1 Relationship between astrocyte reactivity, using novel ¹¹C-BU99008 PET, and glucose metabolism, grey

2 matter volume and amyloid load in cognitively impaired individuals

- 3 Nicholas R Livingston, MSc¹*; Valeria Calsolaro, MD, PhD¹*; Rainer Hinz, PhD²; Joseph Nowell, MSc¹; Sanara
- 4 Raza, MSc¹; Steve Gentleman, PhD¹; Robin J Tyacke, PhD¹; Jim Myers, PhD¹; Ashwin V Venkataraman, MD,
- 5 PhD¹; Robert Perneczky, MD, PhD^{3,4,5,6}; Roger N Gunn, PhD^{7,8}; Eugenii A Rabiner, MBBCh, FCPsych SA^{7,8};
- 6 Christine A Parker, PhD⁹; Philip S Murphy, PhD⁹; Paul B Wren, PhD⁹; David J Nutt, MD, PhD, FRCP, FMedSci¹;
- 7 Paul M Matthews, MD, DPhil, FRCP, FMedSci^{1,10}; Paul Edison, MBBS, PhD, FRCP^{1Ψ}
- 8 * Both authors contributed equally to the manuscript
- 9
- 10

11 1 - Dept of Brain Sciences, Imperial College London, London, United Kingdom

- 12 2 Wolfson Molecular Imaging Centre, University of Manchester, UK
- 13 3 Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- 14 4 German Centre for Neurodegenerative Disorders (DZNE) Munich, Germany
- 15 5 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- 16 6 Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
- 17 7 Invicro, London, United Kingdom
- 18 8 King's College London, London, United Kingdom
- 19 9 GlaxoSmithKline, Stevenage, United Kingdom
- 20 10 UK Dementia Research Institute at Imperial College London

- 22 Ψ Corresponding author:
- 23 Dr Paul Edison, MD, MRCP, PhD, FRCP, FRCPI,
- 24 Clinical Senior Lecturer, Imperial College London,
- 25 Nopertmentropretraipossiewessearch that nas Modicin certified by peer review and should not be used to guide clinical practice.

- 26 1st Floor, B Block
- 27 Hammersmith Hospital Campus,
- 28 Du Cane Road, London, W12 0NN
- Tel: +442083833725 Fax: +442033134320
- 30 E-mail: paul.edison@imperial.ac.uk

-

57 Abstract

58

59 Post mortem neuropathology suggests that astrocyte reactivity may play a significant role in neurodegeneration 60 in Alzheimer's disease. We explored this in vivo using multimodal PET and MRI imaging. Twenty subjects (11 61 older, cognitively impaired subjects and 9 age-matched healthy controls) underwent brain scanning using the novel reactive astrocyte PET tracer ¹¹C-BU99008, ¹⁸F-FDG and ¹⁸F-florbetaben PET, and T1-weighted MRI. 62 63 Differences between cognitively impaired subjects and healthy controls in voxel-wise levels of astrocyte 64 reactivity, glucose metabolism and grey matter volume were explored, and their relationship to each other was 65 assessed using Biological Parametric Mapping (BPM). Aβ-positive cognitively impaired subjects showed greater 66 brain astrocyte reactivity, except in the temporal lobe, with further increased astrocyte reactivity in Mild Cognitive 67 Impairment compared to Alzheimer's subjects in the cingulate cortices. BPM correlations revealed regions which showed reduced ¹¹C-BU99008 uptake in A β -positive cognitively impaired subjects, such as the temporal lobe, 68 69 also showed reduced ¹⁸F-FDG uptake and grey matter volume. BPM analysis also revealed a regionally-dynamic 70 relationship between astrocyte reactivity and amyloid uptake: increased amyloid load in cortical association areas 71 of the temporal lobe and cingulate cortices was associated with reduced astrocyte reactivity, whilst increased 72 amyloid uptake in primary motor and sensory areas (in which amyloid load occurs later) was associated with 73 increased astrocyte reactivity. These novel observations add to the hypothesis that while astrocyte reactivity may 74 be triggered by early Aβ-deposition, sustained pro-inflammatory astrocyte reactivity with greater amyloid 75 deposition may lead to astrocyte dystrophy and amyloid-associated neuropathology such as grey matter atrophy 76 and glucose hypometabolism.

- 77
- 78
- 79
- 80
- 81

82

83

85 1. Introduction

Astrocytes are integral to normal brain function, playing important roles in neurogenesis, synaptogenesis, control 86 87 of blood-brain barrier permeability and maintaining extracellular homeostasis¹. In Alzheimer's disease (AD), 88 astrocytes can assume a reactive phenotype in which they become hypertrophic with the upregulation of glial 89 fibrillary acidic protein $(GFAP)^2$. Astrocyte reactivity associated with amyloid beta $(A\beta)$ plaques is believed to 90 have a neuroprotective role in pre-symptomatic and early AD³ through expression of proteases involved in the 91 enzymatic cleavage and removal of $A\beta^4$. However, with higher levels of $A\beta$, astrocyte reactivity can produce 92 neurotoxic reactive oxygen species and inflammatory cytokines⁵. Astrocytes in AD also can lose normal neuroprotective capabilities as they become dystrophic with the progression of AD pathology^{6,7}. 93

94

95 Glucose hypometabolism, measured using ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) PET, and brain atrophy, measured 96 using MRI, were two of the earliest neuroimaging markers of neurodegeneration developed for AD⁸. By 97 contributing to synaptic loss and neurodegeneration, pro-inflammatory and dystrophic astroglia may be associated 98 with accelerated grey matter atrophy⁹. Astrocytes are also necessary for metabolic support of neuronal activity¹⁰, 99 so AD related changes in astrocytes might contribute directly to the brain glucose hypometabolism characteristic 100 of AD⁸.

101

102 The novel PET tracer ¹¹C-BU99008 has high specificity and selectivity for binding sites of type-2 imidazoline 103 receptors (I₂-BS), which are expressed primarily within astrocytes and are up-regulated with reactivity¹¹. This tracer thus allows the study of astrocyte reactivity in vivo¹²⁻¹⁷. Pathologically increased ¹¹C-BU99008 PET signal 104 recently has been demonstrated in neurodegenerative disorders including AD¹⁸ and Parkinson's disease¹⁹. 105 106 Currently, the only available PET tracer which can measure astrocyte reactivity *in vivo* is ¹¹C-deuterium-Ldeprenyl (11C-DED)20, 21. However, this tracer binds to monoamine oxidase-B (MAO-B), which is not 107 significantly elevated in late stage A β -deposition. The increased sensitivity of ¹¹C-BU99008 over ¹¹C-DED to 108 109 detect astrocyte reactivity has recently been demonstrated in a preclinical model of AD²², thus warranting it's use 110 through further study in this clinical population. The aim of this study was to evaluate the relationship between 111 astrocyte reactivity, using ¹¹C-BU99008 PET, glucose metabolism, grey matter atrophy and Aβ-deposition in cognitively impaired subjects with a clinical diagnosis of AD-related dementia or mild cognitive impairment 112 113 (MCI).

114 2. Materials and Methods

We recruited 20 subjects for this pilot study. Ethical approval for this study was obtained from the local and regional Research Ethics Committee, whilst approval to administer radiotracers was obtained from the Administration of Radioactive Substances Advisory Committee (ARSAC) UK. The human biological samples sourced from participants were obtained ethically and their research use was in accordance with the terms of the informed consent.

120

121 2.1 Subjects

Subjects were recruited from memory clinics, research registries and advertisements. We included 11 cognitively 122 123 impaired subjects with a clinical diagnosis of AD-related dementia or MCI (6 AD, 5 MCI; Mini-Mental Status 124 Examination (MMSE) score [mean \pm SD] = 22.6 \pm 4.1) and 9 age-matched healthy volunteers without a history of 125 brain disease (MMSE score [mean \pm SD] = 29.1 \pm 1.27). The inclusion criteria for cognitively impaired subjects included the ability to give informed consent, an MMSE score ≥ 17 and at least 8 years of education. Exclusion 126 127 criteria included contradictions to MRI and any evidence of significant small vessel or vascular disease on MRI. 128 All subjects underwent medical and detailed cognitive assessments using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), as well as ¹¹C-BU99008, ¹⁸F-FDG and ¹⁸F-florbetaben PET 129 and T1-weighted structural MRI. A β -positivity was defined by using a whole brain uptake cut-off of 1.43²³. 130

131

132 2.2 Image acquisition

All image acquisition was performed at the Invicro Centre for Imaging Sciences in London, UK. MRI images
were acquired using either a 3 Tesla Magnetom Trio or Verio (Siemens Healthcare Sector, Erlangen, Germany)
with a 32-receiver channel head matrix coil. All PET imaging was performed on a Siemens Truepoint PET/CT
scanner.

137 2.2.1 MRI

138 2.2.1 Structural MRI

All subjects underwent a sagittal T1-weighted MPRAGE, acquired with TR=2400 ms, TE=3.06 ms, flip angle=9°,
TI=900 ms, matrix=[256 x 246], a 1 mm isotropic voxel size, anteroposterior phase encoding direction, IPAT
factor 2 and a symmetric echo.

142

143 2.2.2 PET

144 2.2.2.1 ¹¹C-BU99008 PET

145 All subjects underwent ¹¹C-BU99008 PET scanning to assess astrocyte reactivity in the brain. ¹¹C-BU99008 was synthesised on site. An initial CT scan was acquired for attenuation correction of the PET images, before a mean 146 activity of 330 (±30) MBg ¹¹C-BU99008 in 20ml normal saline was injected into the antecubital vein. Dynamic 147 emission ¹¹C-BU99008 PET images were acquired over 120 minutes and rebinned into 29 timeframes: 8x15s, 148 3x60s, 5x120s, 5x300s, and 8x600s. All subjects had arterial blood sampled continuously for the first 15 minutes, 149 150 with twelve additional samples taken at 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, and 100 minutes after injection. 151 A gamma counter was used to measure radioactivity in the whole blood and plasma for each sample. Reverse-152 phase high-performance liquid chromatography was used to evaluate metabolism of ¹¹C-BU99008 by calculating 153 the relative proportions of parent tracer and metabolites in the blood. Parametric images (Impulse Response Function at 120 minutes (IRF-120)) of ¹¹C-BU99008 was generated using spectral analysis. This was performed 154 using MICK-PM (Modelling, Input Functions and Compartmental Kinetics Parametric Map) software (available 155 156 on request from Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK).

157

158 2.2.2.2 ¹⁸F-FDG and ¹⁸F-florbetaben PET

All subjects also underwent ¹⁸F-FDG and ¹⁸F-florbetaben PET scanning to assess glucose metabolism and Aβ-159 deposition in the brain, respectively. Subjects received a target dose of 185 MBq ¹⁸F-FDG and 236.4 (±6.8) MBq 160 ¹⁸F-florbetaben as single intravenous boluses in the respective scanning sessions. For ¹⁸F-FDG scans, PET 161 162 acquisition commenced 30 minutes after tracer injection, and the scans were acquired for 30 minutes. Using 163 MICKPM, activity over the last 30 minutes was averaged, resulting in a 3D 30-60min ¹⁸F-FDG add image. For 164 ¹⁸F-florbetaben scans, PET acquisition commenced 90 minutes after tracer administration and the subjects were 165 scanned for 30 minutes. Activity over the 30-minute acquisition period was averaged, resulting in a 3D 90-120min 166 ¹⁸F-florbetaben add image.

167 2.3 Image processing

168 MRI and PET images were pre-processed using SPM12 (Wellcome centre for human neuroimaging, UCL, 169 London, UK) in MATLAB (v2014a). 3D PET data was co-registered to the structural MRI of each subject. The 170 structural MRI was segmented into grey matter (GM), white matter (WM) and CSF, and the GM and WM maps 171 were used to generate a study-specific template using diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)²⁴. The DARTEL flow fields were then used to normalise each of the 172 coregistered PET images and GM maps to MNI space and an 8mm FWHM Gaussian kernel was used to smooth 173 174 the data. Tracer uptake for ¹¹C-BU99008 PET was calculated through spectral analysis (IRF-120min). Tracer 175 uptake for ¹⁸F-FDG and ¹⁸F-florbetaben PET was evaluated using the standardised uptake value ratio (SUVR) and 176 the Hammers atlas²⁵, referenced to the pons grey & white matter and the cerebellar grey matter, respectively. This 177 was done by dividing the cerebral cortical ¹⁸F-FDG and ¹⁸F-florbetaben mean images by the uptake value of the 178 relevant reference region, which had been calculated in Analyze 11.0 (developed by the Biomedical Imaging Resource (BIR) at the mayo clinic). This resulted in smoothed normalised ¹⁸F-FDG, ¹⁸F-florbetaben, ¹¹C-179 BU99008 and GM voxel-based morphometry (VBM) images that were used to assess glucose metabolism, Aβ 180 181 deposition, astrocyte reactivity and grey matter atrophy patterns, respectively. This was done through voxel-wise 182 statistical parametric mapping (SPM) and biological parametric mapping (BPM) analysis.

183

184 2.4 SPM analysis

185 Voxel-level SPM analysis was performed in order to better characterise the spatial distribution of tracer uptake
186 difference between the cognitively impaired subjects and the healthy controls. The smoothed normalised ¹¹C187 BU99008 IRF-120 parametric maps, 30-60min ¹⁸F-FDG add images, 90-120min ¹⁸F-florbetaben add images and
188 VBM GM images of all subjects were entered into 4 separate two-sample Student's t-test in SPM12 (2-tailed).

189

190 2.5 BPM and ROI correlation analysis

191 In order to assess the neuroanatomical relationship between ¹¹C-BU99008 binding and glucose metabolism, A β 192 deposition and GM atrophy, BPM and ROI correlation analysis was performed. For the ROI correlations, subject-193 specific object maps were created from the Hammers atlas^{25, 26} and were used to sample the ROI radioactivity 194 concentration for the 3 normalised (not smoothed) PET images, as well as the ROI volume of the VBM images.

The ROIs included the frontal lobe, temporal lobe, medial temporal lobe, parietal lobe, occipital lobe, anterior cingulate, posterior cingulate and the whole brain (made up of the 4 lobes and the cingulate). Correlation between each of the 4 imaging measures in each of the four lobes and whole brain for Aβ-positive patients was calculated using Pearson's correlation coefficient in SPSS (v26, released 2019). For the BPM correlations, Z-score maps for each of the 4 imaging modalities were created. These represent tracer uptake and GM atrophy patterns relative to the healthy control's mean and standard deviation for each subject on a voxel-level basis, calculated with the following formulae:

202
$$Zmap of {}^{11}C\text{-}BU99008 = \frac{Patient {}^{11}C\text{-}BU99008-mean of healthy controls {}^{11}C\text{-}BU99008}{SD of healthy controls {}^{11}C\text{-}BU99008}$$

203 $Zmap \ of \ ^{18}F-FDG = \frac{Patient \ ^{18}F-FDG-mean \ of \ healthy \ controls \ ^{18}F-FDG}{SD \ of \ healthy \ controls \ ^{18}F-FDG}$

204 $Zmap \ of \ ^{18} F$ -florbetaben $= \frac{Patient \ ^{18} F$ -florbetaben-mean of healthy controls $^{18} F$ -florbetaben SD of healthy controls $^{18} F$ -florbetaben

205 $Zmap \ of \ VBM \ GM = \frac{Patient \ VBM \ GM-mean \ of \ healthy \ controls \ VBM \ GM}{SD \ of \ healthy \ controls \ VBM \ GM}$

Voxel-level correlations between ¹¹C-BU99008 and the remaining three modalities were estimated for all patients
 using BPM²⁷, an SPM toolbox that runs through MATLAB. Additional correlations were run on Aβ-positive
 patients between ¹¹C-BU99008 and ¹⁸F-FDG & VBM GM.

209

210

211 **3. Results**

212 All the healthy controls were Aβ-negative, 7 of the patients were Aβ-positive (4 AD, 3 MCI) and 4 patients were

213 A β -negative (2 AD, 2 MCI).

214 **3.1 Group-level SPM analysis**

215 Two-sample t-tests in SPM contrasting $A\beta$ -positive patients and healthy controls showed distributions of

216 differences in tracer uptake and grey matter volumes that were consistent with the ROI-analyses. Aβ-positive

217 patients had increased ¹¹C-BU99008 uptake particularly in the frontal and occipital lobes (Figure 1a), reduced ¹⁸F-

218 FDG uptake in the temporal, parietal and occipital lobes (Figure 1b), reduced grey matter volume in temporal

regions, particularly the hippocampi (Figure 1c), and increased ¹⁸F-florbetaben uptake in frontotemporal regions

- 220 (Figure 1d). An exploratory two-sample t-test comparing MCI and AD subjects showed increased ¹¹C-BU99008
- 221 uptake in MCI patients, particularly in the frontal and temporal regions.
- 222

223 3.2 Regional and Voxel-wise Correlations

224 3.2.1 ¹¹C-BU99008 x ¹⁸F-FDG

BPM analysis showed that reduced ¹¹C-BU99008 uptake was correlated with reduced ¹⁸F-FDG uptake, particularly in the temporal, parietal and frontal lobes. ROI correlations suggested the same directions for correlations, although none of the regions reached statistical significance frontal (r=0.202, p=0.664), occipital (r=0.264, p=0.567), temporal (r=0.567, p=0.184) and parietal (r=0.622, p=0.135) lobes, and the whole brain (r=0.478, p=0.279).

230 3.2.2 ¹¹C-BU99008 x VBM

BPM analysis showed reduced ¹¹C-BU99008 uptake was correlated with reduced grey matter volume in the frontal and temporal lobes. ROI correlations showed the same correlation, showing strong correlations in the frontal (r=0.808, p=0.028), temporal (r=0.935, p=0.002), parietal (r=0.833, p=0.020) and occipital lobes (r=0.762, p=0.047), as well as the whole brain (r=0.901, p=0.006).

235 3.2.3 ¹¹C-BU99008 x ¹⁸F-florbetaben

BPM analysis described an inverse correlation of increased ¹⁸F-florbetaben uptake with reduced ¹¹C-BU99008 uptake in regions such as the temporal lobe and the cingulate, whilst increased ¹⁸F-florbetaben uptake was positively correlated with increased ¹¹C-BU99008 uptake in primary motor and primary sensory areas. ROI analyses showed that reduced ¹¹C-BU99008 uptake was correlated with increased ¹⁸F-florbetaben uptake, particularly in the frontal (r=-0.780, p=0.039), temporal (r=-0.779, p=0.039), occipital (r=-0.911, p=0.004) lobe and the whole brain (r=-0.798, p=0.032).

242

- 243
- 244

246 4. Discussion

247

248 In this study, we used the novel imidazoline receptor PET tracer ¹¹C-BU99008 to test for evidence of a 249 dynamic relationship between astrocyte reactivity and amyloid-associated neurodegeneration based on tissue hypometabolism and atrophy measured using ¹⁸F-FDG PET and structural MRI, respectively. We found evidence 250 251 for increased astrocyte reactivity in A β -positive patients, primarily in frontal, parietal and occipital regions. These 252 increases were greater in MCI than AD patients. Regional correlational analyses showed that lower astrocyte 253 reactivity in Aβ-positive patients was associated with both glucose hypometabolism in the parietal, temporal and 254 frontal lobes and grey matter atrophy in frontal and temporal lobes. However, analyses of regional differences in 255 the relationships between PET markers of Aβ-deposition and astrocyte reactivity displayed a striking 256 heterogeneity; greater Aβ-deposition was associated with increased astrocyte reactivity in primary motor and 257 primary sensory cortical areas, but decreased astrocyte reactivity in temporal regions.

258

259 ¹¹C-BU99008 is a novel PET tracer that binds to I₂-BS, expression of which is associated with astrocyte reactivity^{28, 29}. Brain I₂-BS is upregulated with healthy aging³⁰, and is further increased in AD³¹. The sensitivity 260 261 and specificity of ¹¹C-BU99008 to bind to I₂-BS expressing reactive astrocytes has been further evidenced in a 262 recent autoradiography study of AD brains where tracer uptake was greater compared to cognitively normal 263 brains²². In line with this, we found cognitively impaired subjects showed increased ¹¹C-BU99008 uptake 264 compared to healthy controls, corroborating earlier studies with another PET marker of astrocyte reactivity, ¹¹Cdeuterium-L-deprenyl (¹¹C-DED)³². Additionally, we found increased ¹¹C-BU99008 uptake in MCI subjects 265 266 compared to AD subjects, particularly in the frontal lobe. Interestingly, another ¹¹C-DED study also found 267 increased uptake in the frontal lobe in A β -positive MCI, but not AD, subjects compared to healthy controls²⁰. 268 Both these findings agree with the hypothesis that astrocyte reactivity is an early event in the progression of AD 269 pathology, occurring in response to early amyloid deposition, which typically originates in the frontal lobe³³. In 270 the early stages, reactive astrocytes have a neuroprotective role, aiding in the clearance of $A\beta^4$. Further evidence 271 of this hypothesis comes from a subsequent study that showed increased ¹¹C-DED binding in autosomal dominant 272 AD patients early in their disease progression³⁴, primarily in temporal regions, another region involved in early A β deposition³⁵. In our cohort of A β -positive MCI and AD subjects, we found lower ¹¹C-BU99008 binding in the 273 274 temporal lobe, which was associated with greater relative progression of amyloid-associated neuropathology, that

275 is glucose hypometabolism and grey matter atrophy. We propose this reduced ¹¹C-BU99008 uptake in the 276 temporal lobe region reflects astrocyte dystrophy³⁶, brought about by an amyloid-induced chronic proinflammatory and neurotoxic astrocyte phenotype³⁷ and resulting in reduced glycolytic capacity and secondary 277 impaired neuronal metabolism³⁸ or cell loss^{39, 40}. Correlations between regional reductions in ¹¹C-DED and¹⁸F-278 FDG PET signals similar to those described here also were associated with regionally more advanced ¹¹C-PIB 279 PET pathology in a longitudinal study of people with autosomal dominant AD or MCI^{41} . Interaction of A β with 280 281 reactive astrocytes has been proposed as a trigger for astrocytes to switch from a neuroprotective to a neurotoxic 282 role.

283

284 There are obvious limitations to our study. First, only a small number of subjects were able to be imaged. While 285 this is a pilot study, the explanatory power was enhanced by the design in which uptake of the three PET tracers 286 and brain volume all were assessed in the same people. A second limitation was the cross-sectional design, which 287 we acknowledge; however, post mortem pathology has the same limitation. Our results thus are better interpreted 288 descriptively and as suggestive of a hypothetical model, rather than a strong, independent test. Nonetheless, the 289 consistency of directions of effect observed in this study and the earlier ¹¹C-DED PET studies^{20, 41} provides 290 compelling support for the model proposed. That is, astrocyte reactivity occurs in response to early $A\beta$ -deposition, 291 aiding in the clearance of A β , but following interactions with high levels of A β the astrocytes become neurotoxic, 292 contributing to reduced tissue activity and cell death that is associated with cognitive impairment. It also 293 strengthens confidence in the earlier work, which otherwise suffers from uncertainties regarding the specificity of 294 binding of ¹¹C-DED in the brain²⁰. Nonetheless, ¹¹C-BU99008 can detect astrocyte reactivity with a greater sensitivity than ¹¹C-DED²², especially amongst higher levels of amyloid load^{18, 42}, and thus should be prioritised. 295

296

In conclusion, this study supports neuropathological observations arguing that astrocyte reactivity with amyloidrelated neuropathology is dynamic². We have demonstrated *in vivo* with the novel PET tracer ¹¹C-BU99008 that astrocyte reactivity is increased in regions presumed to represent earlier stages of pathological progression with low Aβ-deposition loads, and conversely relatively reduced in regions that show signs of more advanced disease progression with greater Aβ-deposition and atrophy. In the absence of molecular imaging markers intrinsically discriminating different microglial activation phenotypes, our multi-modal imaging approach may allow relevant inferences to be made from the relative ¹¹C-BU99008, ¹⁸F-FDG and ¹⁸F-florbetaben PET signals and brain volume

sensitive MRI measures. Future, larger, longitudinal studies are needed to further test this dynamic model and, if
 supported, interventions developed to arrest progression of the neurotoxic phenotypic transformation of astrocytes
 in AD.

307

308 Acknowledgements

The authors thank Invicro Centre for Imaging Sciences for the provision of ¹¹C-BU99008, scanning and blood 309 310 analysis equipment. The authors also thank Piramal Life Sciences/Life Molecular Imaging for providing the ¹⁸Fflorbetaben and permission to acquire unlabelled florbetaben. We thank Dementia Platform UK (DPUK) and GSK 311 312 for the generous funding for this project. This research was co-funded by the NIHR Imperial Biomedical Research Centre and was supported by the NIHR Imperial Clinical Research Facility. The views expressed are those of the 313 314 authors and not necessarily those of NHS, the NIHR nor the Department of Health. P.E. was funded by the Medical Research Council and now by Higher Education Funding Council for England (HEFCE). He has also received 315 316 grants from Alzheimer's Research, UK, Alzheimer's Drug Discovery Foundation, Alzheimer's Society, UK, 317 Alzheimer's association, US, Medical Research Council, UK, Novo Nordisk, Piramal Life Sciences and GE 318 Healthcare. P.M.M. gratefully acknowledges generous support from Edmond J Safra Foundation and Lily Safra, 319 the NIHR Investigator programme and the UK Dementia Research Institute.

320

321 Conflicts of Interest

P.E. is a consultant to Roche, Pfizer and Novo Nordisk. He has received speaker fees from Novo Nordisk, Pfizer,
Nordea, Piramal Life Science. He has received educational and research grants from GE Healthcare, Novo
Nordisk, Piramal Life Science/Life Molecular Imaging, Avid Radiopharmaceuticals and Eli Lilly. He is an
external consultant to Novo Nordisk and a member of their Scientific Advisory Board. P.M.M. acknowledges
consultancy fees from Roche, Adelphi Communications, Celgene and Biogen. He has received honoraria or
speakers' honoraria from Novartis, Biogen and Roche and has received research or educational funds from
Biogen, Novartis, GlaxoSmithKline and Nodthera.

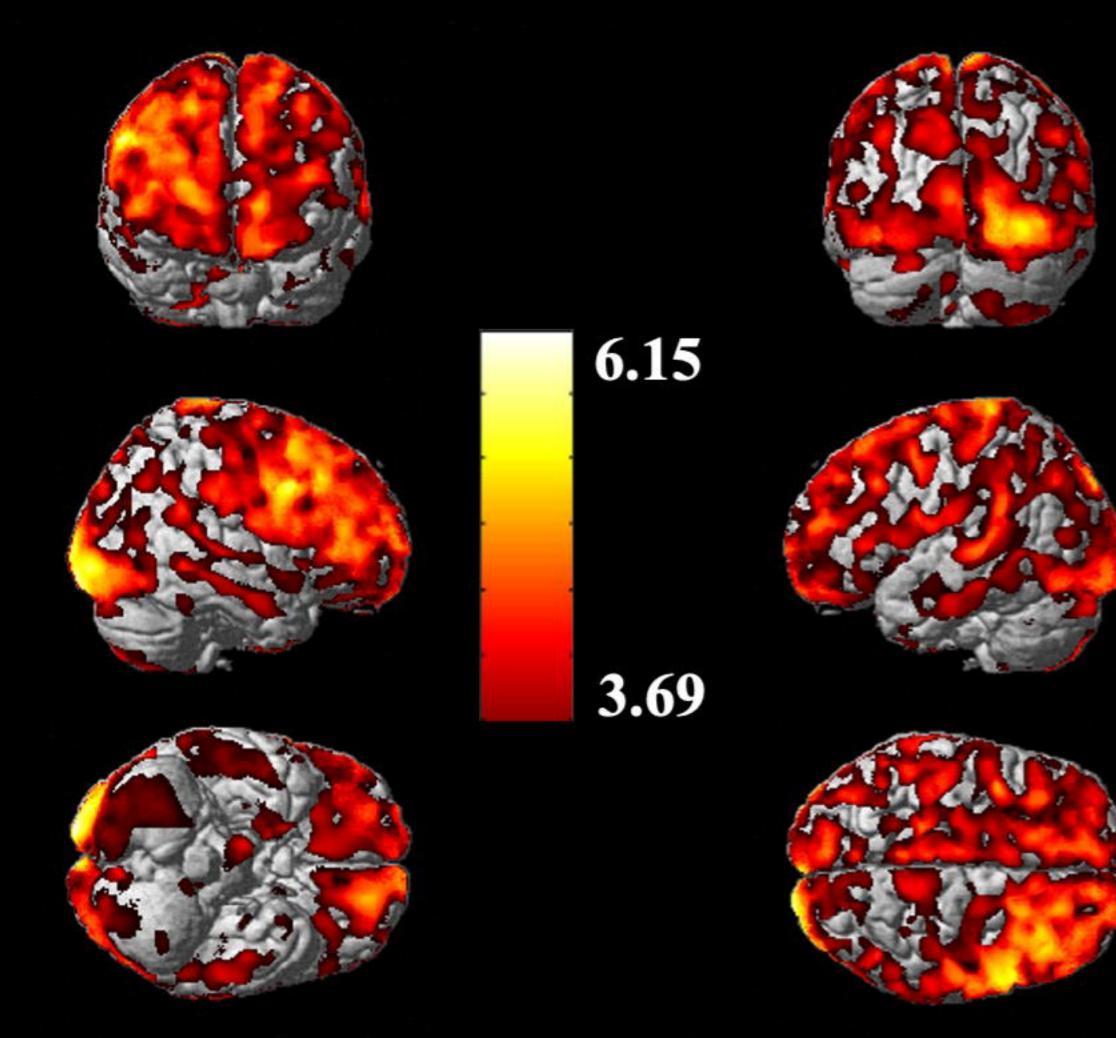
329

331	Refere	eferences	
332 333 334	1.	Vasile F, Dossi E, Rouach N. Human astrocytes: structure and functions in the healthy brain. 2017.	
335 336 337 338	2.	González-Reyes RE, Nava-Mesa MO, Vargas-Sánchez K, Ariza-Salamanca D, Mora-Muñoz L. Involvement of astrocytes in Alzheimer's disease from a neuroinflammatory and oxidative stress perspective. 2017.	
339 340 341	3.	Nagele RG, D'Andrea MR, Lee H, Venkataraman V, Wang HY. Astrocytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains. <i>Brain Research</i> 2003.	
342 343	4.	Ries M, Sastre M. Mechanisms of A β clearance and degradation by glial cells. 2016.	
344 345	5.	Farina C, Aloisi F, Meinl E. Astrocytes are active players in cerebral innate immunity. 2007.	
346 347 348	6.	Verkhratsky A, Rodrigues JJ, Pivoriunas A, Zorec R, Semyanov A. Astroglial atrophy in Alzheimer's disease. 2019.	
349 350 351	7.	Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer's Disease. <i>Neurotherapeutics</i> 2010.	
352 353	8.	Márquez F, Yassa MA. Neuroimaging Biomarkers for Alzheimer's Disease. 2019.	
354 355 356 357	9.	Diniz LP, Tortelli V, Matias I, Morgado J, Araujo APB, Melo HM <i>et al</i> . Astrocyte transforming growth factor beta 1 protects synapses against Aβ oligomers in Alzheimer's disease model. <i>Journal of Neuroscience</i> 2017.	
358 359 360	10.	Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: Focus on Astrocyte-neuron metabolic cooperation. 2011.	
361 362 363	11.	Regunathan S, Feinstein DL, Reis DJ. Expression of non-adrenergic imidazoline sites in rat cerebral cortical astrocytes. <i>Journal of Neuroscience Research</i> 1993.	
364 365 366 367	12.	Venkataraman AV, Keat N, Myers JF, Turton S, Mick I, Gunn RN <i>et al.</i> First evaluation of PET- based human biodistribution and radiation dosimetry of 11C-BU99008, a tracer for imaging the imidazoline2 binding site. <i>EJNMMI Research</i> 2018.	
368 369 370 371	13.	Tyacke RJ, Myers JFM, Venkataraman A, Mick I, Turton S, Passchier J <i>et al</i> . Evaluation of 11C- BU99008, a PET Ligand for the Imidazoline2 binding site in human brain. <i>Journal of Nuclear</i> <i>Medicine</i> 2018.	
372 373 374	14.	Tyacke RJ, Fisher A, Robinson ESJ, Grundt P, Turner EM, Husbands SM <i>et al.</i> Evaluation and initial in vitro and ex vivo characterization of the potential positron emission tomography	

375 376		ligand, BU99008 (2-(4,5-Dihydro-1H-imidazol-2-yl)-1- methyl-1H-indole), for the imidazoline 2 binding site. <i>Synapse</i> 2012.
377 378 379 380	15.	Parker CA, Nabulsi N, Holden D, Lin SF, Cass T, Labaree D <i>et al.</i> Evaluation of 11C-BU99008, a PET Ligand for the Imidazoline 2 Binding Sites in Rhesus Brain. <i>Journal of Nuclear Medicine</i> 2014.
381 382 383 384	16.	Kealey S, Turner EM, Husbands SM, Salinas CA, Jakobsen S, Tyacke RJ <i>et al.</i> Imaging imidazoline-I2 binding sites in porcine brain using 11C-BU99008. <i>Journal of Nuclear Medicine</i> 2013.
385 386 387 388	17.	Kawamura K, Shimoda Y, Yui J, Zhang Y, Yamasaki T, Wakizaka H <i>et al</i> . A useful PET probe [11C]BU99008 with ultra-high specific radioactivity for small animal PET imaging of I2- imidazoline receptors in the hypothalamus. <i>Nuclear Medicine and Biology</i> 2017.
389 390 391 392 393 394 395	18.	Calsolaro VM, P.M; Donat, C.K; Livingston, N.R.; Femminella, G.D.; Silva Guedes, S.; Myers, J.; Fan, Z.; Tyacke, R.J.; Venkataraman, A.V.; Perneczky, R.; Gunn, R.N.; Rabiner, E.A.; Gentleman, S.; Parker, C.A.; Murphy, P.S.; Wren, P.B.; Hinz, R.; Sastre, M.; Nutt, D.J.; Edison, P. Astrocyte reactivity with late onset cognitive impairment assessed in vivo using 11C- BU99008 PET and its relationship with amyloid load. <i>Molecular Psychiatry</i> (Accepted/In Press).
396 397 398 399	19.	Wilson H, Dervenoulas G, Pagano G, Tyacke RJ, Polychronis S, Myers J <i>et al.</i> Imidazoline 2 binding sites reflecting astroglia pathology in Parkinson's disease: An in vivo 11C-BU99008 PET study. <i>Brain</i> 2019.
400 401 402 403 404	20.	Carter SF, Schöll M, Almkvist O, Wall A, Engler H, Långström B <i>et al.</i> Evidence for astrocytosis in prodromal alzheimer disease provided by 11C-deuterium-L-deprenyl: A multitracer PET paradigm combining 11C-Pittsburgh compound B and 18F-FDG. <i>Journal of Nuclear Medicine</i> 2012.
405 406 407	21.	Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte Biomarkers in Alzheimer's Disease. <i>Trends Mol Med</i> 2019; 25 (2): 77-95.
408 409 410 411	22.	Kumar A, Koistinen NA, Malarte ML, Nennesmo I, Ingelsson M, Ghetti B <i>et al</i> . Astroglial tracer BU99008 detects multiple binding sites in Alzheimer's disease brain. <i>Mol Psychiatry</i> 2021.
412 413 414 415	23.	Bullich S, Seibyl J, Catafau AM, Jovalekic A, Koglin N, Barthel H <i>et al.</i> Optimized classification of 18F-Florbetaben PET scans as positive and negative using an SUVR quantitative approach and comparison to visual assessment. <i>NeuroImage: Clinical</i> 2017.
416 417 418	24.	Ashburner J. A fast diffeomorphic image registration algorithm. <i>Neuroimage</i> 2007; 38 (1): 95- 113.
419		

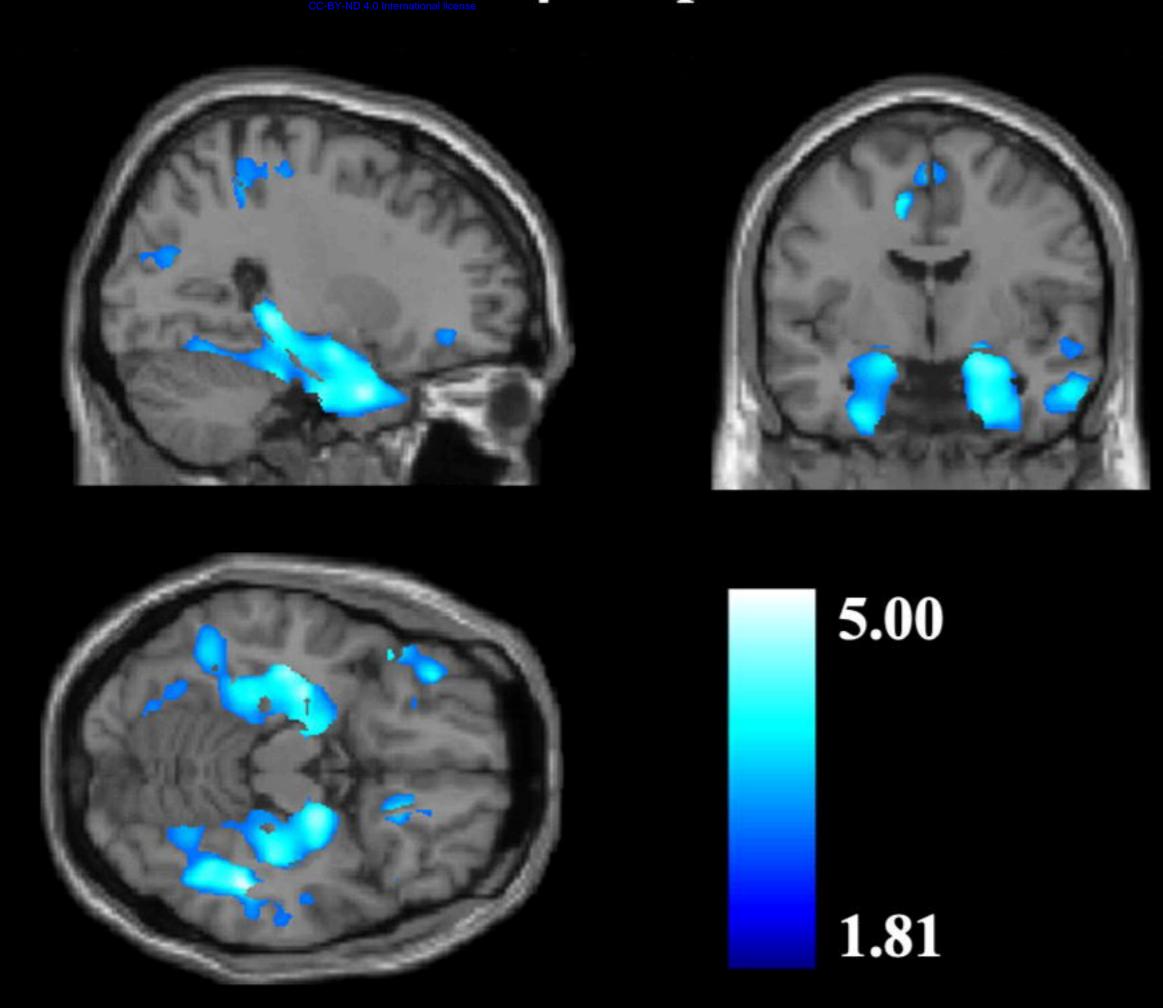
420 421 422	25.	Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L <i>et al</i> . Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. <i>Human Brain Mapping</i> 2003.
423 424 425	26.	Gousias IS, Rueckert D, Heckemann RA, Dyet LE, Boardman JP, Edwards AD <i>et al</i> . Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. <i>NeuroImage</i> 2008.
426 427 428 429	27.	Casanova R, Srikanth R, Baer A, Laurienti PJ, Burdette JH, Hayasaka S <i>et al.</i> Biological parametric mapping: A statistical toolbox for multimodality brain image analysis. <i>NeuroImage</i> 2007.
430 431 432 433	28.	Ruiz J, Martín I, Callado LF, Meana JJ, Barturen F, García-Sevilla JA. Non-adrenoceptor [3H]idazoxan binding sites (I2-imidazoline sites) are increased in postmortem brain from patients with Alzheimer's disease. <i>Neuroscience Letters</i> 1993.
434 435	29.	Li JX. Imidazoline I2 receptors: An update. 2017.
436 437 438 439	30.	Sastre M, Garcia-Sevilla JA. Opposite Age-Dependent Changes of α2A-Adrenoceptors and Nonadrenoceptor [3H]Idazoxan Binding Sites (I2-Imidazoline Sites) in the Human Brain: Strong Correlation of I2 with Monoamine Oxidase-B Sites. <i>Journal of Neurochemistry</i> 1993.
440 441 442	31.	García-Sevilla JA, Escribá PV, Walzer C, Bouras C, Guimón J. Imidazoline receptor proteins in brains of patients with Alzheimer's disease. <i>Neuroscience Letters</i> 1998.
443 444 445 446	32.	Santillo AF, Gambini JP, Lannfelt L, Långström B, Ulla-Marja L, Kilander L <i>et al.</i> In vivo imaging of astrocytosis in Alzheimer's disease: An 11C-L-deuteriodeprenyl and PIB PET study. <i>European Journal of Nuclear Medicine and Molecular Imaging</i> 2011.
447 448 449	33.	Braak H, Del Trecidi K. Neuroanatomy and pathology of sporadic Alzheimer's disease. <i>Adv</i> <i>Anat Embryol Cell Biol</i> 2015; 215: 1-162.
450 451 452 453	34.	Scholl M, Carter SF, Westman E, Rodriguez-Vieitez E, Almkvist O, Thordardottir S <i>et al</i> . Early astrocytosis in autosomal dominant Alzheimer's disease measured in vivo by multi-tracer positron emission tomography. <i>Sci Rep</i> 2015; 5: 16404.
454 455 456	35.	Zhang X, Fu Z, Meng L, He M, Zhang Z. The Early Events That Initiate beta-Amyloid Aggregation in Alzheimer's Disease. <i>Front Aging Neurosci</i> 2018; 10: 359.
457 458 459 460	36.	Olsen M, Aguilar X, Sehlin D, Fang XT, Antoni G, Erlandsson A <i>et al.</i> Astroglial Responses to Amyloid-Beta Progression in a Mouse Model of Alzheimer's Disease. <i>Molecular Imaging and Biology</i> 2018.
461 462 463	37.	Wang Q, Wu J, Rowan MJ, Anwyl R. β-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor. <i>European Journal of Neuroscience</i> 2005.

464 465 466 467	38.	Soucek T, Cumming R, Dargusch R, Maher P, Schubert D. The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid beta peptide. <i>Neuron</i> 2003.
468 469 470	39.	Smale G, Nichols NR, Brady DR, Finch CE, Horton WE. Evidence for Apoptotic Cell Death in Alzheimer's Disease. <i>Experimental Neurology</i> 1995.
471 472	40.	Garaschuk O, Verkhratsky A. GABAergic astrocytes in Alzheimer's disease. 2019.
473 474 475 476	41.	Rodriguez-Vieitez E, Saint-Aubert L, Carter SF, Almkvist O, Farid K, Schöll M <i>et al.</i> Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer's disease. <i>Brain</i> 2016.
477 478 479 480 481	42.	Rodriguez-Vieitez E, Ni R, Gulyas B, Toth M, Haggkvist J, Halldin C <i>et al.</i> Astrocytosis precedes amyloid plaque deposition in Alzheimer APPswe transgenic mouse brain: a correlative positron emission tomography and in vitro imaging study. <i>Eur J Nucl Med Mol Imaging</i> 2015; 42 (7): 1119-1132.
482		
483		
484		
485		
486		
487		
488		
489		
490		
491		
492		
493		

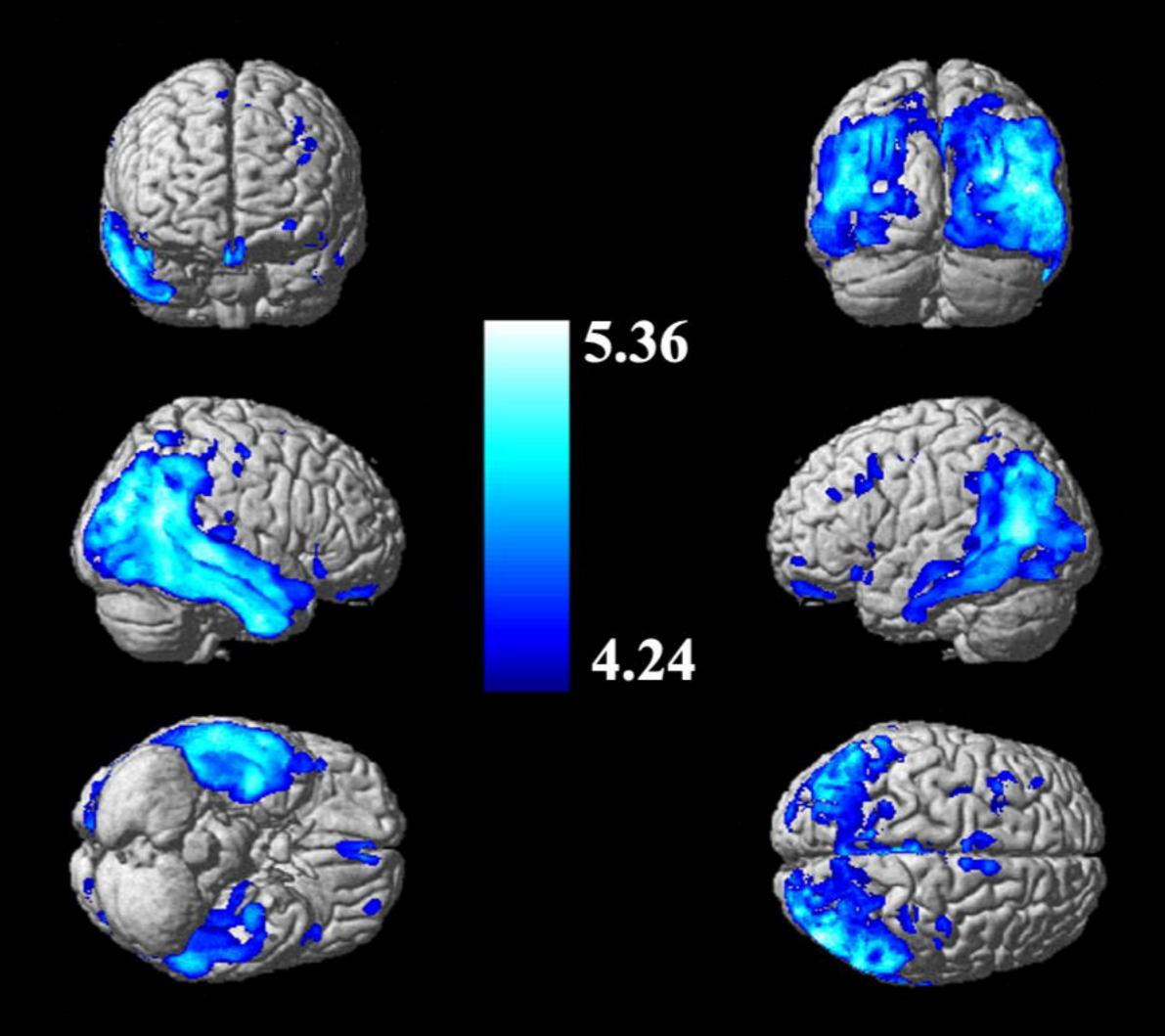

494 Figure legends

495 Figure 1: Statistical Parametric Mapping (SPM) group analysis in patients compared to healthy controls

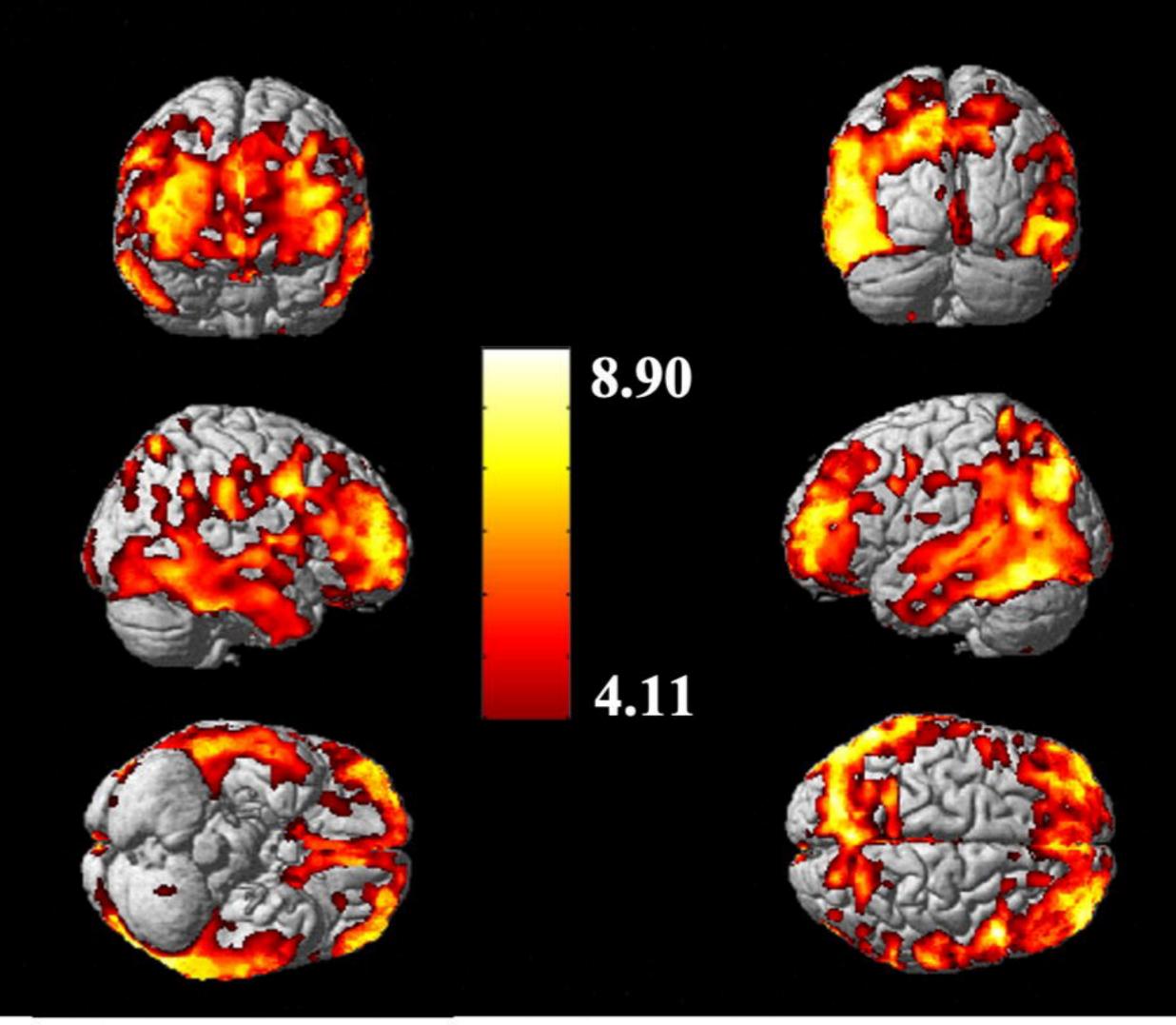
- 496 (a) Increased ¹¹C-BU99008 uptake in A β -positive patients compared to healthy controls, rendered at cluster
- 497 threshold of p<0.05 and an extent threshold of 50 voxels. (b) Decreased ¹⁸F-FDG uptake in A β -positive patients
- 498 compared to health controls, rendered at cluster threshold of p<0.001 and an extent threshold of 50 voxels. (c)
- 499 Decreased grey matter volume in Aβ-positive patients compared to healthy controls, rendered at cluster threshold
- 500 of p<0.05 and an extent threshold of 50 voxels. (d) Increased ¹⁸F-Florbetaben uptake in all patients compared to
- 501 healthy controls, rendered at cluster threshold of p<0.001 and an extent threshold of 50 voxels. Colourbar units
- are contrast estimates.



Increased ¹¹C-BU99008 uptake in Aβ+ve patients



Decreased grey matter volume



Decreased ¹⁸F-FDG uptake in Aβ+ve patients

(d)

Increased ¹⁸F-florbetaben uptake in all patients

