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Abstract 

White matter hyperintensities (WMHs) are emblematic of cerebral small vessel disease, yet 

characterization at midlife is poorly studied. Here, we investigated whether WMH volume is 

associated with brain network alterations in midlife adults. 254 participants from the Coronary 

Artery Risk Development in Young Adults (CARDIA) study were selected and stratified by 

WMH burden yielding two groups of equal size (Lo- and Hi-WMH groups). We constructed 

group-level covariance networks based on cerebral blood flow (CBF) and grey matter volume 

(GMV) maps across 74 grey matter regions. Through consensus clustering, we found that both 

CBF and GMV covariance networks were partitioned into modules that were largely consistent 

between groups. Next, CBF and GMV covariance network topologies were compared between 

Lo- and Hi-WMH groups at global (clustering coefficient, characteristic path length, global 

efficiency) and regional (degree, betweenness centrality, local efficiency) levels. At the global 

level, there were no group differences in either CBF or GMV covariance networks. In contrast, 

we found group differences in the regional degree, betweenness centrality, and local efficiency 

of several brain regions in both CBF and GMV covariance networks. Overall, CBF and GMV 

covariance analyses provide evidence of WMH-related network alterations that were observed at 

midlife. 

Keywords 

White matter hyperintensities; Small vessel disease; Covariance; Cerebral blood flow; Grey 

matter volume; Graph theory; CARDIA  
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1. Introduction 

White matter hyperintensities (WMHs) of presumed vascular origin are one of the most widely 

studied markers of cerebral small vessel disease (SVD) (Wardlaw et al., 2019) and are associated 

with vascular risk factors (de Leeuw et al., 1999), cognitive decline (de Groot et al., 2001), gait 

abnormalities (Baezner et al., 2008; de Laat et al., 2011), depression (Rabins et al., 1991), and 

brain atrophy in late-life individuals (Appelman et al., 2009; Godin et al., 2009; Rossi et al., 

2006; Schmidt et al., 2005). Whereas WMHs have been well studied in late-life, comparatively 

less is known regarding their effects on brain function in earlier adult decades of life 

(Cannistraro et al., 2019). Subclinical WMHs are present in midlife (Bryan et al., 1999; Launer 

et al., 2015; Wen et al., 2009) and are associated with an increased risk of late-life dementia and 

early cognitive impairment (d’Arbeloff et al., 2019; Smith et al., 2015). 

The mechanisms by which WMHs affect the brain are not fully established, however one 

potential consequence is the alteration of brain networks (Lawrence et al., 2014). As articulated 

in a recent review, focal WMHs can impact remote brain regions and structural and functional 

network connections (ter Telgte et al., 2018). Multivariate methods that integrate information 

across brain regions may help elucidate the widespread consequences of WMHs beyond 

conventional neuroimaging biomarker research. SVD has been viewed predominantly as 

affecting subcortical anatomy proximal to focal lesions, including white matter as well as 

thalamic and basal ganglia regions (Wardlaw et al., 2013). However, these regions may represent 

only a proportion of SVD associations across the brain. Covariance analysis of neuroimaging 

data is one such multivariate approach that can be used to infer network-like associations 

between brain regions. This technique exploits the phenomenon of inter-region covariation 

between properties of select brain regions across a population sample (Alexander-Bloch, Giedd, 

et al., 2013; Melie-García et al., 2013). Typically, covariance analysis constructs group-level 

networks based upon the pairwise correlation of regional measures of structure such as grey 

matter volume (GMV) or cortical thickness. These structural covariance networks are thought to 

arise from developmental coordination or synchronized maturation due to mutually trophic 

influences (Alexander-Bloch, Raznahan, et al., 2013) and have been shown to partially overlap 

with both white matter tracts and patterns of functional connectivity (Gong et al., 2012; Kelly et 
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al., 2012). Indeed, WMH volume has been associated with reduced structural covariance network 

integrity, albeit in older populations (Nestor et al., 2017; Tuladhar et al., 2015). 

There is a need for multimodal structural and functional neuroimaging studies to elucidate the 

mechanisms by which SVD might lead to clinical deficits, especially in earlier adult decades of 

life (ter Telgte et al., 2018). Cerebral blood flow (CBF) is an important proxy of brain health and 

metabolism that is amenable to covariance analysis. CBF covariance networks are thought to 

convey metabolic and vascular information that may be complementary to network analyses 

performed with structural covariance, blood-oxygenation level-dependent functional MRI 

(fMRI) or diffusion tensor imaging (DTI) (Luciw et al., 2021; Melie-García et al., 2013). 

Graph theory is a principled and data-driven method that can be used to characterize covariance 

networks and has played a crucial role in establishing the brain as an efficient and sparsely 

connected “small-world” network (Alexander-Bloch, Giedd, et al., 2013). Considering the brain 

as a set of nodes (i.e., brain regions) and edges (i.e., connections between nodes, such as pairwise 

correlations), graph theory produces a number of properties that describe the global and regional 

topologies of brain networks (Box 1) (Rubinov & Sporns, 2010). Within the context of SVD, the 

application of graph theory has pointed to anomalous structural (Frey et al., 2020; Lawrence et 

al., 2014; Reijmer et al., 2016; Tuladhar et al., 2016, 2017) and functional network efficiency 

(Chen et al., 2019; Sang et al., 2018; Schaefer et al., 2014). 

This is Box 1. Global network properties, such as the clustering coefficient (average of the 

fraction of a node’s neighbors that are neighbors of each other across all nodes), characteristic 

path length (average shortest path length in the network), and global efficiency (average inverse 

shortest path length in the network) reflect network-wide attributes. Regional network properties, 

such as the degree (number of edges on a node), betweenness centrality (measure of the number 

of shortest paths that travel through a given node), and local efficiency (measure of efficiency in 

a node’s set of neighbors upon its removal) describe the contribution of individual brain regions 

that enable efficient communication throughout the network. 

This study investigates CBF and GMV covariance networks in midlife adults from the Coronary 

Artery Risk Development in Young Adults (CARDIA) study. Participants from the 25-year 

CARDIA brain MRI study were stratified by WMH burden into two groups. CBF and GMV 
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covariance networks were generated for each group and compared using graph theoretical 

properties of global and regional network topology. We hypothesize that it will be possible to 

identify differences in CBF and GMV covariance network topology among midlife adults with 

higher WMH burden when compared against a control group. 

2. Methods 

2.1. Participants 

The CARDIA study is a longitudinal multi-site prospective study aiming to investigate the 

evolution of cardiovascular disease over adulthood. Participants were initially recruited in 1985 

and between 18 – 30 years of age. The present study uses brain MRI data from the 25-year 

follow-up exam collected at two of three CARDIA centers in the United States (Minneapolis, 

MN and Oakland, CA). Participants provided written informed consent at each exam and 

institutional review boards from each CARDIA center and the coordinating center (University of 

Minnesota Institutional Review Board, Kaiser-Permanente Northern California Institutional 

Review Board) approved this study annually. 

Clinical measures obtained at the 25-year follow-up exam included: body mass index (BMI, 

from height and weight); diastolic and systolic blood pressure assessed using a digital blood 

pressure monitor (OmROn HEM-907XL; Online Fitness, CA); smoking status; diabetes 

diagnosis (American Diabetes Association, 2011); and blood samples provided estimates of 

concentrations of high- and low-density lipoprotein cholesterol and triglycerides. 

2.2. MRI Acquisition 

The MRI sequences for the current study were previously described (Launer et al., 2015), and 

consisted of T1-weighted, T2-weighted fluid-attenuated inversion recovery (FLAIR), and 

pseudo-continuous arterial spin labeling (ASL) imaging acquired on Siemens 3 Tesla Tim Trio 

MRI scanners. Isotropic T1-weighted images were acquired in three dimensions using a sagittal 

MPRAGE sequence (TR/TE/TI = 1900/2.9/900 ms, spatial resolution = 1 mm3, FOV = 250 mm, 

slices = 176, flip angle = 90, GRAPPA = 2, bandwidth = 170 Hz/pixel). Isotropic T2-weighted 

images were acquired using a sagittal FLAIR sequence (TR/TE/TI = 6000/285/2200 ms, spatial 

resolution = 1 mm3, FOV = 258 mm, slices = 160). CBF maps were calculated from ASL 
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imaging acquired using pseudo-continuous labeling and a two-dimensional multi-slice gradient-

echo planar imaging readout (TR/TE = 4000/11 ms, spatial resolution = 3.4 × 3.4 × 5 mm3, FOV 

= 220 mm, flip angle = 90, bandwidth = 3004 Hz/pixel, echo spacing = 0.44 ms, EPI factor = 64, 

label duration = 1.48 s, offset = 90 mm, radio-frequency pulse gap = 0.36 ms, pulse duration = 

0.5 ms, mean z-direction gradient = 0.6 mT/m, post-label delay of 1500 ms [range of 1500 to 

2170 ms from most inferior to superior slices], no background suppression, 40 control-label 

pairs). 

2.3. MRI Processing 

MRI data were processed using SPM8 (www.fil.ion.ucl.ac.uk/spm/software/spm8) and programs 

developed in MATLAB (MathWorks Inc., Natick, MA). Structural images were processed using 

a previously described multimodal segmentation algorithm to classify tissue into grey matter 

(GM), white matter (WM), and cerebrospinal fluid (CSF) (Goldszal et al., 1998; Launer et al., 

2015). GM and WM were then assigned to 98 regions using a Talairach-based brain anatomy 

template (Shen & Davatzikos, 2002). Of these, we chose the 74 regions classified as GM. 

WMHs were segmented from structural images using a previously reported deep-learning 

classification model, built on the U-Net architecture and internal convolutional network 

Inception ResNet layers (Nasrallah, Pajewski, et al., 2019). 

ASL time series data were first motion corrected, followed by regression of residual motion 

artifacts (Wang, 2012). A Gaussian smoothing kernel with full-width-half-maximum of 5 mm 

was used to spatially smooth images. A CBF time series was then obtained by pairwise control-

label subtraction. CBF image intensities were converted to absolute units after averaging 

difference images and performing voxel-wise calibration using the ASL control image as the 

estimate of the equilibrium magnetization (Dolui et al., 2016). CBF maps were then registered to 

T1-weighted images and mean regional CBF measures were obtained using the same 74 GM 

regions. 

2.4. Group Stratification 

Participants were selected from an available total sample of 421 for which processed data was 

fully available. Participants were stratified by WMH burden to create two groups (Figure 1). A 
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nominal WMH volume was measured in all but a small number of participants; as such, we were 

not powered to stratify groups on the presence alone of WMH volume. Instead, WMH volumes 

were normalized by intracranial volume and log-transformed to normalize the skewed 

distribution. Participants in the 7th to 10th deciles of log-transformed WMH volume were denoted 

as the “Hi-WMH” group (n = 127). For comparison, participants in the 1st to 3rd deciles of log-

transformed WMH volume were taken to be the “Lo-WMH” control group (n = 127). The choice 

to omit the 4th to 6th deciles was to ensure a clear delineation between the two groups. 

2.5. Network Analysis 

Network analysis was performed in Python 3.7.6 (www.python.org/downloads/release/python-

376/) using the Brain Connectivity Toolbox package (Rubinov & Sporns, 2010) 

(www.pypi.org/project/bctpy/). CBF and GMV measures were intensity normalized and adjusted 

using a linear regression model for each of the 74 GM brain regions separately by removing the 

variance attributed to the following variables: age, sex, race, BMI, and MRI site. The adjusted 

measures were then used to calculate Pearson’s correlation coefficients between all brain region 

pairs, resulting in 74 × 74 covariance matrices. This procedure was performed for both Lo- and 

Hi-WMH groups, resulting in a total of four covariance matrices (i.e., two matrices × two 

groups). Diagonal matrix elements, representing self-connections, were excluded. 

We deployed a community detection analysis on the covariance matrices to partition the 74 brain 

regions into modules (i.e., clusters) with high internal covariance. Briefly, covariance matrices 

underwent 100 iterations of the Louvain community detection algorithm at selected resolution 

parameter values of 1.25 for CBF covariance matrices and 0.75 for GMV covariance matrices 

(see Supplementary Information) (Blondel et al., 2008). Across all iterations, we calculated the 

probability that a brain region pair was consistently assigned to the same module, yielding a 74 × 

74 agreement matrix, which was then thresholded at 0.5 (Cohen & D’Esposito, 2016). Finally, 

we performed consensus clustering on the agreement matrix using the Louvain algorithm with 

100 iterations, yielding a single consensus partition (Lancichinetti & Fortunato, 2012). Unlike 

conventional clustering approaches, this analytic framework defines the final number of modules 

from the data.  
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To characterize network topology, covariance matrices were thresholded and binarized across a 

range of network densities (0.16 to 0.50, increments of 0.01). The density of a matrix is defined 

as the number of non-zero edges divided by the total possible number of edges (i.e., [74 × 73] / 

2). The minimum network density was chosen such that all brain regions had at least one non-

zero edge (i.e., connected to at least one other region within the network). At each of these 

network densities, we calculated global (clustering coefficient, characteristic path length, and 

global efficiency) and regional (degree, betweenness centrality, and local efficiency) graph 

theoretical properties to characterize network topology. Across the range of network densities, 

global and regional network properties were summarized by the area-under-the-curve (Figure 1). 

Finally, we computed the small-world coefficient across the range of network densities, defined 

as the ratio between normalized clustering coefficient and normalized characteristic path length 

(i.e., normalized by 100 random networks that preserve the number of nodes and edges as the 

true network as well as the degree of individual nodes). Networks with a small-world coefficient 

greater than 1 are thought to maximize efficiency of information transfer while minimizing 

“wiring costs”, thus providing a balance between functional segregation and integration (Watts 

& Strogatz, 1998). 

2.6. Statistical Analysis 

Demographic and clinical characteristics were compared between groups using Mann-Whitney U 

tests for continuous variables and chi-squared tests for categorical variables. 

To compare network properties between Lo- and Hi-WMH groups, we used a non-parametric 

permutation approach with 10,000 permutations. With each permutation, participants were 

shuffled into two randomized groups of equal size (n = 127, each). CBF and GMV covariance 

matrices were re-constructed, network properties were re-calculated across the range of network 

densities, and area-under-the-curve was re-integrated. Differences in network properties between 

randomized groups were used to create null distributions. The true differences between Lo- and 

Hi-WMH groups was then compared against the corresponding null distributions, resulting in 

non-parametric p-values derived as the relative position of the true difference compared to the 

null distribution. A significance level of 0.05 was chosen for global network properties. 
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Regional properties were normalized by the corresponding mean of the network before group 

comparisons. Given the multiple explanatory analyses performed at the regional level, we 

corrected for multiple comparisons using a false-positive correction, p < (1/N), where N 

corresponds to the 74 GM regions. We note that this procedure does not strongly control for type 

I error (Lynall et al., 2010). 

Finally, post-hoc analyses investigated regional measures of CBF and GMV between Lo- and 

Hi-WM groups in regions-of-interest. Independent samples t-tests were used at a significance 

level of 0.05. 

3. Results 

3.1. Demographic & Clinical Characteristics 

The Lo- and Hi-WMH groups were matched for most demographic and clinical characteristics, 

presented in Table 1. There were, however, significant group differences in age (U = 6708.5, p = 

0.01), sex (χ2 = 12.36, p < 0.001), BMI (U = 7052.5, p = 0.04), and high-density lipoprotein 

cholesterol (U = 6649.5, p = 0.008). As expected, WMH volume was also different between 

groups (U = 0.0, p < 0.001). 

3.2. Network Modules 

Consensus clustering derived three modules from CBF covariance networks that were similar 

between Lo- and Hi-WMH groups (Figure 2 & Supplementary Table 1). In the Lo-WMH group, 

Module 1 was the largest and encompassed inferior frontal, temporal, limbic, and subcortical 

brain regions. Module 2 was comprised of superior and medial frontal, parietal, and occipital 

brain regions. Module 3 included temporal, occipital, and limbic brain regions as well as the 

thalami. The Hi-WMH group modules were similar with exception of some discrepancies with 

the Lo-WMH group that were observed in occipital and temporal regions within Module 3. 

From GMV covariance networks, we observed four and five modules from Lo- and Hi-WMH 

groups, respectively. In the Lo-WMH group, Module 1 consisted of inferior frontal, limbic, 

parietal, and subcortical brain regions including the thalami. Module 2 consisted of occipital, 

temporal, and parietal brain regions. Module 3 included limbic, occipital, and temporal brain 
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regions. Module 4 comprised temporal, superior and medial frontal, occipital, and parietal brain 

regions. In the Hi-WMH group, Module 1 retained subcortical, limbic, and parietal brain regions. 

Module 3 gained additional frontal and parietal brain regions. Finally, Module 5 consisted of 

limbic, inferior frontal, parietal, and temporal brain regions. 

3.3. Small-World Properties 

Both CBF and GMV covariance networks from Lo- and Hi-WMH groups exhibited small-world 

properties across the range of network densities as quantified by normalized clustering 

coefficients greater than 1 and normalized characteristic path lengths approximately equal to 1 

(Figure 3). 

3.4. Global Network Properties 

We found no significant group differences in clustering coefficient, characteristic path length, or 

global efficiency between CBF covariance networks (clustering coefficient, p = 0.97; 

characteristic path length, p = 0.92; global efficiency, p = 0.91).  

Similarly, there were no group differences between GMV covariance networks (clustering 

coefficient, p = 0.07; characteristic path length, p = 0.30; global efficiency, p = 0.29) (Figure 4). 

3.5. Regional Network Properties 

Table 2 and Figure 5 present brain regions from CBF and GMV covariance networks with 

significant differences in degree, betweenness centrality, and local efficiency between Lo- and 

Hi-WMH groups. Within CBF covariance networks, the Hi-WMH group had lower degree in the 

right putamen (p = 0.003) relative to the Lo-WMH group. The Hi-WMH group had higher 

degree (p = 0.002) and betweenness centrality (p = 0.002) in the left nucleus accumbens and 

higher betweenness centrality in the left cuneus (p = 0.010). We observed no differences in local 

efficiency within CBF covariance networks. 

Within GMV covariance networks, the Hi-WMH group had lower degree (p = 0.003) and 

betweenness centrality (p = 0.004) in the left lingual gyrus, lower degree (p = 0.005) in the right 

lingual gyrus, lower degree (p = 0.010) in the right perirhinal cortex, and lower local efficiency 

(p = 0.003) in the left superior occipital gyrus. The Hi-WMH group had higher betweenness 
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centrality (p = 0.010) in the left lateral occipitotemporal gyrus and higher local efficiency (p = 

0.003) in the right superior parietal lobule. 

Post-hoc analyses investigating regional measures of CBF and GMV in the above regions of 

interest revealed no significant group differences (Table 3). 

4. Discussion 

In this study, we used graph theory to investigate CBF and GMV covariance networks amongst 

midlife adults with low vs. high normalized WMH volume. First, we performed a community 

detection analysis on CBF and GMV covariance networks, resulting in modules of brain regions 

that were largely consistent between groups. Next, we found that both CBF and GMV covariance 

networks exhibited small-world topologies across a range of network densities. Finally, we 

compared CBF and GMV covariance network topologies between groups and found that higher 

WMH volume was not associated with alterations to global network properties. In contrast, 

higher WMH volume was associated with altered degree, betweenness centrality, and local 

efficiency in several brain regions within both CBF and GMV covariance networks. Altogether, 

these findings provide a holistic picture of physiological and structural patterns across the brain 

and point to WMH-related network changes in midlife adults. 

We first performed community detection analyses to detect modules of brain regions that tend to 

covary with each other in CBF and GMV covariance networks. CBF covariance matrices were 

partitioned into three modules that were consistent between Lo- and Hi-WMH groups. Luciw et 

al. found that communities derived from CBF covariance patterns in adolescents are spatially 

similar to the brain’s vascular territories (Luciw et al., 2021). Melie-García et al. observed strong 

CBF covariance between bilateral brain regions in healthy adults (Melie-García et al., 2013). The 

present study’s findings are similar in both respects, with modules encompassing the brain’s 

bilateral vascular territories. Meanwhile, GMV covariance matrices were partitioned into four 

and five modules from Lo- and Hi-WMH groups, respectively. While modules were largely 

similar between groups, there were notable differences between partitions. For instance, Module 

1 (frontal and subcortical) in the Lo-WMH group was divided into Modules 1 (subcortical) and 5 

(frontal) in the Hi-WMH group. In the present study, we chose to detect modules for 
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visualization purposes; however, the apparent organization of the brain’s modules suggests 

alterations to normal covariance patterns as a consequence of higher WMH volume in midlife. 

Next, we found that both CBF and GMV covariance networks exhibited small-world topologies, 

indicating a balance between functional segregation and functional integration (Watts & 

Strogatz, 1998). Small-world networks are thought to be optimally configured so as to combine 

clusters of specialized nodes with strategically positioned intermediary edges that minimize 

overall path lengths, thus improving communication efficiency. These non-random properties 

have been recapitulated across a wide range of neuroimaging techniques, providing evidence that 

the brain exhibits a complex yet efficient topology to augment information processing (Bullmore 

& Sporns, 2009). The current study’s findings further support this hypothesis by demonstrating 

that networks derived from CBF and GMV covariance analysis similarly obey this organizational 

structure. Furthermore, higher WMH volume does not disrupt this organization in CBF and 

GMV covariance networks at midlife. 

In comparing Lo- and Hi-WMH groups, we observed no global group differences in the 

clustering coefficient, characteristic path length, or global efficiency of either CBF or GMV 

covariance networks. These findings imply that in this sample of midlife adults, the functional 

integration and segregation of CBF and GMV covariance networks were not associated with 

higher WMH volume. It is worth noting that in this sample of midlife adults from the CARDIA 

study, WMH volume is much lower compared to other prospective studies of SVD (Nasrallah, 

Hsieh, et al., 2019). For instance, other studies reporting on older individuals with comparatively 

higher WMH volume have found more widespread disruption of structural covariance networks 

to be associated with higher WMH volume (Nestor et al., 2017). While no global group 

differences were observed in this cross-sectional study, it may be an accumulation of SVD 

lesions beginning in midlife that leads to progressive worsening network deficits (Tuladhar et al., 

2015). 

In contrast, we report significant regional group differences in the degree, betweenness 

centrality, and local efficiency of several distributed brain regions within both CBF and GMV 

covariance networks. Namely, we observed CBF covariance alterations in brain regions of the 

basal ganglia (putamen, nucleus accumbens) and visual (cuneus) networks while GMV 
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covariance revealed alterations in brain regions of the visual (lingual gyri, superior occipital 

gyrus, lateral occipitotemporal gyrus), limbic (perirhinal cortex), and dorsal attention (superior 

parietal lobule) networks. The chosen regional network properties are reflective of the 

importance and influence of individual nodes within a network; in the context of CBF and GMV 

covariance, these network properties describe the extent to which individual brain regions 

connect (i.e., covary) with others as well as the impact of these connections on the overall 

network. The regional and widespread nature of these network alterations, therefore, could 

reflect subtle WMH-related physiological and structural changes beginning in early stages of 

disease, and may precede larger network-wide breakdown as reported in more severe stages of 

SVD (Frey et al., 2020; Lawrence et al., 2014, 2018; Petersen et al., 2020; Reginold et al., 2019; 

Tuladhar et al., 2016; Xu et al., 2018). Similarly, deficits in regional brain physiology and 

structure are known to be associated with SVD severity as indexed by increasing WMH volume 

(Crane et al., 2015; Habes et al., 2016; C. M. Kim et al., 2020; Tuladhar et al., 2015; Tullberg et 

al., 2004). Multivariate covariance may therefore supplement such univariate analyses in 

detecting earlier or distinct disease-related alterations (Wee et al., 2013) and in pursuing novel 

biomarker or hypothesis-generating findings. Notably, our post-hoc analyses examining absolute 

measures of CBF and GMV in brain regions with significant topological differences revealed no 

significant group differences. 

This study has several limitations. First, by virtue of our study design, we sought to establish 

group-level covariance networks, which limits our ability to comment on individual participants. 

While individual-level covariance networks are feasible, it has been shown that individual 

variability in regional measures may impact subsequent graph theory analyses (H. J. Kim et al., 

2016). Second, our group stratification procedure resulted in a decreased sample size. While our 

analyses retained only a proportion of the original cohort, this procedure resulted in two groups 

clearly delineated by WMH burden. Third, our false-positive correction does not strongly correct 

for Type I error. Given the number of regional comparisons made, we chose to avoid an overly 

conservative correction at the risk of an increased number of false positives. Fourth, the choice 

of parcellation scheme has been shown to affect brain network estimates (Messé, 2020). 

Validation studies using external cohort data and alternative parcellation schemes would be 

desirable to corroborate the findings of the current study. Finally, while our focus was limited to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.09.21261287doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.09.21261287
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

WMHs, it is important to note that other markers of SVD (i.e., enlarged perivascular spaces) 

were not accounted for and may warrant additional investigation. 

In conclusion, we used CBF and GMV covariance analysis to detect WMH-related network 

changes in midlife adults. We observed modular organization in both CBF and GMV covariance 

networks that was consistent between Lo- and Hi-WMH groups. We furthermore found that both 

CBF and GMV covariance networks exhibited small-world properties in both Lo- and Hi-WMH 

groups, implying an optimal balance between functional integration and segregation. We 

observed no significant group differences when considering global network properties, 

suggesting no detectable expression of widespread WMH-related disruptions to functional 

integration and segregation in this sample of midlife adults. We did, however, detect alterations 

to regional network properties of CBF and GMV covariance networks in the Hi-WMH group. 

These findings identify potential WMH-related network alterations in midlife and provide 

possible avenues for further research of structural and functional brain changes associated with 

SVD.  
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6. Tables 

 Lo-WMH 
(n = 127) 

Hi-WMH 
(n = 127) Test Statistic p 

Age (years) 50 ± 3.5 51 ± 3.7 U = 6708.5 0.01 * 
Female (%) 51 (40.0) 80 (63.0) χ2 = 12.36 < 0.001 * 
Caucasian (n%) 70 (55.1) 82 (64.6) χ2 = 1.98 0.16 
Smoking (%) 67 (52.8) 68 (53.5) χ2 = 0.00 - 
Diabetes (%) 3 (2.4) 1 (0.1) χ2 = 0.25 0.61 
MRI Site (1/2) 63 / 64 68 / 59 χ2 = 0.25 0.62 
BMI (kg/m2) 29.1 ± 5.0 28.2 ± 5.3 U = 7052.5 0.04 * 
DBP (mmHg) 74.1 ± 10.5 73.4 ± 11.1 U = 7768.0 0.31 
SBP (mmHg) 118.3 ± 12.7 117.8 ± 15.8 U = 7633.5 0.23 
HDL (mg/dL) 56.4 ± 17.0 60.7 ± 16.3 U = 6649.5 0.008 * 
LDL (mg/dL) 116.7 ± 36.1 117.6 ± 30.2 U = 7579.0 0.20 
Triglycerides 
(mg/dL) 110.2 ± 60.9 102.7 ± 58.9 U = 7472.0 0.16 

GM CBF (mL/100 
g/min) 56.1 ± 12.3 56.6 ± 11.2 U = 7818.0 0.34 

ICV (cm3) 1203.5 ± 138.4 1215.9 ± 114.2 U = 7671.0 0.25 
WMH (cm3) 0.52 ± 0.22 2.87 ± 1.83 U = 0.0 < 0.001 * 

Table 1. Demographic and clinical characteristics. Data are presented as mean ± standard 

deviation, or count. p-values were calculated Mann-Whitney U tests for continuous variables and 

chi-squared tests for categorial variables. * denotes p < 0.05. Abbreviations: BMI, body mass 

index; DBP, diastolic blood pressure; SBP, systolic blood pressure; HDL, high-density 

lipoprotein; LDL, low-density lipoprotein; GM, grey matter; ICV, intracranial volume. 
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Contrast Region Network Property Direction p 

CBF 

R Putamen Degree Lo-WMH > Hi-WMH 0.003 
L Nucleus Accumbens Degree Hi-WMH > Lo-WMH 0.002 
L Nucleus Accumbens Betweenness Centrality Hi-WMH > Lo-WMH 0.002 
L Cuneus Betweenness Centrality Hi-WMH > Lo-WMH 0.010 

GMV 

L Lingual Gyrus Degree Lo-WMH > Hi-WMH 0.003 
L Lingual Gyrus Betweenness Centrality Lo-WMH > Hi-WMH 0.004 
R Lingual Gyrus Degree Lo-WMH > Hi-WMH 0.005 
R Perirhinal Cortex Degree Lo-WMH > Hi-WMH 0.010 
L Superior Occipital Gyrus Local Efficiency Lo-WMH > Hi-WMH 0.003 
L Lateral Occipitotemporal Gyrus Betweenness Centrality Hi-WMH > Lo-WMH 0.010 
R Superior Parietal Lobule Local Efficiency Hi-WMH > Lo-WMH 0.003 

Table 2. Brain regions with significant group differences in regional network properties. 

The threshold for statistical significance was set at p < 0.0135, after correcting for multiple 

comparisons. Abbreviations: L, left; R, right. 
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Contrast Region Lo-WMH Hi-WMH Test Statistic p 

CBF 
R Putamen 48.04 ± 10.27 47.42 ± 10.34 t = 0.48 0.63 
L Nucleus Accumbens 51.08 ± 13.31 50.82 ± 14.21 t = 0.15 0.88 
L Cuneus 54.62 ± 13.19 56.34 ± 13.29 t = 1.04 0.30 

GMV 

L Lingual Gyrus 4.05 ± 0.94 4.18 ± 0.88 t = 1.15 0.25 
R Lingual Gyrus 4.63 ± 1.13 4.77 ± 0.92 t = 1.06 0.29 
R Perirhinal Cortex 1.56 ± 0.38 1.49 ± 0.32 t = 1.57 0.12 
L Superior Occipital Gyrus 4.94 ± 1.07 4.91 ± 1.03 t = 0.25 0.81 
L Lateral Occipitotemporal Gyrus 11.04 ± 1.51 11.24 ± 1.43 t = 1.13 0.26 
R Superior Parietal Lobule 15.09 ± 2.30 14.94 ± 2.21 t = 0.53 0.60 

Table 3. Post-hoc analyses investigating absolute measures of CBF and GMV in regions-of-

interest. Independent samples t-tests were used to compare regional measures of CBF and GMV 

between Lo- and Hi-WMH groups. No significant differences were observed at a threshold of p 

< 0.05. 
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Module CBF: Lo-WMH CBF: Hi-WMH GMV: Lo-WMH GMV: Hi-WMH 

1 

L/R Amygdala 
L/R Caudate 
L/R Entorhinal Cortex 
L/R Anterior Cingulate 
Gyrus 
L/R Inferior Frontal 
Gyrus 
L/R Insula 
L/R Inferior Temporal 
Gyrus 
L/R Lateral Orbitofrontal 
Gyrus 
L/R Medial Orbitofrontal 
Gyrus 
L/R Middle Temporal 
Gyrus 
L/R Nucleus Accumbens 
L/R Perirhinal Cortex 
L/R Putamen 
L/R Superior Temporal 
Gyrus 
L/R Temporal Pole 
L/R Uncus 

L/R Amygdala 
L/R Caudate 
L/R Entorhinal Cortex 
L/R Anterior Cingulate 
Gyrus 
L/R Hippocampus 
L/R Inferior Frontal 
Gyrus 
L/R Insula 
L/R Inferior Temporal 
Gyrus 
L/R Lateral 
Orbitofrontal Gyrus 
L/R Medial 
Orbitofrontal Gyrus 
L/R Middle Temporal 
Gyrus 
L/R Nucleus Accumbens 
L/R Perirhinal Cortex 
L/R Parahippocampal 
Gyrus 
L/R Putamen 
L/R Superior Temporal 
Gyrus 
L/R Temporal Pole 
L/R Uncus 

L/R Caudate 
L/R Anterior Cingulate 
Gyrus 
L/R Inferior Frontal 
Gyrus 
L/R Insula 
L/R Lateral 
Orbitofrontal Gyrus 
L/R Medial 
Orbitofrontal Gyrus 
L/R Middle Frontal 
Gyrus 
L/R Nucleus Accumbens 
L Postcentral Gyrus 
R Precentral Gyrus 
L/R Putamen 
R Superior Temporal 
Gyrus 
L/R Thalamus 

L/R Caudate 
L/R Insula 
L/R Nucleus Accumbens 
L/R Postcentral Gyrus 
L/R Precentral Gyrus 
L/R Putamen 
R Superior Temporal 
Gyrus 
L/R Thalamus 

2 

L/R Angular Gyrus 
L/R Inferior Occipital 
Gyrus 
L/R Medial Frontal 
Gyrus 
L/R Middle Frontal 
Gyrus 
L/R Middle Occipital 
Gyrus 
L/R Occipital Pole 
L/R Postcentral Gyrus 
L/R Precentral Gyrus 
L/R Superior Frontal 
Gyrus 
L/R Supramarginal 
Gyrus 
L/R Superior Occipital 
Gyrus 
L/R Superior Parietal 
Lobule 

L/R Angular Gyrus 
L/R Cuneus 
L/R Inferior Occipital 
Gyrus 
L/R Lingual Gyrus 
L/R Lateral 
Occipitotemporal Gyrus 
L/R Medial Frontal 
Gyrus 
L/R Middle Frontal 
Gyrus 
L/R Middle Occipital 
Gyrus 
L/R Medial 
Occipitotemporal Gyrus 
L/R Occipital Pole 
L/R Postcentral Gyrus 
L/R Precuneus 
L/R Precentral Gyrus 
L/R Superior Frontal 
Gyrus 
L/R Supramarginal 
Gyrus 
L/R Superior Occipital 
Gyrus 
L/R Superior Parietal 
Lobule 

L/R Cuneus 
L/R Hippocampus 
L/R Inferior Occipital 
Gyrus 
L/R Lingual Gyrus 
L/R Medial 
Occipitotemporal Gyrus 
L/R Occipital Pole 
L/R Precentral Gyrus 
R Supramarginal Gyrus 
L Superior Occipital 
Gyrus 
L/R Superior Parietal 
Lobule 

L/R Cuneus 
R Inferior Occipital 
Gyrus 
L/R Lingual Gyrus 
L/R Medial 
Occipitotemporal Gyrus 
L/R Occipital Pole 
L/R Superior Occipital 
Gyrus 
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3 

L/R Cuneus 
L/R Hippocampus 
L/R Lingual Gyrus 
L/R Lateral 
Occipitotemporal Gyrus 
L/R Medial 
Occipitotemporal Gyrus 
L/R Posterior Cingulate 
Gyrus 
L/R Parahippocampal 
Gyrus 
L/R Precuneus 
L/R Thalamus 

L/R Posterior Cingulate 
Gyrus 
L/R Thalamus 

L/R Amygdala 
L/R Angular Gyrus 
L/R Entorhinal Cortex 
L Inferior Temporal 
Gyrus 
L/R Lateral 
Occipitotemporal Gyrus 
R Middle Occipital 
Gyrus 
R Middle Temporal 
Gyrus 
R Postcentral Gyrus 
L/R Perirhinal Cortex 
L Parahippocampal 
Gyrus 
L Supramarginal Gyrus 
R Superior Occipital 
Gyrus 
L Superior Temporal 
Gyrus 
L/R Temporal Pole 
L/R Uncus 

R Amygdala 
L Angular Gyrus 
L/R Entorhinal Cortex 
L Inferior Occipital 
Gyrus 
L/R Inferior Temporal 
Gyrus 
L/R Lateral 
Occipitotemporal Gyrus 
L/R Medial Frontal 
Gyrus 
L/R Middle Occipital 
Gyrus 
R Middle Temporal 
Gyrus 
L/R Perirhinal Cortex 
L Parahippocampal 
Gyrus 
L/R Superior Frontal 
Gyrus 
L/R Superior Parietal 
Lobule 
L/R Temporal Pole 

4 

  R Inferior Temporal 
Gyrus 
L/R Medial Frontal 
Gyrus 
L Occipital Gyrus 
L Middle Temporal 
Gyrus 
L/R Posterior Cingulate 
Gyrus 
R Parahippocampal 
Gyrus 
L/R Precuneus 
L/R Superior Frontal 
Gyrus 

R Angular Gyrus 
L/R Hippocampus 
L Middle Frontal Gyrus 
L Middle Temporal 
Gyrus 
L/R Posterior Cingulate 
Gyrus 
R Parahippocampal 
Gyrus 
L/R Precuneus 

5 

   L Amygdala 
L/R Anterior Cingulate 
Gyrus 
L/R Inferior Frontal 
Gyrus 
L/R Lateral 
Orbitofrontal Gyrus 
L/R Medial 
Orbitofrontal Gyrus 
R Middle Frontal Gyrus 
L Supramarginal Gyrus 
L Superior Temporal 
Gyrus 
L/R Uncus 

Supplementary Table 1. CBF and GMV covariance network modules. Consensus clustering 

derived three modules from CBF covariance networks from Lo- and Hi-WMH groups. From 
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GMV covariance networks, we observed four and five modules from Lo- and Hi-WMH groups, 

respectively.  
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7. Figure Legends 

 

Figure 1. Illustration of analytic workflow. a) Participants were stratified by WMH volume into 

two groups. b) Group covariance matrices were constructed from CBF and GMV data by 

Pearson’s correlation coefficient between all brain region pairs, adjusted for age, sex, BMI, race, 

and MRI site. c) Consensus clustering was performed to detect modules from CBF and GMV 

covariance matrices. d) Network properties were calculated from CBF and GMV covariance 

matrices across a range of network densities and area-under-the-curve was integrated to 

summarize network properties. e) CBF and GMV covariance networks were compared between 

Lo- and Hi-WMH groups at global (clustering coefficient, characteristic path length, global 

efficiency) and regional (degree, betweenness centrality, local efficiency) levels using a non-

parametric procedure.  
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Figure 2. A depiction of the CBF and GMV covariance network modules are shown, as derived 

from consensus clustering. Parameter resolution values of 1.25 and 0.75 were chosen to generate 

modules from CBF and GMV covariance matrices using the Louvain community detection 

algorithm. Consensus clustering derived three modules from CBF covariance networks that were 

similar between Lo- and Hi-WMH groups. From GMV covariance networks, we observed four 

and five modules from Lo- and Hi-WMH groups respectively.  
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Figure 3. Small-world properties of CBF (top) and GMV (bottom) covariance matrices as a 

function of network density for Lo- (blue) and Hi-WMH (orange) groups. The small-world 

coefficient is defined as the ratio between normalized clustering coefficient (solid lines) and 

normalized characteristic path length (dashed lines). Both Lo- and Hi-WMH groups exhibited 

small-world topologies (i.e., normalized clustering coefficients greater than 1 and normalized 

characteristic path lengths approximately equal to 1). True networks were normalized by 100 

random networks that preserved the number of nodes and edges as the true network as well as 

the degree of individual nodes.  
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Figure 4. Differences in global network properties in CBF (top row) and GMV (bottom row) 

covariance networks. Vertical dashed lines indicate true differences between Lo- and Hi-WMH 

groups (Hi-WMH – Lo-WMH) while histograms illustrate null distributions derived from the 

non-parametric permutation procedure. There were no significant group differences in any of the 

global network properties for either CBF or GMV covariance networks at p < 0.05.  
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Figure 5. Brain regions that exhibited significant group differences in regional network 

properties are shown as blue or orange spheres. Blue corresponds to Lo- and Hi-WMH groups, 

while orange corresponds to Hi-WMH > Lo-WMH. Sphere size corresponds to the magnitude of 

the group difference. The threshold for statistical significance was set at p < 0.0135. 
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Supplementary Information 

One methodological issue of community detection analysis is the so-called resolution limit, 

which describes an algorithm’s inability to identify modules below a certain size (Sporns & 

Betzel, 2016). To address this, we assessed the stability of the Louvain algorithm by varying the 

resolution parameter, a variable that dictates the size and number of partitioned modules. Across 

a range of resolution parameter values (0.5 to 1.5, increments of 0.05), we performed 1,000 

iterations of the Louvain algorithm. The stability of the resulting partitions at each resolution 

parameter value was assessed by calculating the mean Hamming distance across all partition 

pairs. The resolution parameter value corresponding to the lowest (i.e., most stable) mean 

Hamming distance was then used for subsequent consensus clustering. This procedure was 

performed separately for GMV and CBF covariance matrices, constructed across all participants. 
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