Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A Lagrangian Approach Towards Quantitative Analysis Of Flow-mediated Infection Transmission In Indoor Spaces With Application To SARS-COV-2

View ORCID ProfileJoseph Wilson, View ORCID ProfileShelly L. Miller, View ORCID ProfileDebanjan Mukherjee
doi: https://doi.org/10.1101/2021.08.22.21262447
Joseph Wilson
1Department of Mechanical Engineering, University of Colorado Boulder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Joseph Wilson
Shelly L. Miller
1Department of Mechanical Engineering, University of Colorado Boulder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shelly L. Miller
Debanjan Mukherjee
1Department of Mechanical Engineering, University of Colorado Boulder
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Debanjan Mukherjee
  • For correspondence: debanjan@colorado.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

The ongoing SARS-CoV-2 (Covid-19) pandemic has ushered an unforeseen level of global health and economic burden. As a respiratory infection, Covid-19 is known to have a dominant airborne transmission modality, wherein fluid flow plays a central role. Quantification of complex non-intuitive dynamics and transport of pathogen laden respiratory particles in indoor flows has been of specific interest. Here we present a Lagrangian computational approach towards quantification of human-to-human exposure quantifiers, and identification of pathways by which flow organizes transmission. We develop a Lagrangian viral exposure index in a parametric form, accounting for key parameters such as building and layout, ventilation, occupancy, biological variables. We also employ a Lagrangian computation of the Finite Time Lyapunov Exponent field to identify hidden patterns of transport. A systematic parametric study comprising a set of 120 simulations, yielding a total of 1,320 different exposure index computations are presented. Results from these simulations enable: (a) understanding the otherwise hidden ways in which air flow organizes the long-range transport of such particles; and (b) translating the micro-particle transport data into a quantifier for understanding infection exposure risks.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work utilized resources from the University of Colorado Boulder Research Computing Group, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder, and Colorado State University. The Authors also acknowledge the availability of an academic license from SimScale to complete this work.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Not applicable for this study

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • ↵* jowi6659{at}colorado.edu

  • ↵† shelly.miller{at}colorado.edu

Data Availability

All associated data have been presented in the manuscript.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted August 25, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A Lagrangian Approach Towards Quantitative Analysis Of Flow-mediated Infection Transmission In Indoor Spaces With Application To SARS-COV-2
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Lagrangian Approach Towards Quantitative Analysis Of Flow-mediated Infection Transmission In Indoor Spaces With Application To SARS-COV-2
Joseph Wilson, Shelly L. Miller, Debanjan Mukherjee
medRxiv 2021.08.22.21262447; doi: https://doi.org/10.1101/2021.08.22.21262447
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A Lagrangian Approach Towards Quantitative Analysis Of Flow-mediated Infection Transmission In Indoor Spaces With Application To SARS-COV-2
Joseph Wilson, Shelly L. Miller, Debanjan Mukherjee
medRxiv 2021.08.22.21262447; doi: https://doi.org/10.1101/2021.08.22.21262447

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (271)
  • Allergy and Immunology (557)
  • Anesthesia (135)
  • Cardiovascular Medicine (1769)
  • Dentistry and Oral Medicine (238)
  • Dermatology (173)
  • Emergency Medicine (316)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (662)
  • Epidemiology (10812)
  • Forensic Medicine (8)
  • Gastroenterology (594)
  • Genetic and Genomic Medicine (2960)
  • Geriatric Medicine (288)
  • Health Economics (534)
  • Health Informatics (1933)
  • Health Policy (836)
  • Health Systems and Quality Improvement (745)
  • Hematology (293)
  • HIV/AIDS (633)
  • Infectious Diseases (except HIV/AIDS) (12525)
  • Intensive Care and Critical Care Medicine (696)
  • Medical Education (300)
  • Medical Ethics (87)
  • Nephrology (324)
  • Neurology (2808)
  • Nursing (152)
  • Nutrition (433)
  • Obstetrics and Gynecology (560)
  • Occupational and Environmental Health (597)
  • Oncology (1473)
  • Ophthalmology (444)
  • Orthopedics (172)
  • Otolaryngology (257)
  • Pain Medicine (190)
  • Palliative Medicine (56)
  • Pathology (381)
  • Pediatrics (868)
  • Pharmacology and Therapeutics (367)
  • Primary Care Research (338)
  • Psychiatry and Clinical Psychology (2647)
  • Public and Global Health (5383)
  • Radiology and Imaging (1016)
  • Rehabilitation Medicine and Physical Therapy (597)
  • Respiratory Medicine (727)
  • Rheumatology (330)
  • Sexual and Reproductive Health (290)
  • Sports Medicine (279)
  • Surgery (327)
  • Toxicology (48)
  • Transplantation (150)
  • Urology (126)