P = 3.0 x 10-23, rs3820981; P = 1.5 x 10-12, rs34224594; P 

= 2.8 x 10-9), but not VATadjBMI (Pmin = 0.009) or ASATadjBMI (Pmin = 2.7 x 10-3). One of these variants 

(rs13389219) is in LD with another intronic COBLL1 variant (rs6738627) which has previously been 

implicated in a metabolically healthy obesity phenotype characterized by increased HDL cholesterol and 

reduced triglycerides despite increased body fat percentage44. In this study, aligning rs13389219 to the 

BMI-increasing direction (beta = 0.011, P = 7.3 x 10-3) revealed a concurrent increase in GFATadjBMI 

(beta = 0.073), consistent with a metabolically healthy fat depot shift. Finally, a GFATadjBMI association 

was observed at an intronic PDGFC variant (rs6822892; P = 8.0 x 10-13) – PDGFC was recently prioritized 

as a candidate causal gene for insulin resistance in human preadipocytes and adipocytes41.  

     Several associations were exclusive to CVASs of fat depot ratios (Supplementary Figures S9-11). A 

missense variant in ACVR1C significantly reduced VAT/GFAT ratio (rs55920843; beta = -0.18; P = 1.9 x 10-

8). Prior work demonstrated that sequence variation in ACVR1C – including this variant – reduces 

WHRadjBMI and risk of type 2 diabetes45. Another missense variant in ACVR1C was nominally associated 

with reduced VAT/GFAT ratio, strengthening the importance of this gene (rs56188432 (Ile195Thr); beta 

= -0.20 (95% CI: -0.36 - -0.05); P < 0.01) (Supplementary Table S7). Another association with reduced 

VAT/GFAT ratio was present with a missense variant in SERPINA1 (rs28929474; beta = -0.16; P = 4.8 x 10-

10). This variant has previously been associated with increased ALT and cirrhosis45. A shift towards a 

metabolically healthy fat distribution alongside increased risk of cirrhosis is consistent with SERPINA1-

variation mediated cirrhosis occurring in association with alpha-1-antitrypsin deficiency, rather than 

non-alcoholic fatty liver disease46.  
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Sex heterogeneity in genetic associations wtih local adiposity traits 

     Given prior work has noted significant sex heterogeneity in the genetic basis of anthropometric traits, 

we next tested for such heterogeneity for each of the six local adiposity traits.11,12,47,48 Genetic 

correlations between sex-stratified summary statistics indicated overall high correlation between traits, 

with rg somewhat higher for VATadjBMI (rg = 0.87) as compared to ASATadjBMI or GFATadjBMI (rg = 0.80 

and 0.79 respectively) (Supplementary Table S8). We next tested for sex-dimorphism across individual 

loci that were genome-wide significant for either sex-combined or sex-stratified analyses for each local 

adiposity trait (Figure 2, Supplementary Figure S12, Supplementary Table S9). Three of 39 VATadjBMI 

loci (8%), six of 27 ASATadjBMI loci (22%), and nine of 66 GFATadjBMI (14%) showed significant sex 

dimorphism (Pdiff < 0.05/158 = 3.2 x 10-4). The majority of these signals were driven by a greater 

magnitude of effect in females, which is consistent with prior investigations of WHRadjBMI12,48. Across 

all six local adiposity traits, 25 loci were only genome-wide significant in females, while 9 loci were only 

genome-wide significant in males.  

Overlap of local adiposity traits with WHRadjBMI findings 

     To investigate the added value of precisely quantifying fat depots with MRI in a smaller number of 

individuals as compared to WHRadjBMI in a larger cohort, we studied the effects of 345 loci identified in 

the most recent WHRadjBMI meta-analysis of up to 694,649 individuals on VATadjBMI, ASATadjBMI, and 

GFATadjBMI (Figure 3, Supplementary Table S10)12. Of the 345 loci, 10 (3%) achieved genome-wide 

significance in association with VATadjBMI (P < 5 x 10-8), 2 with ASATadjBMI (0.6%), and 14 (4%) with 

GFATadjBMI. A unit increase in WHRadjBMI might be expected to be reflecting a unit increase in 

VATadjBMI or ASATadjBMI, or a unit decrease in GFATadjBMI. We quantified how often a locus was 

discordant from this pattern (e.g. a unit increase in WHRadjBMI corresponding to a unit decrease in 

VATadjBMI), excluding loci where the fat depot effect size was smaller in magnitude than the standard 
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error. Fifteen of 242 loci (6%) were VATadjBMI-discordant, 71 of 166 loci (43%) were ASATadjBMI-

discordant, and 22 of 231 loci (10%) were GFATadjBMI-discordant. 

Two illustrative examples indicate how follow-up of WHRadjBMI associations from a very large study 

in a smaller study with local fat depots quantified may prove useful. The strongest WHRadjBMI signal is 

located at an intronic RSPO3 locus (rs72959041; beta = -0.162; P = 2.1 x 10-293) – our work further 

clarifies that this signal is driven by an effect on VATadjBMI (beta = -0.118; P = 7.8 x 10-13) and 

GFATadjBMI (beta = 0.195; P = 3.2 x 10-32), but not ASATadjBMI (beta = -0.029; P = 0.09). In contrast, a 

WHRadjBMI signal located at a variant upstream of LINC02029 (rs10049088; beta = 0.029; P = 1.5 x 10-59) 

is driven by ASATadjBMI (beta = 0.054; P = 7.3 x 10-14) and GFATadjBMI (beta = -0.034, P = 6.0 x 10-6), but 

has a VATadjBMI-discordant signal (beta = -0.053, P = 8.7 x 10-13).  

Transcriptome-wide association study 

     To prioritize genes, we conducted a transcriptome-wide association study (TWAS) based on gene 

expression data from visceral adipose tissue and subcutaneous adipose tissue from GTEx v7.49 Across all 

traits, the strongest TWAS association was observed with GFATadjBMI at an intronic DNAH10 variant 

(rs7133378; GFATadjBMI P = 5.6 x 10-29), corresponding to expression of CCDC92 (TWAS Z-score = 12.0; 

TWAS P = 2.7 x 10-33), DNAH10OS (Z-score = 10.5; P = 8.2 x 10-26), RP11-380L11.4 (Z-score = 10.0; P = 2.0 

x 10-23), ZNF664 (Z-score = 8.8; 1.5 x 10-18), and DNAH10 (Z-score = 7.9; 3.5 x 10-15) in subcutaneous 

adipose tissue (Supplementary Table S11). In an adipocyte model, knockdown of CCDC92 or DNAH10 

led to significant reduction of lipid accumulation, consistent with the direction of the TWAS Z-scores at 

this locus19. Of note, TWAS Z-scores at this locus were negative for VATadjBMI in visceral adipose tissue 

(CCDC92 Z-score = -6.7; P = 2.7 x 10-11). 

     Another top TWAS signal was observed with GFATadjBMI at rs2713552, corresponding to expression 

of IRS1 (Z-score = 9.1; P = 6.2 x 10-20). Prior work has demonstrated that decreased IRS1 expression 
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causes insulin resistance – our work further suggests that impaired expansion of the gluteofemoral 

depot may be involved in this physiological insult41,50. 

Cell-specific enrichment analyses 

     We used stratified LD-score regression to probe for cell- and tissue-specific enrichment for each 

adiposity trait (Supplementary Table S12).51 A marked dichotomy was observed between the three 

global adiposity traits (VAT, ASAT, GFAT) and the six local adiposity traits (VATadjBMI, ASATadjBMI, 

GFATadjBMI, VAT/ASAT, VAT/GFAT, ASAT/GFAT). While VAT, ASAT, and GFAT showed a pattern of 

central nervous system (CNS) tissue enrichment – consistent with the enrichment pattern for BMI – local 

adiposity traits were characterized by adipose tissue signals with reduced CNS signals (Supplementary 

Figures S13-14). These results further emphasize that the genetic basis of overall weight and adiposity is 

driven largely by central nervous system processes – such as those governing appetite and satiety – 

whereas fat distribution is regulated at the level of the adipocyte and other peripheral tissues. 

Rare variant association study 

     Up to 19,255 individuals with fat depots quantified and exome sequencing data available were 

included in rare variant association studies. We utilized two masks: one containing only predicted loss-

of-function variants (pLoF) and a second combining pLoF with missense variants predicted to be 

deleterious by 5 out of 5 in silico prediction algorithms (pLoF+missense). We tested the association 

between the aggregated rare variant score with each mask and each inverse normal transformed 

phenotype using multivariable regression. Analyses were restricted to genes with at least 10 variant 

carriers in the analyzed cohort, yielding 12,020 tested genes and an exome-wide significance threshold 

of P < 0.05/12,020 = 4.2 x 10-6. One exome-wide significant association was identified: pLoF+missense 

variants in PDE3B associated with increased GFATadjBMI in females (24 carriers; beta = 0.98; P = 1.7 x 

10-6) (Supplementary Table S13). Individuals who carry loss-of-function variants in PDE3B have 
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previously been demonstrated to have reduced WHRadjBMI52. This study confirms and extends this 

result by demonstrating that females, and not males, who carry pLoF+missense variants in PDE3B 

demonstrate increased GFATadjBMI, reduced VATadjBMI, and a nonsignificant change in ASATadjBMI, 

indicating that inherited deficiency of this gene is associated with a metabolically favorable fat 

distribution (Figure 4; Supplementary Table S14). 

Rare variant signals in two additional genes, while they did not reach our threshold for statistical 

significance, warrant discussion. pLoF+missense variants in ACAT1 associated with VAT in females (23 

carriers; beta = 2.66; P = 6.4 x 10-6) and pLoF+missense variants in PCSK1 associated with GFAT in sex-

combined analysis (101 carriers; beta = 1.11; P = 7.5 x 10-6). Both of these genes have previously been 

implicated in altering adiposity. Rare mutations in PCSK1 are known to cause monogenic obesity.53,54 In a 

study comparing obese women with or without type 2 diabetes, gene expression of ACAT1 was 

downregulated in the VAT and ASAT of obese women with type 2 diabetes and expression was restored 

after bariatric surgery and weight loss, suggesting a role in obesity-associated insulin resistance55.  

Polygenic contribution to extremes of fat distribution traits 

Because many individuals with lipodystrophy-like phenotypes – especially in it more subtle forms – 

do not harbor a known pathogenic rare variant, prior studies have started to explore a potential 

“polygenic lipodystrophy,” in which inherited component is instead driven by the cumulative impact of 

many common DNA variants.10,19,20,56 We set out to further test this hypothesis by generating polygenic 

scores consisting of up to 1,125,301 variants for VATadjBMI, ASATadjBMI, and GFATadjBMI traits using 

the LDPred2 algorithm.57 To ensure no overlap between summary statistics and tested individuals, CVAS 

was conducted using a randomly selected 70% of participants. An additional 10% of participants was 

used as training data to select optimal LDPred2 hyperparameters and the remaining 20% of participants 

were held out for testing. Participants at the tails of the distribution for any of the three local adiposity 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2021. ; https://doi.org/10.1101/2021.08.24.21262564doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.24.21262564
http://creativecommons.org/licenses/by-nd/4.0/


metrics were enriched in extreme polygenic scores – for example, participants in the top 5% of the 

GFATadjBMI distribution were nearly four times as likely to have a GFATadjBMI polygenic score in the 

top 5% of the distribution (OR = 3.81; 95% CI: 2.76-5.17) (Figure 5). Conversely, individuals with less than 

the 5th percentile of GFATadjBMI were over three times as likely to have a GFATadjBMI polygenic score 

less than the 5th percentile (OR = 3.36; 95% CI: 2.32-4.77). These findings suggest that polygenic 

inheritance plays an important role in fat distribution, with effect size particularly pronounced among 

those with more extreme imaging phenotypes. 

     We next tested the relationship between local adiposity polygenic scores and biomarkers of 

metabolic health (hemoglobin A1C, HDL cholesterol, serum triglycerides, and alanine aminotransferase 

(ALT)) and disease outcomes (type 2 diabetes, hypertension, and coronary artery disease) (Figure 6; 

Supplementary Table S15). Within the held out testing dataset, individuals in the top 10% of the 

GFATadjBMI polygenic score had lower hemoglobin A1C (beta: -0.10; 95% CI: -0.17 – 0.02; P = 9.9 x 10-3), 

higher HDL-cholesterol (beta: 0.14; 95% CI: 0.06-0.22; P = 4.3 x 10-4), lower serum triglycerides (beta: -

0.16; 95% CI: -0.24--0.09; P = 2.4 x 10-5), lower serum ALT (beta: -0.11; 95% CI: -0.19 – 0.04; P = 0.004), 

lower risk of type 2 diabetes (OR: 0.60; 95% CI: 0.39  – 0.90; P = 0.01), and lower risk of hypertension 

(OR: 0.81; 95% CI: 0.68 – 0.96; P = 0.02). By contrast, those in the top 10% of the VATadjBMI polygenic 

score tended to have increased risk of these disease outcomes with odds ratios for type 2 diabetes, 

coronary artery disease, and hypertension of 1.62, 1.10, and 1.07 respectively. 

Among an independent dataset of 447,486 individuals of the UK Biobank who were genotyped, but 

not imaged, these polygenic scores had consistent trends across metabolically relevant biomarkers and 

diseases (Supplementary Figure S15; Supplementary Table S16).  
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DISCUSSION 

     In this study, we studied the inherited basis of body fat distribution as measured using abdominal 

MRI in up to 38,965 individuals. Results support significant heritability of derived measures of local 

adiposity, with 178 unique loci identified. These loci frequently demonstrated differential impact in 

males versus female participants and provided more precise assessment of previously identified loci for 

anthropometric proxies such as WHRadjBMI. Polygenic scores for local adiposity traits were highly 

enriched among those with ‘lipodystrophy-like’ fat distributions and were strongly associated with 

cardiometabolic traits in a depot-specific fashion. These results have at least three implications. 

First, careful quantification of local adiposity measures using abdominal MRI and machine learning 

techniques enabled refinement of prior associations based on anthropometric proxies and discovery of 

new associations. Consistent with the raw fat depot volumes serving largely as proxies of overall 

adiposity, CVAS of VAT, ASAT, and GFAT each identified a well-known intronic FTO variant originally 

linked to BMI as a top signal. Cell-enrichment analyses corroborated these findings with each 

unadjusted fat depot displaying a pattern of central nervous system cell enrichment, consistent with the 

signal for BMI.51 By contrast, adjusted-for-BMI fat depots and fat depot ratios – local adiposity traits – 

were more heritable than global adiposity traits, revealed depot-specific genetic architecture, and 

displayed a pattern of adipose tissue cell-enrichment. These results lay the scientific foundation for 

functional genomics work to enhance understanding of key biologic pathways driving fat distribution, as 

might be enabled by large scale perturbational assays of adipocyte cell lines derived from specific 

depots. 

Second, gluteofemoral fat volume is highly heritable particularly in females, with a genetic 

architecture that is distinct from the visceral and abdominal subcutaneous fat depots. Common variant 

association studies of MRI-derived adiposity traits to date have been limited to the visceral and 
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abdominal subcutaneous fat depots – in this study, only 11 of 54 genome-wide significant associations 

with GFATadjBMI were also associated with either VATadjBMI or ASATadjBMI.23–25 Owing to the high 

heritability of GFATadjBMI, a polygenic score based on this depot was a better predictor of GFATadjBMI 

than either of the polygenic scores for VATadjBMI or ASATadjBMI for their respective fat depots. Finally, 

a low GFATadjBMI polygenic score predicted a poor cardiometabolic profile, providing further evidence 

for the hypothesis that a primary insult in a metabolically unhealthy fat distribution is the inability of the 

gluteofemoral fat depot to adequately expand.4,58 

     Third, this study extends prior work suggesting the existence of polygenic lipodystrophy and lays the 

groundwork for identifying individuals at high risk of this phenotype using polygenic scores of local 

adiposity traits.10,19,20,56 While several of the familial partial lipodystrophies (FPLD) are known to be 

caused by monogenic variation in genes like LMNA and PPARG, FPLD type 1 has not been linked to a 

single mutation, leading some to suggest that this disease may be polygenic in nature.10 Lotta et al. 

provided evidence for this by demonstrating that individuals with FPLD1 had a higher burden of a 53-

SNP insulin resistance polygenic score compared to the general population.19 In this study, individuals 

who harbor lower than average GFATadjBMI or ASATadjBMI or higher than average VATadjBMI may be 

conceptualized as having a mild lipodystrophy-like phenotype. We demonstrate that individuals at the 

extremes of these local adiposity traits are enriched in extreme polygenic scores suggesting that 

polygenic scores may be helpful in identifying this subgroup of individuals for future focused 

investigations. For example, growth hormone releasing hormone analogs – such as tesamorelin – have 

previously been shown to lead to a selective reduction of VAT in patients with obesity or HIV-associated 

lipodystrophy.59,60 Whether a local adiposity polygenic score – perhaps in combination with emerging 

imaging tools for identifying lipodystrophies – could identify a subset of individuals with obesity and 

polygenic lipodystrophy who may benefit from these fat redistribution agents in addition to traditional 

obesity therapy is an area for future investigation.61 
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    In conclusion, we carried out genetic association studies of local adiposity traits, including those 

derived from the gluteofemoral fat depot, in a large cohort of individuals with MRI imaging. Our work 

discusses the genetic architecture of the highly heritable gluteofemoral fat depot for the first time, and 

extends efforts to define and identify individuals with polygenic lipodystrophy. 
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METHODS 

Study Population  

 The UK Biobank is an observational study that enrolled over 500,000 individuals between the ages of 

40 and 69 years between 2006 and 2010, of whom 43,521 underwent MRI imaging between 2014 and 

2020.62,63 Our group previously estimated VAT, ASAT, and GFAT volumes in 40,032 individuals of the 

imaged cohort after excluding 3,489 (8.0%) scans based on technical problems or artifacts 

(Supplementary Figure S1).5 A subset of 39,076 individuals with genotype array data available was used 

as the primary cohort studied here. This analysis of data from the UK Biobank was approved by the Mass 

General Brigham institutional review board and was performed under UK Biobank application #7089. 

Deriving local adiposity traits 

     The focus of this study was to investigate the genetic architecture of fat distribution independent of 

the overall size of an individual. Two sets of traits were derived for this purpose: “adjBMI” traits and fat 

depot ratios. “adjBMI” traits represent residuals of the fat depot in question in sex-specific linear 

regressions against age, age squared, BMI, and height. We provide justification in the Supplementary 

Methods for adjusting for both BMI and height as opposed to only BMI. In brief, adjusting only for BMI 

introduces a significant genetic correlation of each adjBMI trait with height (most pronounced with 

ASAT and GFAT). Several prior studies have suggested that adjusting for heritable covariates can lead to 

spurious genetic associations due to collider bias.64,65 We investigated the extent to which VATadjBMI, 

ASATadjBMI, and GFATadjBMI loci may be driven by collider bias with BMI or height and found little 

evidence for collider bias making a significant contribution to these results (Supplementary Figures S16-

18; Supplementary Table S17). 
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Genotyping, imputation, and QC 

     Genotyping in the UK Biobank was done with two custom genotyping arrays: UK BiLEVE and Axiom.66 

Imputation was done using the UK10K and 1000 Genomes Phase 3 reference panels.67,68 Prior to 

analysis, genotyped SNPs were filtered based on the following criteria, only including variants if: (1) MAF 

>= 1%, (2) Hardy-Weinberg equilibrium (HWE) P > 1 x 10-15, (3) genotyping rate >= 99%, and (4) LD 

pruning using R2 threshold of 0.9 with window size of 1000 markers and step size of 100 marker.69,70 This 

process resulted in 433,616 SNPs available for genetic relationship matrix (GRM) construction. Imputed 

SNPs with MAF < 0.005 or imputation quality (INFO) score < 0.3 were excluded. These criteria resulted in 

a total of 11,485,690 imputed variants available for analysis. 

     Participant were excluded from analysis if they met any of the following criteria: (1) mismatch 

between self-reported sex and sex chromosome count, (2) sex chromosome aneuploidy, (3) genotyping 

call rate < 0.95, or (4) were outliers for heterozygosity. Up to 38,965 participants were available for 

analysis (37,641 for adjBMI traits because these individuals also had to have BMI available). 

Common variant association studies (CVAS) 

     Nine traits were analyzed (VAT, ASAT, GFAT, VATadjBMI, ASATadjBMI, GFATadjBMI, VAT/ASAT, 

VAT/GFAT, and ASAT/GFAT) in three contexts (sex-combined, male only, female only), leading to 27 

analyses in total. SNP-heritability was estimated using BOLT-LMM v2.3.4.71,72 Genetic correlations 

between traits were estimated using cross-trait LD-score regression (ldsc v1.0.1) using default 

settings.30,31 

     Prior to conducting genome-wide association studies, each trait was inverse-normal transformed. 

Each analysis was adjusted for age at the time of MRI, age squared, sex (except in sex-stratified 

analyses), the first 10 principal components of genetic ancestry, genotyping array, and MRI imaging 

center. BOLT-LMM v2.3.4 was used to carry out genome-wide association studies accounting for cryptic 
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population structure and sample relatedness.71,72 After the QC protocol detailed above, 433,616 SNPs 

were available for genetic relationship matrix (GRM) construction. A threshold of P < 5 x 10-8 was used 

to denote genome-wide significance, while a threshold of P < 5 x 10-8 / 27 = 1.9 x 10-9 was used to 

denote study-wide significance. 

     Lead SNPs were prioritized with LD clumping. LD clumping was done with the --clump function in 

PLINK to isolate independent signals for each CVAS. The parameters were as follows: --clump-p1 5E-08, -

-clump-p2 5E-06, --clump-r2 0.1, --clump-kb 1000, which can be interpreted as follows: variants with p < 

5E-08 are chosen starting with the lowest p-value, and for each variant chosen, all other variants with p 

< 5E-06 within a 1000 kb region and r2 > 0.1 with the index variant are assigned to that index variant. 

This process is repeated until all variants with p < 5E-08 are assigned an LD clump. Note that in-sample 

LD was computed using a random sample of 3,000 individuals from the studied cohort to use as the LD 

reference panel for LD clumping. 

     The extent of genomic inflation versus polygenicity was assessed by computing the LD-score 

regression intercept (ldsc v1.0.1) using default settings.30 

     A lead SNP was defined as newly-identified if it was not in LD (R2 < 0.1) with any SNP in the CVAS 

catalog (downloaded June 08, 2021) with genome-wide significant association (P < 5 x 10-8) with any 

“DISEASE/TRAIT” containing the following characters: (1) “body mass”, (2) “BMI”, (3) “adipos”, (4) “fat”, 

(5) “waist”, (6) “hip circ”, or (7) “whr”. These characters captured key anthropometric traits of interest 

(e.g. body mass index, waist circumference, hip circumference, waist-to-hip ratio) as well as other 

related traits of interest (e.g. visceral adipose tissue, predicted visceral adipose tissue, fat impedance 

measures). 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 26, 2021. ; https://doi.org/10.1101/2021.08.24.21262564doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.24.21262564
http://creativecommons.org/licenses/by-nd/4.0/


Identification of sex-dimorphic signals 

     Genetic correlations between sexes for each of the adiposity traits were computed using cross-trait 

LD-score regression as described above. 

     Using sex-specific CVAS summary statistics for each of the six local adiposity traits (VATadjBMI, 

ASATadjBMI, GFATadjBMI, VAT/ASAT, VAT/GFAT, ASAT/GFAT), we tested each of the 158 genetic loci 

that were genome-wide significant for any of the six local adiposity traits in either sex-combined or sex-

stratified analyses for sex dimorphism by computing the t-statistic: 

𝑡𝑡 =  
𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏(𝑚𝑚𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚)  −  𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏(𝑓𝑓𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚)

�𝑚𝑚𝑏𝑏(𝑚𝑚𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚)2  +  𝑚𝑚𝑏𝑏(𝑓𝑓𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚)2  −  2 ∗ 𝑟𝑟 ∗ 𝑚𝑚𝑏𝑏(𝑚𝑚𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚) ∗ 𝑚𝑚𝑏𝑏(𝑓𝑓𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚𝑏𝑏𝑚𝑚)
 

where beta is the effect size for an adiposity trait in sex-stratified CVAS, se is the standard error, and r is 

the genome-wide Spearman rank correlation coefficient between males and females. The t-statistic and 

associated P-value (Pdiff) were computed using the EasyStrata software.73 Given that 158 independent 

loci were tested, a significance threshold of Pdiff < 0.05/158 = 3.2 x 10-4 was used. 

WHRadjBMI loci lookups 

     A recent meta-analysis for the WHRadjBMI trait across 694,649 individuals revealed 346 unique 

associated loci.12 Of these 346 loci, the primary signals for 345 loci were among the imputed variants 

available for analysis in this study. We plotted the effect sizes for VATadjBMI, ASATadjBMI, and 

GFATadjBMI for each of these 345 loci and further quantified the frequency of “WHRadjBMI-

discordance” defined as either (1) WHRadjBMI and VATadjBMI effects going in opposite directions, (2) 

WHRadjBMI and ASATadjBMI effects going in opposite directions, or (3) WHRadjBMI and GFATadjBMI 

effects going in the same direction. For each adiposity trait in the “WHRadjBMI-discordance” analysis, 

we excluded loci for which the effect size beta was smaller than the standard error to avoid inflating the 

fraction of “WHRadjBMI-discordant” loci. 
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Transcriptome-wide association study 

     For each of the six local adiposity traits (VATadjBMI, ASATadjBMI, GFATadjBMI, VAT/ASAT, VAT/GFAT, 

ASAT/GFAT), we performed a TWAS to prioritize genes on the basis of imputed cis-regulated gene 

expression using FUSION with default settings.49,74,75 Pre-computed gene expression weights from GTEx 

v7 were used as downloaded from the FUSION website (http://gusevlab.org/projects/fusion/).49 

Reference weights for visceral adipose tissue were used for VATadjBMI, while those for subcutaneous 

adipose tissue were used for ASATadjBMI, GFATadjBMI, and ASAT/GFAT ratio. Weights from both 

visceral and subcutaneous adipose tissue were used for VAT/ASAT and VAT/GFAT ratios. 

Cell- and tissue-specific enrichment 

     We used stratified LD-score regression to identify cell types that are most relevant for each of the 

nine adiposity traits (VAT, ASAT, GFAT, VATadjBMI, ASATadjBMI, GFATadjBMI, VAT/ASAT, VAT/GFAT, 

and ASAT/GFAT) and BMI.51 We carried out this analysis using ldsc v1.0.1 with default settings and using 

two gene expression datasets that are described in the manuscript outlining stratified LD-score 

regression51: GTEx76 and the “Franke lab”77,78 dataset.  

Sequencing and sample quality control for rare-variant association study 

     We conducted rare-variant association studies using data from the 200,643 exomes released by the 

UK Biobank.79 Whole-exome sequencing was performed by the Regeneron Genetics Center using an 

updated Functional Equivalence (FE) protocol that retains original quality scores in the CRAM files 

(referred to as the OQFE protocol) as previously described.79 The DTxGen Exome Research Panel v1.0 

including supplemental probes was used for exome capture for this data set 

(https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170). 19,396 genes in the targets of 38Mbp were 

covered. 75x75bp paired-end reads were sequenced on the Illumina NovaSeq 6000 platform. For each 

sample in the targeted region, more than 95.2% of sites were covered by more than 20 reads. We 
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downloaded the pVCF file provided by the UK Biobank, and then applied additional genotype call, 

variant, and sample quality control. 

     The individual genotype call was set as missing if reads depth (DP) ≤ 10 or DP ≥ 200, if homozygous 

reference allele with genotype quality (GQ) ≤ 20 or the ratio of alt allele reads over all of the covered 

reads > 0.1, if heterozygous with the ratio of alt allele reads over all of the covered reads < 0.2 or Phred-

scaled likelihood (PL) of the reference allele < 20, or if homozygous alternate with the ratio of alt allele 

reads over all of the covered reads < 0.9 or PL of reference allele < 20. The variant quality control was 

performed using the following exclusion criteria:  

● Variants in low-complexity regions of the genome that preclude accurate read alignment as 

previously defined.80 

● Variants in segmental duplication region of the genome.80,81 

● Hardy-Weinberg disequilibrium (HWE) p-value < 1x10-15. 

● Variant call rate < 90%. 

● Monomorphic sites after the above genotype call quality control. 

     After the above genotype call and variant QC, we selected a subset of high-quality variants for 

inferring the genetic kinship matrix and genetic sex used for sample QC.  We selected independent 

autosome variants by MAF > 0.1%, missingness < 1%, and HWE P > 10-6. We further pruned the variants 

using PLINK2 software82 with a window size of 200, step size 100, and R2 = 0.1 and removed indels and 

strand ambiguous SNPs. Based on these variants, we used KING (version 2.2.5)83 to infer the genetic 

kinship matrix. We further selected X-chromosomal variants, not within the pseudo-autosomal regions, 

based on the sample variant QC criteria as for the autosome variants and did the same variant pruning 

procedure. We then inferred the genetic sex based on the F statistics by PLINK2 software, F > 0.8 was set 

to male, while samples with F < 0.5 were set to female. 80 samples were removed because of the 

discordance of genetic sex with self-reported sex. We further removed samples if: 
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● The ratio of heterozygote/homozygote beyond 8 standard deviations  (N = 100 samples 

removed). 

● The ratio of the number of SNVs/indels beyond 8 standard deviations  (N = 1 samples 

removed). 

● The number of singletons was beyond 8 standard deviations  (N = 111 samples removed). 

● Genotype call rate < 90% (N = 1 sample removed) 

● Withdrawal of informed consent (N = 13 samples removed) 

 We further randomly removed one sample if a pair of samples had second-degree relative or closer 

kinship, defined as kinship coefficient > 0.088474 (N = 1,563 samples removed). Of all the above QC 

passed samples, 19,255 samples out of the 40,032 having image-derived traits were used in the 

downstream rare variant burden test. We converted the genetic coordinates from GRCh38 to GRCh37 

using CrossMap software (version: v0.3.3)84.  

Approach to variant annotation and weighting 

     To identify rare (minor allele frequency < 0.1%) high-confidence predicted inactivating variants, we 

applied the previously validated Loss-Of-Function Transcript Effect Estimator (LOFTEE) algorithm 

implemented within the Ensembl Variant Effect Predictor (VEP) software program as a plugin, VEP 

version 96.085,86. The LOFTEE algorithm identifies stop-gain, splice-site disrupting, and frameshift 

variants. The algorithm includes a series of flags for each variant class that collectively represent ‘low-

confidence’ inactivating variants. In this study, we studied only variants that were ‘high-confidence’ 

inactivating variants without any flag values. This aggregation strategy will be referred to hereafter as 

putative loss-of-function (‘pLoF’). 

     To identify rare  (minor allele frequency < 0.1%) predicted damaging missense variants, we included 

variants predicted to be damaging by all of five computational prediction algorithms as described 
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previously87–89. In brief, predictions were retrieved from the dbNSFP database90, version 2.9.3, with the 

most severe prediction across multiple transcripts used. We focused on five prediction algorithms: SIFT91 

(including variants annotated as damaging), PolyPhen2-HDIV and PolyPhen2-HVAR92 (including variants 

annotated as possibly or probably damaging), LRT93 (including variants annotated as deleterious), and 

MutationTaster94 (including variants annotated as disease-causing-automatic or disease-causing). Within 

the association testing framework, this class of variants was given a gene-specific weight based on the 

relative cumulative frequency of these predicted damaging missense variants as compared to the 

cumulative frequency of high-confidence predicted inactivating variants identified by LOFTEE algorithm 

using a previously recommended approach95,96: given the cumulative allele frequency of all of the 

LOFTEE high confidence rare variants of a gene (𝐺𝐺) as 𝑓𝑓𝐿𝐿, the cumulative allele frequency of all of the 

predicted damaging missense variants as 𝑓𝑓𝑀𝑀, the weight for the missense variants was estimated as 

 ( 𝑓𝑓𝐿𝐿×(1−𝑓𝑓𝐿𝐿)
𝑓𝑓𝑀𝑀×(1−𝑓𝑓𝑀𝑀)

)0.5, and capped at 1.0. For genes without LOFTEE high confidence rare variants, the weight 

for missense variants is 1.0. This aggregation strategy will be referred to hereafter as putative loss-of-

function plus missense (‘pLoF+missense’). 

Statistical analysis 

     We tested the association between the aggregated rare variant score (the weighted sum of the 

qualified variant of each gene) and each inverse normal transformed phenotype using a multivariable 

regression model in sex-combined and sex-stratified models. Analyses were restricted to genes that had 

at least 10 variant carriers in the analyzed cohort. An individual’s gene-specific score was computed 

according to the weighting strategy described above and capped at one. The covariates were the same 

as the common variant association test. Given the filter of 10 variant carriers, sex-combined analyses 

tested 12,020 genes and so a gene was recognized as exome-wide significant if the gene’s P-value was 

smaller than the Bonferroni-corrected p-value threshold of 0.05/12,020 = 4.2 x 10-6.  
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Polygenic score 

     We used the LDpred2 algorithm57 to derive genome-wide polygenic scores for each trait. We 

randomly selected 350,000 White British ancestry individuals from the UK Biobank to use as the LD 

reference panel,66 and used HapMap3 variants with MAF > 0.5% in the LD reference panel to compute 

the LD correlation matrix. For each trait, we partitioned the samples into three independent portions: 

70% to run the CVAS for making the summary statistics, 10% to select the optimal hyperparameters, and 

20% to test performance. We randomly removed one sample in a pair if the pair had a genetic 

relationship closer than a second-degree genetic relationship in the last two partitions of samples, and 

checked the pairwise relationship across the whole data set. For the hyperparameters of the LDpred2 

algorithm, we grid searched three parameters: (1) 0.7, 1, and 1.4 times of genome-wide heritability 

estimation, (2) whether or not to use a sparse LD correlation matrix, and (3) 17 different estimates of 

the proportion of causal variants selecting from [0.18,0.32,0.56,1] x 10[0,-1,-2,-3] and 0.0001. In total, we 

tested 3 x 2 x 17 = 102 grid points.  

     For all downstream analyses, each polygenic score was residualized against the first 10 principal 

components of genetic ancestry prior to regression with the dependent variable of interest, and each 

regression was adjusted for age at imaging, sex, and the first 10 principal components of genetic 

ancestry.  
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FIGURE LEGENDS 

FIGURE 1 CVAS results for VATadjBMI, ASATadjBMI, and GFATadjBMI 

 

(top left) Three females from the UK Biobank with similar age (67-70 years) and similar overweight BMI 

(27.6-28.6 kg/m2) with highly discordant fat distributions (right) Manhattan plots for sex-combined 

CVASs with VATadjBMI, ASATadjBMI, and GFATadjBMI. Lead SNPs are described in Supplementary Table 

S4. (bottom left) Overlap between VATadjBMI, ASATadjBMI, and GFATadjBMI loci denoted by the 

nearest gene (Supplementary Table S5-6).  
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FIGURE 2 Common variant sex heterogeneity for VATadjBMI, ASATadjBMI, and GFATadjBMI local 
adiposity traits 

 

For each adiposity trait, loci that were associated with the trait in either sex-combined or sex-stratified 

analyses are plotted (Supplementary Table S7). 39 such loci are plotted for VATadjBMI, 27 for 

ASATadjBMI, and 66 for GFATadjBMI. Loci colored black were genome-wide significant (P < 5 x 10-8) in 

sex-combined analysis, blue loci were significant for males, but neither females nor sex-combined, and 

red loci were significant for females, but neither males nor sex-combined. Pdiff indicates the P-value for a 

hypothesis test comparing SNP effects in males and females, as implemented in EasyStrata software 

(Methods). 158 unique loci were tested for sex heterogeneity across the three adjusted-for-BMI traits 

and three fat depot ratios (Supplementary Figure S12), so a significance threshold of Pdiff < 0.05/158 = 

3.2 x 10-4 was set – large circles indicate that a given locus met this criterion. 
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FIGURE 3 Effects of previously identified WHRadjBMI loci on local adiposity traits 

 

346 index SNPs associated with WHRadjBMI in a recent meta-analysis from the GIANT consortium were 

studied here -- one of these, rs139271800 (A>G) was not available in the studied cohort.12 Of the 

remaining 345 SNPs, effect sizes of VATadjBMI, ASATadjBMI, and GFATadjBMI are plotted against the 

effect size for WHRadjBMI as reported in the cited study (Supplementary Table S10). 
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FIGURE 4 Predicted loss-of-function and missense rare variants in PDE3B selectively modulate fat 
distribution in females 

 

A mask combining predicted loss-of-function variants and missense variants in PDE3B associated with 

GFATadjBMI in females with exome-wide significance (Supplementary Table S13). Carriers of these 

variants were separately associated with each adiposity phenotype in males and females in linear 

regressions adjusted for age, age squared, imaging center, genotyping array, and the first 10 principal 

components of genetic ancestry - the results are reported in Supplementary Table S14 and plotted here. 

Associations that are nominally significant (p < 0.05) have the corresponding effect size written adjacent 

to the bar.  
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FIGURE 5 Enrichment of VATadjBMI, ASATadjBMI, and GFATadjBMI genome-wide polygenic scores in 
tails of the distribution 
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For each fat depot adjBMI trait, a polygenic score was trained using LDpred2 on 70% of the studied 

cohort and a 10% validation cohort was used to determine the optimal set of hyperparameters. Results 

in this figure and Figure 6 correspond to the 20% holdout cohort (N = 7,795).   
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FIGURE 6 Effects of VATadjBMI, ASATadjBMI, and GFATadjBMI polygenic scores on metabolically 
relevant biomarkers and diseases 

 

The central density plots indicate the distributions of VATadjBMI, ASATadjBMI, and GFATadjBMI 

polygenic scores in a subset of the imaged and genotyped individuals in this study who were held out 

during polygenic score development (20% of the cohort, N = 7,795). The dotted lines and shaded regions 

correspond to individuals in the top 10% and bottom 10% of the polygenic score. Forest plots to the 

right correspond to effect sizes of an indicator variable for being in the top 10% of the polygenic score 

(with identical color-coding to the density plots), while forest plots to the left correspond to effect sizes 

of an indicator variable for being in the bottom 10% of the polygenic score. Each polygenic score was 

residualized against the first 10 principal components of genetic ancestry prior to regression, and each 

regression was adjusted for age at imaging, sex, and the first 10 principal components of genetic 
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ancestry. HbA1C, hemoglobin A1C; HDL-c, HDL-cholesterol; Trig, triglycerides; ALT, alanine 

aminotransferase; T2D, prevalent type 2 diabetes (at time of imaging); HTN, prevalent hypertension; 

CAD, prevalent coronary artery disease. Corresponding data are found in Supplementary Table S15.  
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TABLES 

TABLE 1 29 newly-identified loci discovered in this study 

Trait CHR BP SNP 

Effect 

Allele 

Other 

Allele EAF BETA SE P-value Nearest Gene 

GFAT 11 95840436 rs1074742 A G 0.401 0.041 0.007 1.40E-08 MAML2 

GFAT 12 124344710 rs138756410 T C 0.986 -0.172 0.031 3.00E-08 DNAH10 

GFAT 12 125092343 rs4765159 A G 0.018 0.146 0.027 3.50E-08 NCOR2 

VATadjBMI 2 121310704 rs35932591 C T 0.879 0.061 0.011 3.80E-08 LINC01101 

VATadjBMI 10 25767521 rs1329254 C T 0.37 0.042 0.007 1.40E-08 GPR158 

VATadjBMI 11 69195097 rs7933253 T C 0.048 0.098 0.017 1.30E-08 LOC102724265 

VATadjBMI 

(Male) 2 121310704 rs35932591 C T 0.88 0.086 0.016 3.90E-08 LINC01101 

VATadjBMI 

(Female) 3 56901687 rs1500714 C G 0.854 0.081 0.015 1.80E-08 ARHGEF3 

ASATadjBMI 1 201016296 rs3850625 G A 0.882 -0.079 0.011 1.80E-12 CACNA1S 

ASATadjBMI 9 1052722 rs6474550 G T 0.66 0.045 0.008 1.30E-09 DMRT2 

ASATadjBMI 15 62757857 rs17205757 A G 0.674 -0.042 0.008 3.20E-08 MIR6085 

ASATadjBMI 17 76324751 rs4444401 A G 0.473 -0.04 0.007 4.20E-08 SOCS3 

ASATadjBMI 

(Female) 1 116916645 rs749166380 CT C 0.102 0.102 0.018 2.20E-08 ATP1A1 

ASATadjBMI 

(Female) 8 58352327 rs776481989 ATAAT A 0.998 0.795 0.134 8.60E-09 LOC101929488 

GFATadjBMI 2 226768344 2:226768344_CA_C CA C 0.193 -0.051 0.009 2.60E-08 NYAP2 

GFATadjBMI 3 196818853 rs13099700 A G 0.722 0.047 0.008 7.90E-09 DLG1 

GFATadjBMI 5 38810354 rs142369482 G GT 0.656 -0.044 0.008 9.10E-09 OSMR-AS1 

GFATadjBMI 

(Male) 4 104780790 rs528845403 A 

AATGT

GT 0.991 -0.325 0.061 2.40E-08 TACR3 

GFATadjBMI 

(Female) 1 181161153 rs7550430 A G 0.998 0.892 0.144 1.80E-09 LINC01732 

GFATadjBMI 

(Female) 2 165533198 rs386652275 T TC 0.974 -0.19 0.034 3.20E-08 COBLL1 
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VAT/ASAT 8 25459001 rs3890765 C A 0.941 -0.084 0.015 6.80E-09 CDCA2 

VAT/ASAT 9 1054362 rs6474552 G C 0.432 -0.04 0.007 1.20E-08 DMRT2 

VAT/ASAT 10 122992475 rs11199845 C T 0.46 0.055 0.007 1.50E-14 FGFR2 

VAT/ASAT 

(Male) 2 61760756 rs13390751 A C 0.838 0.076 0.013 1.30E-08 XPO1 

VAT/ASAT 

(Male) 10 122992442 rs11199844 C T 0.463 0.059 0.01 5.90E-09 FGFR2 

VAT/ASAT 

(Female) 12 121319417 rs59757908 T C 0.995 -0.425 0.076 4.20E-08 SPPL3 

VAT/GFAT 

(Female) 1 162430821 rs9660318 G C 0.203 0.068 0.012 1.80E-08 UHMK1 

VAT/GFAT 

(Female) 2 116072770 rs11399916 T TA 0.256 0.06 0.011 3.70E-08 DPP10 

VAT/GFAT 

(Female) 6 32975699 rs9276981 G C 0.809 -0.064 0.012 4.60E-08 HLA-DOA 

ASAT/GFAT 5 55830865 rs39837 C T 0.667 0.043 0.007 2.60E-08 LINC01948 

ASAT/GFAT 14 95219657 rs8006225 G T 0.817 0.055 0.009 2.60E-09 GSC 

ASAT/GFAT 

(Female) 5 55830865 rs39837 C T 0.666 0.061 0.01 9.10E-09 LINC01948 

 

Newly-identified loci were defined as loci that were not in LD (R2 < 0.10) with any of the loci in the GWAS 

catalog for adiposity or related anthropometric traits (see Methods).32 Note that 32 entries are present 

rather than 29 because (1) loci could be associated with multiple traits (as is the case with rs35932591 

and rs39837) and (2) loci in LD (R2 > 0.7) are reported separately in this table (as is the case with 

rs11199844 and rs11199845). 
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