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Abstract 

 

In December 2019 COVID-19 appeared as a new pandemic that has claimed the lives of millions of 

people around the world. This article presents a regional analysis of COVID-19 in Mexico. Due to 

the comorbidities of Mexican society, the new pandemic implies a higher risk for the population. 

The study period runs from April 12 to October 5, 2020 (761 665 Patients). In this proposal we 

apply a unique methodology of random matrix theory in the moments of a probability measure that 

appears as the limit of the empirical spectral distribution by the Wigner semicircle law. The 

graphical presentation of the results is done with Machine Learning methods in the SuperHeat 

maps. With this is possible to analyze the behavior of patients who tested positive for COVID-19 

and their comorbidities. We conclude that the most sensitive comorbidities in hospitalized patients 

are the following three: COPD, Other Diseases and Renal Diseases. 

 

1. Introduction. 

 

 Throughout its history, humanity faced different pandemics were millions of people lost 

their lives in the world. The recently epidemic of those SARS-CoV and MERS-CoV stand out [1]. 

Currently in December 2019 in the city of Wuhan-China, a series of cases were reported that met 

criteria for pneumonia with severe characteristics. Due to them, the local health authorities noticed 

that in the patients an epidemiological relationship with a wholesale seafood market, where wild 

animals were also sold [2].  

 

For December 31 it was notified to the Chinese Center for Disease Control and Prevention 

an epidemiological investigation, like at first security measure was the closing of the seafood 

market to the public on January 1, 2020. Later on January 9, the Chinese government reported the 

discovery of the new coronavirus; and on January 12 they released their genomic sequence of 

nCoV-2019. Initially, the epidemic growth rate was 0.10 per day (95% CI) and it was doubling time 

in 7.4 days. On January 11, the first death was reported in China [1].   

 

 

On January 13 in Thailand, the first imported case was registered in a 61-year-old patient 

from Wuhan. The USA reported its first confirmed case on January 20 in a 35-year-old patient who 

traveled to Wuhan. It was until January 30 that the WHO declared the nCoV-2019 infection an 

international public health emergency. On February 11, the name of the disease officially changed 

to COVID-19 (coronavirus disease). The name of the virus, after genomic analysis of the 

sequences, is SARS-CoV-2 [3]. 

  



 COVID-19 arrives in Mexico in February 2020. On February 27, 2020, it was announced in 

the media that one patient had tested positive to the virus. This patient who tested positive went to 

the INER, where he mentioned having traveled to Bergamo Italy; there, he had contact with an 

infected person. On February 28, the Institute for Diagnosis and Epidemiological Reference to "Dr. 

Manuel Martínez-Báez" (InDRE) confirmed the first case of COVID-19 in Mexico.  Following up 

four more cases, they found that they traveled to Italy too; which three of them had mild symptoms. 

Two of these patients stayed in Mexico City and one in Sinaloa. The fourth patient did not develop 

symptoms, so he was a carrier. Perhaps this was the first reported asymptomatic patient in Mexico. 

The following days new cases were presented, as a result on March 1st, all cases in Mexico were 

imported [2]. 

 

Random Matix Theories (RMTs) have grown enormously in fields such as wireless 

communication theories [4], biology in RNA analysis [5], pure mathematics [6], probability [7], 

among others [8]. The RMTs [8] are a set of matrices in real symmetric bands with inputs extracted 

from an infinite sequence of interchangeable random variables, as far as the symmetry of the 

matrices allows it [9]. The entries of the upper triangular matrices of are correlated and these 

correlations are not assumed to be small or sparse [10]. The RMTs have in their eigenvalues 

distribution measures still converge in a semicircle but with a random scale [11], also they have 

asymptotic behavior of the norm attributions in 2 operators [12]. The key to his analysis is a 

generalization of a classical Finetti result that allows the underlying probability spaces to be 

represented as averages of the Wigner band sets with the inputs not necessarily centered [13]. Some 

results appear to be new even for such Wigner band matrices [14]. 

 

Wigner has been used with operators in large data dimensions with independent input the 

Random Matrix Theory (RMT) [14]. Wigner has also analyzed the distribution of the gaps in the 

energy levels, where they found that they were independent of the underlying matter; surprisingly, 

this gap distribution is successfully reproduced by RMT [15]. 

 

 

This study focuses on a particular case in Mexico and it is undoubtedly that this 

methodology is applicable to many countries in the world. One of the approaches proposed in this 

research is through the Random Matrix Theory (RMT) approach. RMT has its origin and 

application when John Wishart analyzed properties in multivariate normal populations [16]. Also in 

the predictions in quantum mechanics, the energy levels can be able calculated by the eigenvalues 

together with the RMT elements [17]. In general the RMTs can work to analyze the multivariate 

behavior of data as it is done in this work. One of the most important contributions of this document 

is Wigner and RMT in comorbidities of patients with COVID-19.  

 

The effect of the COVID-19 pandemic in Mexico has been investigated by some authors, 

like [18], they used data mining for data analysis. In [19] they analyzed the risk factors for COVID-

19 and managed to rank the most determining factors using a multivariate logistic regression. In 

[20] in 2021 they found a high incidence of comorbidities in deaths that occurred up to August 

2020. In and another analysis, [21] in 2021 give predictions on the spread of the pandemic using 

Bayesian inference. 

However, as far as we know, there is no study that uses our methodology that has analyzed 

the Mexican case. This methodology describes a tool which helps to infer weak convergence: with 

the method of moments in a probability measure. We propose to apply this method for both 

deterministic and random probability measures. This document studies in depth the concepts of 

weak convergence of probability measures and random probability measures with the Wigner law.   



In this application it is important to know the moments of a probability measure 

or at least some properties of the moments in combination with the fact that a real symmetric matrix 

is positive definite in the real sense. Oftentimes it will not be of interest if a sequence of numbers 

really belongs to a probability measure, since we automatically obtain this result when employing 

the method of moments. This method a priori assuming that the target distribution to have specific 

moments, so, it can be used to check convergence to a random probability measure. In any case, the 

essential for the method of moments is the knowledge about the uniqueness of a distribution with 

given moments, that is, there is at most one distribution with a given sequence of moments. In 

random matrix theory, the probability measure that appears as the limit of the empirical spectral 

distribution is a naturally of the semicircle distribution. What we mean by naturally? is that it 

appears in Wigner’s semicircle law, which is the easiest non-trivial random matrix ensemble, for it 

has standardized entries which are independent up to the symmetry constraint. It is safe to say that 

the role of the semicircle distribution in random matrix theory is as large as the role of the standard 

normal distribution in probability theory. To remind the reader, the semicircle distribution is the 

probability measure. 

 

 

2. Method 

 

2.1 Definitions of the Theory of Random Matrices. 

The Wigner matrices are unit matrices, written in an irreducible unit group (SU) and their 

rotationally (SO) matrices [11]: 

 

               

   
                      

                                          
 

where Jx, Jy, and Jz are generators of the Lie algebra of the previous groups [22], that is, there is a 

non-associative vector of space g, with an alternate bilinear map: g x g ⇥g; (x, y) ⇥ [x, y], 

satisfying the Jacobi identity, which means that the sum of all even permutations is zero. So these 

three operators are the components of a vector operator, known as angular momentum.  

 

Definition 1. Hermitiana matrix 

A square matrix         called Hermitian matrix if it has the property of A * = A, where A * 

denotes the conjugate transpose (or Hermitian transpose) of A, that is, where the subscripts i , j are 

formally defined by                  . An important property of these matrices is that each Hermitian 

matrix is diagonalizable and its eigenvalues are real and its eigenvectors are two by two orthogonal 

[11]. 

 

Definition 2. Probability Density Function 

The probability density function fx(t) of a continuous random variable, is a function whose value at 

any given sample (or point) in the sample space (the set of possible values taken by the random 

variable) can be interpreted as providing a relative likelihood that the value of the random variable 

would equal that sample. A distribution has a density function if and only if its cumulative 

distribution function FX(x) is absolutely continuous. In this case: F is almost everywhere 

differentiable, and its derivative can be used as probability density [13]: 

 

                      
 

  

 

 

 



Definition 3. The empirical measure 

If X1, X2, ... be a sequence of identically distributed independent random variables with values in R. 

Where is denoted by P their probability distribution. The empirical measure of Pn is a measurable 

subset A  R. The empirical distribution function is an estimate of the cumulative distribution 

function that generated the points in the sample. It converges with probability 1 to that underlying 

distribution, according to the Glivenko–Cantelli theorem. A number of results exist to quantify the 

rate of convergence of the empirical distribution function to the underlying cumulative distribution 

function [13]: 

 

      
 

 
        

              

 

 

   

 

 

where 1A is the indicator function. Please note that if it chooses A =[-          ,  then Pn (A)  

is the distribution of the empirical function. 

 

Definition 4. 

A Wigner matrix Wn   Mn (C) is a Hermitian matrix where (Xi, j) with subscripts i <j  such that Xi, j 

are independent and identically randomly distributed variables and are of the complex type with i <j 

[14]: 

 

• Xi, j are independent and identically distributed real random variables 

• E [Xi, j] = 0,  i, j 

•          
 
            

•         
 
    

 

Remark 1.  
Some iconic Wigner sets are the Gaussian Unitary Ensemble GUE (n) and the Gaussian Orthogonal 

Ensemble GOE (n), are described by the Gaussian ensembles measure density. GUE Consider a 

complex Wigner matrix where Xi,j is standard complex Gaussian (i.e. Xi,j ∼ N(0, 1 2 ) + iN(0, 1 2 

)) and Xi,i ∼ N(0, 1) (real), which are defined as follows [9]: 

 

              
                             

                
  

 

Let C  C
nxn

 unitary, then CC
*
 = I and C

*
WnC has the same distribution as Wn, that is (GOE) is 

invariant under unit conjugation. GOE is real Wigner matrix where Xi,j ∼ N(0, 1) and Xi,i ∼ √ 

2N(0, 1) [23]: 

              
                

                  
  

Where C  R
nxn

 orthogonal, then CC
T 

= I and C
T
Wn C has the same distribution as Wn, that is, 

GOE(n) is invariant function under orthogonal conjugation. Now, the focus is on Gaussian Wigner 

matrices, whose inputs are Gaussian random variables with zero mean and variance s
2
 if i  j and 

2s
2
 if i = j, but this theory only applies to general distributions [23]. 

 

 

 



Definition 5. The Operator Norm for Band Random Matrices 

The semicircle law for Wigner band ensembles suggests that in the case of centered entries the 

operator norm should asymptotically be of the order of the square root of the bandwidth. It was 

already observed in [23-24] that this cannot hold if the bandwidths do not grow at least at some 

logarithmic rate with the matrix size.  

 

In the first subsection, we provide in Definitions (1-4) and in Remark 1 positive results in this 

direction that guarantee for centered Wigner band ensembles an almost sure upper bound on the 

operator norm that grows proportionally and the bandwidth satisfies some growth condition. The 

second subsection considers the situation of Wigner band ensembles with arbitrary means and de 

Finetti band ensembles. The method of moment was used to obtain the almost sure limit of the 

appropriately rescaled operator norms for centered Wigner ensembles; then, let M  Matnxn(C) ser 

una be a matrix. The norm of matrix of operators of M is defined as: 

                           

 

In that case x  C
n
 y       is a normalized vector of C

n
. 

 

Teorem 1. Bai-Yin Law 

The limiting spectral distribution for  matrix Wigner Wn is the upper limit of Bai-Yin [25]: 

       
   

      

  
   

As result, the normalized version is defined like    
  

  
 

 

Teorem 2. Semicircle for Wigner Distribution 

If the Wn         is a sequence of Wigner matrices, let µn be the probability measure [9]: 

      
                      

 
      

In this case the                     are the eigenvalues (eigenvalues) of Xn. As 

consequence, the µn weakly converges to the semicircle distribution: 

         
 

    
                 

 

2.2 Definitions of the Method of Moments for Probability Measures. 

 

One of the most iconic and straightforward tests of the Wigner macroscopic random matrix 

scale is that it uses the method of the moment. This approach is based on the intuition that the 

eigenvalues of the Wigner matrices are distributed according to a limiting law, which is the 

semicircle distribution µsc. The moments of the empirical distribution µn correspond to sampling 

moments of the limit distribution, where the number of samples is given by the size of the matrix 

[26].  

To calculate the k-th moment with the µ-law of a random variable of X, which is the 

expectation of the E (X
k
), the eigenvalues of Xn are denoted by  j(Xn)  with order of        

                .  Note that Xn  can be diagonalized since it is Hermitian matrix. In fact, it has 

         where                                 . Therefore, they are obtained for the 

k-th moment [13]: 

   
   

   
 

 
       

  
 

 

 

   

       
  

 

 
       

    
 

 
     

  

 

   

 

 



This is a very useful method, in particular considering it does not make any assumptions on 

the target to measure µn. In the literature on random matrices, this condition is often used the 

method of moments, see [26]. In summary, this is the theorem that is used when applying the 

method of moments to random matrix theory.  

 

The empirical spectral distributions of random matrices, whose are K-valued in their entries 

have absolute moments of all orders. Then if where (mk)k is a sequence of real numbers that satisfy 

the Carleman condition, then (σn)n converges in expectation to a probability measure µ on (R, B) 

with moments (mk)k. The k-th random moment is given by which is a real-valued random variable 

whose expectation is finite. 

 

The moments of the semicircle law are given by [13]:  

   
   

       
  
     

    
 
             

                           
  

Where Cn  is the n-th Catalan number, which is given directly of the binomial coefficients, given by 

[13]: 

   
 

   
 
  
 
  

 

The catalan numbers are elements of the sequence of natural numbers. As a result of the 

semicircle law, it is the unique distribution where the k-th moments that are given by the Calatan 

numbers [26]:  

    
   

        
  

 

Consequently: 

              
         

         , donde  
 
  

  
 

 

But the Catalan numbers are not only the (even) moments of the semicircle distribution. 

They also appear as the solution to various combinatorial problems, see [27] or [28], for example. 

The method of moments for random probability works as follows: If one wants to show 

weak convergence of random probability measures in expectation, in probability or almost surely, it 

will suffice to show that the random moments converge in expectation, in probability or almost 

surely.  

 

2.3 Implementation and Data 

 

2.3.1 COVID-19 Data Analysis 

 

This section presents a COVID-19 risk analysis for the regions of Mexico. The data used 

here are open data, and it can be found on the website of the federal government in Mexico in the 

section of the Secretariat of Epidemiology
1
. 

The Mexico COVID-19 database has the following hierarchical variables (see Figure 1): 1) 

positive patients and negative patients, 2) symptomatic patients, and 3) hospitalized and non-

                                                           
1 Open Data of the Ministry of Health in the Department of Epidemiology from the Government of Mexico . Historical bases 

COVID-19. Available on: https://www.gob.mx/cms/uploads/attachment/file/604001/Datos_abiertos_hist_ricos_2020.pdf. Our file 

repository analysis are available on: https://github.com/OraliaNJ/COVID-19_Mex_Analysis 

 

https://www.gob.mx/cms/uploads/attachment/file/604001/Datos_abiertos_hist_ricos_2020.pdf
https://github.com/OraliaNJ/COVID-19_Mex_Analysis


hospitalized 

patients. 

 

The geographical information of the infected patients by the virus in Mexico is divided into 

5 regions (see them in blue color in Figure 1). Let us remember that Mexico has 32 federal states, 

each with a particular political, economic, population and social situation. The federal states are 

grouped by regions as: Northwest Region (R1), Northeast Region (R2), West Region (R3), Central 

Region (R4) and Southeast Region (R5). The R1 has the following states: Baja California, Baja 

California Sur, Chihuahua, Sinaloa and Sonora. In R2 are: Coahuila, Durango, Nuevo León, San 

Luis Potosí and Tamaulipas. For the R3 there are: Mexico City, State of Mexico, Guerrero, Hidalgo, 

Morelos, Puebla and Tlaxcala. In R4 have: Aguascalientes, Colima, Guanajuato, Jalisco, 

Michoacán, Nayarit, Querétaro and Zacatecas. And then, R5 covers the states of Campeche, 

Chiapas, Oxaca, Quintana Roo, Tabasco, Veracruz, and Yucatán. 

 

 
Figure 1. Network database was constructed with hierarchical variables identified by 5 different 

colors as follows: maroon, orange, blue, green, and purple, figure extracted from Nolasco-Jáuregui 

O., et al. 2021 [30]. 

 

Symptomatic patients are characterized by presenting the major COVID-19 symptoms, 

these cases show symptoms such as cough, sore throat, fever, or shortness of breath. Once the viral 

detection test has been applied, if the patients are tested positive they were classified as positive 

patients and assume to have the virus, otherwise, they were consider as negative patients.  

 

At the first position on the hierarchical variables are positive patients (see them in maroon 

color in Figure 1); for these cases are following subsections: the symptom onset date, clinic 

admission date and clinic exit date. At the second place on the hierarchical variables are 

symptomatic patients, whose are subsectioned as hospitalized patients and non-hospitalized patients 

(see them in orange color in Figure 1). For symptomatic patients with severe to critical disease or 

those who are severely immunocompromised, the health experts admitted them at the clinic 

immediately and were classified as hospitalized patients in our database. For symptomatic patients 

with mild to moderate disease and not severely immunocompromised, the health experts 

recommended that they must keep a strict quarantine at home and were classified as non-

hospitalized patients in our database.  

 



The study project report is based on a comparison of the hospitalized and non-hospitalized 

patients with the comorbidities of the patients and their exposure risk to the virus in different 

regions of Mexico. In these statistical analyses, the principal comorbidities (see them in purple color 

in Figure 1) on patients are detailed, such as diabetes (D), COPD (CO), asthma(A), 

Immunosuppression (IM), hypertension (HY), cardiovascular (CA) problems [29], chronic kidney 

disease (RE), obesity (OB), and others diseases (OD) [31]. People suffering from any comorbidities 

are at increased risk of severe COVID-19 infection [32-33], the diseases mentioned above play an 

important role in the possible recovery of patients who have acquired the virus [34-35]. Figure 1 

describes the Mexico COVID-19 database extraction and their hierarchical variables. It should be 

emphasized that the period of analysis of the database corresponds from April 12 to October 5, 

2020 (761 665 Patients), giving a total of 176 daily record files. 

 

 

3-. Results 

 

In this proposal we apply the theory of the random matrix in the probability measure that 

appears as the limit of the empirical spectral distribution as characteristically by the Wigner 

semicircle law of the hierarquical network shows in Figure 1 for every region of Mexico by 

comorbidities for hospitalized (H) patients and ambulatory (N) patients, see Figure 2. The Figure 2 

is a beautiful graphical representation of the Wigner semicircles overlapping as a result of this 

propose where it is easy for the readers obtain conclusions about the comorbidity of the regions of 

Mexico and their COVID-19 patients. 

 

In Figure 2-A of asthma comorbidity, it can be observed that R2 presents a greater 

probability with this morbidity in the case of hospitalized patients; while there is a lower probability 

in ambulatory patient cases.  Consequently, the radius of R2 indicates that the number of 

hospitalized patients is fewer than ambulatory patient cases. Following up to R2 is the R1, the R1 

also has highest cases in hospitalized patients with this comorbidity. But R1 is superior than R2 in 

ambulatory cases. The radius in outpatients is more platykurtic than in hospitalized ones, since the 

distribution it is more leptokurtic, see Table 1.  

 

The Table 1 has the maximum limit value of the Wigner distribution, with this value the 

reader can takes the probability and even the radius. Note: It is important to mention that the X axis 

has a scaled largest eigenvalues because is a semicircle, so it has negative and positive values; the 

radius indicates the absolute value of eigenvalues. 

 

The Figure 2-B shows the cardiovascular comorbidity, it is notable that in almost all regions 

and type of patients have the same numbers because the radius has similar values; is the R4 that has 

the same radius even ambulatory and hospitalized patients in this morbidity. In Figure 2-B , it can 

be observed that R1 presents a greater probability with this morbidity in the case of ambulatory  

patients; Following up to R1 is the R2, the R2 has highest probability in hospitalized patients with 

this comorbidity, see Table 1.  

 

The Figure 2-C shows the COPD comorbidity, it is notable that in this morbidity the 

probability value is highest then the last ones diseases in all cases. In this comorbidity, the highest 

radius is of the R4 in hospitalized patients, as result this region of Mexico has the major number of 

infected with this morbidity. In Figure 2-C, it can be observed that R1 presents the greater 

probability with this morbidity in the case of ambulatory  patients; Following up to R1 is the R2, the 

R2 has highest probability in both types of patients ambulatories and  hospitalized; for both cases 

the distribution is leptokurtic.  

 



In Figure 2-D of Immunosuppression comorbidity, it can be observed that R1 presents a 

greater probability with this morbidity in the case of non-hospitalized patients. Following up to R1 

is the R2, the R2 also has highest cases in hospitalized patients with this comorbidity. It is notable 

that the highest radius is of the R4 in both types of patients hospitalized and ambulatories, as result 

this region of Mexico has the major number of infected with this morbidity. 

 

  

  

  
Figure 2. Wigner semicircles overlapping by comorbidities. 

 

 

In Figure 2-E of other diseases, it can be observed that R2 presents a greater probability 

with these comorbidities in the case of non-hospitalized patients. Following up to R2 is the R1, the 

R1 also has highest cases in non-hospitalized patients with this comorbidity. It is notable that the 

highest radius is of the R4 in ambulatory patients, as result this region of Mexico has the major 

number of infected with this morbidity. 

 

A B 

C D 

E F 



In Figure 2-F of renal diseases, it can be observed that R1 presents a greater probability 

with these comorbidities in the case of non-hospitalized patients. Following up to R1 is the R2, the 

R2 also has highest cases in non-hospitalized patients with this comorbidity. It is notable that the 

highest radius is of the R4 in both types of patients for ambulatories and hospitalized patients, as 

result this region of Mexico has the major number of infected with this morbidity. 

 

ASTHMA 

 R1_H R2_H R3_H R4_H R5_H R1_N R2_N R3_N R4_N R5_N 

Prob 2.43 3.12 2.19 1.69 2.05 0.81 0.68 0.71 0.49 0.63 

Radio 23.985 18.345 26.68 35.923 29.107 82.031 101.549 99.205 159.963 118.817 

CARDIOVASCULAR 
Prob 1.33 1.79 1.34 0.83 1.54 1.88 1.57 1.48 0.74 1.76 

Radio 46.31329 33.71971 47.2955 82.64672 39.66252 32.2947 39.96393 42.2855 91.70461 34.20063 

COPD 
Prob 25.6 26.6 11.3 7.9 18.6 37.9 25.8 19.4 11.4 26.4 

Radio 22.307 21.421 56.192 81.21 32.0916 14.8121 22.05335 30.73746 56.84873 21.97052 

INMUNOSUPPRESSION 
Prob 3.59 4.08 2.31 1.06 2.87 4.18 2.54 2.36 1.12 3.27 

Radio 15.83425 13.89497 25.32691 57.92767 19.5242 13.72003 22.948215 24.31022 55.21519 17.27304 

O.DISEASES 
Prob 11.1 17.6 13 7.4 13.7 14.3 12 9.7 6.3 12.8 

Radio 53.958992 33.676518 47.313197 89.922003 44.34744 44.817937 52.908196 65.160098 108.74722 48.565917 

RENAL 
Prob 16 14.8 10 6.5 11.6 36.9 20.2 18.5 10.5 21.1 

Radio 36.86582 39.94179 64.73533 109.7202 52.6605 15.00147 29.4304 32.75973 61.67652 27.520779 

DIABETES 
Prob 3.2 3.3 2.8 1.7 2.5 3.7 3.1 2.7 1.9 2.6 

Radio 275.2625 261.7669 335.1854 721.8501 370.9789 209.0088 373.9429 333.43024 657.72615 354.62443 

HYPHERTENSION 
Prob 2.7 3.3 2.4 1.6 2.8 2.5 2.2 2.4 1.4 32.5 

Radio 372.74029 290.57336 395.70552 760.63216 414.68995 347.3256 501.10825 458.28626 837.50335 17.273039 

OBESITY 
Prob 4.3 1.2 3.4 2.1 3 2.4 2.1 2.1 1.4 1.9 

Radio 192.7953 1476.1465 251.99781 502.98685 273.98022 409.32085 551.662258 540.032056 1070.49996 585.834888 

Table 1. Maximum values of probability and radius of the Wigner semicircles, of the 9 

comorbidities reported in Mexico. 

 

This document has a medullar analysis with a SuperHeat map, see Figure 3. This SuperHeat 

map as a complement to the previous analysis, the SuperHeat map [36] is used as a correlation 

analysis between comorbidities of the regions of Mexico and its daily behavior pandemic analysis. 

The interpretation of the Figure 3  is as following: it has on its left axis the dendrogram [37] that 

indicates in its farthest lines the representation of the higher hierarchy and towards the center of the 

map, the lower hierarchies relationship between all elements. 

 

In the SuperHeat map you can see 3 large groups, resulting from a Machine Learning 

algorithm called K-means [36]. It is a type of algorithm clustering that is characterized by indicating 

how similar they are, that is, the similarity coefficient. The similarity coefficient is achieved with a 

distance called Euclidean Distance [38]. In Figure 3, the right axis indicates the number of days 

with a pandemic (from April 12 2019 to October 4, 2020) and its density of infected cases for 176 

days. The color scale on the right side of the map indicates the density of infected ranging from 

1000 in blue to 200 in pink color corresponding to daily cases. 

 

It is notable that the SuperHeat has three large groupings or clustering. The first clustering 

has the lowest scale of infections around 200 (75 to 176 day with pandemic). The  second clustering 

has the highest density of infections occurred in the first days of the pandemic since day 1 to day 

50, practically all regions and in all comorbidities the patients N and H were infected, and there 



were about 1000 daily cases of contagion (blue color), see Figure 3. The third clustering was result 

of the selection of the days that have the highest number of transitions of infections ranging from 

1000 to less than 200 daily infections in all regions and by the type of comorbidity of the patients. 

The third clustering is around days 51 to 74 of pandemic in Mexico, see Figure 3. 

 

 
Figure 3. SuperHeat map that shows daily behavior of the pandemic in all regions of Mexico. 

 

In the first clustering analysis, there are 4 cases that have an average prolongation of density 

of N infected patients for a longer time, alternating between 800 and 600 daily infected cases from 

day 75 to 176 with the pandemic; where R1 in patients with COPD, Renal and Immunosuppression 

comorbidities of ambulatory patients and the R5 with Immunosuppression of ambulatory patients 

too. There are only 3 cases that have a prolongation of average density of infected patients for more 

than 800 and 600 daily cases of H patients: R1 in patients with Immunosuppression and R2 with 

Asthma and Immunosuppression. The rest of the regions and comorbidities among the patients 

hospitalized and non-hospitalized are found alternating with a density of infected around of 400 and 

less than 200 daily cases. It is very important to note that in this clustering has reported the least 

number of cases of H, the majority of infected are N and they are in house for their recovery. 

 

In the second clustering analysis, in all regions both N and H patients, they have the highest 

density of infections with around 1000 daily cases. For non-hospitalized patients, R1 in patients 

with COPD, Immunosuppression, Renal have the prolongation of the average density of infected 

patients for the longest time ranging from 1000 to 800 daily of almost 50 days of pandemic. The R2 

in patients with Cardiovascular, COPD, Renal, Other Diseases and Immunosuppression with NH 

have the prolongation of the average density of infected patients for a longer time ranging from 

1000 to 800 daily of almost 50 days of pandemic. R3 in patients with Cardiovascular, COPD, 

Renal, Immunosuppression with NH have the average density prolongation of patients infected for 

longer periods ranging from 1000 to 800 daily of almost 50 days of pandemic. R5 in patients with 

Cardiovascular, COPD, Immunosuppression and Renal with NH have the prolongation of the 

average density of infected patients for a longer time ranging from 1000 to 800 daily of almost 50 

days of pandemic. For Hospitalized patients, R2 is the only region that has the prolongation of mean 



density of infected patients by greater time ranging from 1000 to 800 daily of almost 50 days of 

pandemic, in comorbidities such as Asthma, Cardiovascular, COPD and Immunosuppression. 

 

Conclusions 

 

At the end of 2019, humanity faced the challenge of a new pandemic called 

COVID-19. This disease has claimed the lives of thousands of people, mainly in 

developing economies. Therefore, this research presents a regional analysis of COVID-19 

in Mexico. The analysis period is from April 12 to October 5, 2020 (761,665 patients). 

From Random Matrix Theory, moments Wigner’s law of the semicircle and Machine 

Learning in SuperHeat maps, the probability distribution of 9 comorbidities in Mexican 

patients for 5 geographic regions was study.  

The COPD comorbidity, renal diseases and other diseases represent the highest 

probability in infected patients who have been hospitalized (H). In the case of COPD, 

renal diseases and other diseases in region 1 and region 2 present the highest probability 

value in hospitalizations. On the other hand, these same comorbidities are also 

found in ambulatory patients, where high levels of probability prevail among those 

infected. 

Undoubtedly this methodology is unique and it is applicable to COVID-19 data 

for many countries in the world in comorbidities of patients. In general the RMTs can 

work to analyze the multivariate behavior of large data as it is done in this work and 

obtain fast visual conclusion about the eigenvalues and their probability, see Figure 

2. This Figure 2 is a gorgeous graphical representation of the Wigner semicircles 

overlapping as a result of this propose where it is easy for the readers to obtain 

conclusions about the comorbidity of the regions of Mexico and their COVID-19 

patients. 

Figure 3 concludes the daily analysis. The SuperHeat map is a complex graph 

that includes the correlation analysis. This is used to study the comorbidities of the 

regions of Mexico and its daily analysis of the pandemic behavior.  

 
 

Abbreviations 

 

Diabetes (D), COPD (CO), Asthma(A), Immunosuppression (IM), Hypertension (HY), 

Cardiovascular (CA), chronic kidney disease (RE), obesity (OB), others diseases (OD), Region 1 

(R1), Region 2 (R2), Region 3 (R3), Region 4 (R4), Region 5 (R5), Non-hospitalized patient (N), 

and Hospitalized patients (H). 
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