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Abstract
In real world data (RWD) studies, observed datasets are often subject to left truncation, which

can bias estimates of survival parameters. Standard methods can only suitably account for left

truncation when survival and entry time are independent. Therefore, in the dependent left

truncation setting, it is important to quantify the magnitude and direction of estimator bias to

determine whether an analysis provides valid results.

We conduct simulation studies of common RWD analytic settings in order to determine when

standard analysis provides reliable estimates, and to identify factors that contribute most to

estimator bias. We also outline a procedure for conducting a simulation-based sensitivity

analysis for an arbitrary dataset subject to dependent left truncation.
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Our simulation results show that when comparing a truncated real-world arm to a non-truncated

arm, we observe the estimated hazard ratio biased upwards, providing conservative inference.

The most important data-generating parameter contributing to bias is the proportion of left

truncated patients, given any level of dependence between survival and entry time.

For specific datasets and analyses that may differ from our example, we recommend applying

our sensitivity analysis approach to determine how results would change given varying

proportions of truncation.
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1. Introduction
In many electronic health record (EHR) databases, patients are only observed if they satisfy

certain entry criteria, such as having a specific number of clinic visits, or undergoing a biomarker

testing procedure.1,2 This also occurs in prospective cohort studies where patients are enrolled

after an initiating event of interest.3 In time-to-event analyses, if a patient enters the study or

database after the start of their follow-up or index time, they are said to have delayed entry.

With this sampling process, we do not observe any patients who experienced a disqualifying

event (such as death) before satisfying the entry criteria, which is referred to as left truncation.4

Failure to account for left truncation by including patients in a survival analysis at their index

time and accruing person-time prior to satisfying the entry criteria results in a selection bias,

since patients observed in the database had to at least live long enough to qualify for entry.5,6

When dealing with left truncated data, standard methods for estimating the marginal survival

distribution are instead estimating survival conditional on surviving up to entry time. The most

common approach for recovering the marginal distribution is risk set adjustment, where patients

are only considered to be at risk for the endpoint of interest once they have satisfied the entry

criteria. In contrast, standard methods treat all patients as at risk from the start of their follow-up

or index time until their observed event or censoring time, resulting in bias. Risk set adjustment

is easy to implement with standard software, and can be used with both Kaplan-Meier survival

estimators and Cox proportional hazards regression models.7 However, it relies on the

assumption that the time to the endpoint T is independent of the time to entry E, given that T >

E. In other words, patients who entered later should have the same hazard of death as those

who entered earlier. This independent left truncation assumption is testable. The simplest

method is the coefficient test of a risk set adjusted Cox model with entry time as the sole

covariate.8 There are also tests based on conditional Kendall’s tau that may be more

appropriate when the Cox model assumption does not hold.9 10
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In practice, however, the assumption of independence is not always satisfied. For example, in a

study of mutation-positive patients with cancer identified through biomarker testing, it is possible

that testing could be triggered by worsening of disease and exhaustion of standard therapies, or

that patients tested earlier have better outcomes due to timely receipt of targeted therapies. If

there is dependency between survival and entry time, then risk set adjustment is no longer

guaranteed to unbiasedly estimate the marginal survival distribution. However, the magnitude

and direction of this bias is generally unexplored in the literature. While there have been some

proposed methodological solutions for dependent left truncation, these make strong parametric

assumptions that are untestable from observed data, and generally do not extend to multivariate

regression modeling.11

In this work, we design and implement simulation studies of analyses involving survival data

subject to dependent left truncation, based on studies with real world clinico-genomic data,

where patients are only observed upon receiving a genomic test, and survival is typically

measured from the start of a certain treatment. Given the lack of commonly-accepted methods

for dependent left truncation, we quantify the inferential bias that occurs when fitting risk set

adjusted Cox regression and Kaplan-Meier estimators. We characterize general trends in the

bias, with the goal of determining when such analyses may still provide useful results. In

addition, we provide a procedure for conducting sensitivity analyses given an arbitrary dataset

subject to dependent left truncation. This can be used by analysts to determine how bias in

results would change when varying non-estimable parameters.
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2. Methods

In this section, we apply a simulation approach to study the bias induced from dependent left

truncation when applying standard and risk set adjusted methods. We first describe how to

design a simulation study informed by a particular dataset, where most parameters can be

estimated and others can be varied as a sensitivity analysis. We then apply this framework to

conduct a simulation study; two additional analytic settings can be found in the Supplement.

2.1 Simulation-based sensitivity analysis

The goal of our method is to assess the expected bias due to dependent left truncation when

estimating parameters of interest. We conduct the following steps to create a data-generating

process that is congenial with the observed dataset:

● Assume generative models for survival, entry, and censoring

● Estimate parameters from observed dataset

● Vary parameters that are not estimable

● Perform simulation study

Most parameters in the simulation data-generating process can be estimated in order to match

the dataset of interest. However, we vary the distributions of truncation and censoring across a

range of parameters, since these are not estimable from dependently truncated data.

For illustrative purposes, we assume a survival analysis comparing two treatments, with both

data arms subject to dependent left truncation. The estimand of interest is the marginal hazard

ratio comparing the two treatments. For simplicity, we further assume that treatment is
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unconfounded, although confounding variables can easily be added to the generative models

for treatment arm assignment and survival time.

Assume generative models

The first step is to assume the form of the generative models that created the dataset. We

describe a simple survival model that matches what we use in our simulation study described in

the next section, although more complicated forms can also be used. Specifically, we assume

𝑇 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(λ
𝑇
)

,λ
𝑇

= λ
𝑏ℎ

 𝑒𝑥𝑝(β 𝑡𝑟𝑡 +  β
𝐸 

𝑒𝑛𝑡𝑟𝑦)

where is the hazard function for the time to death, composed of the constant baselineλ
𝑇
 𝑇

hazard with parameters and describing the conditional survival-treatment andλ
𝑏ℎ

β  β
𝐸 

survival-entry associations. We then assume the following models for treatment and entry times:

𝑡𝑟𝑡 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 

𝑒𝑛𝑡𝑟𝑦 ∼ {0                           𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
𝐸

            {𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(λ
𝐸

)   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝
𝐸

where , and are constant. Finally, we assume a model for censoring:𝑝 λ
𝐸

𝑝
𝐸

𝐶 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(λ
𝐶
)

,λ
𝐶

= λ
𝑇
η

𝐶

where is the hazard function for the time to censoring, and the parameter results in aλ
𝐶
 𝐶 η

𝐶

censoring probability of in the non-truncated dataset. Then, the time-to-event isη
𝐶
/(1 +  η

𝐶
)

Truncation is applied by filtering out observations where .𝑌 =  𝑚𝑖𝑛(𝑇,  𝐶). 𝑌 < 𝑒𝑛𝑡𝑟𝑦
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Estimate parameters from dataset

Next, we estimate as many parameters for this generative model as we are able to do from our

observed truncated dataset. Under our proportional hazards model assumption, the conditional

model of survival time as a function of treatment arm and entry time is estimable; that is,

estimates of , , and can be obtained by fitting a risk set adjusted Cox model withλ
𝑏ℎ

β  β
𝐸 

treatment and entry time as regressors. Additionally, the probability of treatment is readily𝑝

estimable from the observed dataset, under our generative model for treatment, which is

independent of entry time. Finally, the probability of pre-index entry to the cohort conditional on

not being truncated, , is also estimable from the observed dataset. By𝑃(𝑒𝑛𝑡𝑟𝑦 = 0 | 𝑌 > 𝑒𝑛𝑡𝑟𝑦)

conditional probability, we have that , which allows𝑝
𝐸

= 𝑃(𝑒𝑛𝑡𝑟𝑦 = 0 | 𝑌 > 𝑒𝑛𝑡𝑟𝑦)𝑃(𝑌 > 𝑒𝑛𝑡𝑟𝑦)

us to recover an estimate for once we set as described below.𝑝
𝐸

𝑃(𝑌 > 𝑒𝑛𝑡𝑟𝑦)

The parameters and , which characterize the censoring and entry time distributions, are notη
𝐶

λ
𝐸

estimable from observed data, and therefore must be varied in simulation. We consider these as

sensitivity parameters.

Vary parameters that are not estimable

Recall that the parameter of interest is the marginal hazard ratio comparing the two treatments.

This would be estimated by fitting a standard Cox model on the non-truncated dataset, with

treatment indicator as the sole regressor. However, because we only observe the truncated

dataset, this parameter is not estimable under dependent left truncation. Under the data

generating process, the marginal hazard ratio is a function of the entry time distribution.

Therefore, as we vary , we are obtaining different true marginal hazard ratio parameters.λ
𝐸
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Varying would affect the estimate of the marginal hazard ratio based on the non-truncatedη
𝐶

dataset.

We can select values for by choosing a parameter value that is more interpretable: theλ
𝐸

probability of a patient being truncated in the dataset. Each value of corresponds to a distinctλ
𝐸

entry time distribution, and therefore a distinct or truncation probability, assuming𝑃(𝑌 < 𝑒𝑛𝑡𝑟𝑦)

a fixed distribution of . We can then treat as the simulation parameter of interest,𝑌 𝑃(𝑌 < 𝑒𝑛𝑡𝑟𝑦)

and select such that a given truncation probability is achieved. Because of the dependency ofλ
𝐸

on , this probability is difficult to obtain in closed-form. However, it can be estimated by𝑌 𝑒𝑛𝑡𝑟𝑦

simulating many datasets with the same and computing the mean observed truncationλ
𝐸

proportion. Given a function that implements this procedure, a root-finding algorithm can then be

applied in order to solve for the corresponding for a certain . Larger values ofλ
𝐸

𝑃(𝑌 < 𝑒𝑛𝑡𝑟𝑦)

the sensitivity parameters and respectively correspond to greater prevalence ofη
𝐶

𝑃(𝑌 < 𝑒𝑛𝑡𝑟𝑦)

censoring and truncation in the population. Plausible ranges for these should be determined

based on domain knowledge or external data. Then, for each parameter configuration, a

simulation study can be performed to estimate the bias due to dependent left truncation.

Perform simulation study

For a particular data-generating process, we repeat the following steps over a large number of

iterations:

● Generate non-truncated dataset

● Compute true parameter of interest
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● Apply truncation and obtain truncated dataset

● Fit models to estimate parameter of interest

● Compute error metrics

Extensions

Though we have illustrated simulating a simple data-generating process here, it is

straightforward to extend to more complex settings. If we suspected that there were differing

levels of truncation between the arms, we could define separate entry time distributions, and

vary both the corresponding truncation probabilities. Similarly, the dependence between survival

and entry time can be allowed to differ between arms by adding an interaction term between

treatment and entry time to the hazard function for .𝑇

Additionally, while we assumed unconfounded treatment in the simulation data-generating

process described above, this method can be extended to handle confounded treatment

assignment. A measured confounder (or vector of confounders) can be added to both the𝑋

hazard function for , and the model for probability of treatment. The relevant conditional𝑇

regression parameters are estimable from the observed truncated data, and can be used for

observational causal inference procedures. The subsequent simulation can proceed by

incorporating e.g. inverse propensity score weighting into both the non-truncated and truncated

analysis.

More flexible distributions can also be specified for the random variables in this framework.

However, it is important to note that having entry time drawn from a single parameter distribution

allows for the 1:1 correspondence between the parameter and the truncation probability. A
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distribution with more parameters would lead to more sensitivity parameters that may be less

interpretable.

2.2 Simulation study of dependent left truncation

In this section, we describe a simulation study conducted to characterize the bias induced

through dependent left truncation in a real world control arm that is compared to a non-truncated

treatment arm. This comparison of a non-truncated treatment arm to a real world control arm

(rwCA) demonstrates a potential use for real world EHR-derived data12,13 where a treatment arm

from e.g. a clinical trial is not subject to any delayed entry or left truncation, while the real world

control arm used for comparison is. The estimand of interest is the marginal hazard ratio of

death comparing the two treatments. We also considered two additional designs corresponding

to common survival analyses performed with real world data subject to left truncation, which we

have detailed in the Supplement.

We describe the parameters used below. In general, these were set to realistic real-world values

based on corresponding parameters observed in the nationwide (US-based) de-identified

Flatiron Health-Foundation Medicine Clinico-Genomic Database. The de-identified data

originated from approximately 280 US cancer clinics (~800 sites of care). Retrospective

longitudinal clinical data were derived from electronic health record (EHR) data, comprising

patient-level structured and unstructured data, curated via technology-enabled abstraction, and

were linked to genomic data derived from FMI comprehensive genomic profiling (CGP) tests in

the FH-FMI CGDB by de-identified, deterministic matching.14 Genomic alterations were

identified via comprehensive genomic profiling (CGP) of >300 cancer-related genes on FMI's

next-generation sequencing (NGS) based FoundationOne® panel.15,16 To date, over 400,000

samples have been sequenced from patients across the US.
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As in Section 2.1, we begin with the following model for survival time:

𝑇 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(λ
𝑇
)

,λ
𝑇

= λ
𝑏ℎ

 𝑒𝑥𝑝(β 𝑡𝑟𝑡 +  β
𝐸 

𝑒𝑛𝑡𝑟𝑦)

where is the hazard function for the time to death, composed of the constant baselineλ
𝑇
 𝑇

hazard with parameters and describing the conditional survival-treatment andλ
𝑏ℎ

β  β
𝐸 

survival-entry associations. The parameters were then set as follows:

● We set to be 1/12, which corresponds to an average survival time of 12 months forλ
𝑏ℎ

patients on the arm who entered the cohort at their index time.𝑡𝑟𝑡 = 0

● The parameter was set to , which implies that patients on the arm haveβ 𝑙𝑜𝑔(0. 8) 𝑡𝑟𝑡 = 1

80% of the hazard of death compared to patients on the arm who entered the𝑡𝑟𝑡 = 0

cohort at the same time.

● is the parameter describing the association between survival and entry time, i.e. theβ
𝐸 

dependency of the left truncation mechanism. We varied this parameter among

𝑙𝑜𝑔(1,  1. 01,  1. 03,  1. 05,  1. 10).

We then use the following models for treatment and entry times, where patients with are𝑡𝑟𝑡 = 1

not subject to any delayed entry, and therefore cannot be left truncated:

𝑡𝑟𝑡 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 

𝑒𝑛𝑡𝑟𝑦 ∼ {0                                        𝑖𝑓 𝑡𝑟𝑡 =  1

                                             {0                                        𝑖𝑓 𝑡𝑟𝑡 =  0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝
𝐸

,                                             {𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(λ
𝐸

)                𝑖𝑓 𝑡𝑟𝑡 =  0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝
𝐸

and set the parameters as:

● is fixed at 0.5𝑝

● is fixed at 0.2𝑝
𝐸
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● is varied among values that resulted in left truncation probabilitiesλ
𝐸

of 0.1, 0.2, …, 0.7, given all the other parameters set𝑃(𝑌 > 𝑒𝑛𝑡𝑟𝑦 | 𝑡𝑟𝑡 =  0)

Finally, we set the censoring model as

𝐶 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(λ
𝐶
)

,λ
𝐶

= λ
𝑇
η

𝐶

where is the hazard function for the time to censoring, and the parameter results in aλ
𝐶
 𝐶 η

𝐶

censoring probability of in the complete dataset (before truncation is applied). Weη
𝐶
/(1 +  η

𝐶
)

fixed .η
𝐶

= 1

3. Results

In this section, we report the results of our simulation study conducted for one analytic setting;

results from the additional simulation studies can be found in the Supplement. These reflect the

parameter settings described in Section 2. Varying other parameters in the data-generating

process (such as , , , and ) did not meaningfully affect results.𝑝
𝐸

𝑝 λ
𝑏ℎ

β

In Figure 1, we display the coverage probability results for this setting with the same parameters

as used previously; here, the truncation probability only applies to the real world control arm. We

see that 95% confidence intervals for the risk set adjusted Cox hazard ratio provide valid

coverage up to a left truncation prevalence of 0.4 at the highest strength of dependency. This

implies that differential left truncation between treatment arms results in a more difficult

parameter to estimate. The naive estimator performs much worse here, notably also given

independent left truncation.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 5, 2021. ; https://doi.org/10.1101/2021.08.02.21261492doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.02.21261492
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Coverage probability of 95% confidence intervals for treatment hazard ratio

comparing a non-truncated arm to a real world arm across simulation settings.

Next, we display the relative bias results for the simulation parameters in Figure 2. As in the first

setting, we see that risk set adjustment is unbiased with independent left truncation, and bias

increases with truncation and dependency. An interesting result here is that the bias is uniformly

upwards, meaning that the estimated hazard ratio is always larger than the true hazard ratio.

This phenomenon makes sense in the presence of dependent left truncation. Intuitively, we

expect observed patient entries would be earlier compared to the non-truncated entry time

distribution. Then, given our data generating process, these patients are also more likely to

have a lower hazard of death. Therefore, the estimated hazard ratio comparing the

non-truncated treatment arm to the dependently truncated arm will be artificially inflated.
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Figure 2. Relative bias for estimated treatment hazard ratio comparing a non-truncated arm to a

real world arm across simulation settings.

Recall that the true hazard ratio is less than 1, implying a protective effect of the treatment over

the control. In many applications, we would expect that this is the substantive hypothesis being

tested; therefore, since the estimate is biased towards the null hypothesis, inference will be

conservative.

4. Discussion

Through our simulation studies, we measured the impact of dependent left truncation on

estimator bias. We reported results with varying probabilities of left truncation (i.e. the proportion

of patients who were not observed in the sample due to being truncated) and dependence
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between survival and entry time; varying other data-generating parameters did not meaningfully

affect estimator bias. We found that results varied greatly between analytical settings and

estimands, with relative parameters (hazard ratios) being subject to less bias than absolute

parameters (median survival time, as shown in the Supplement). At the highest level of

dependency assessed (entry time HR of survival = 1.1), confidence intervals for median survival

time only had valid coverage up to 0.3 probability of truncation. Hazard ratio confidence

intervals provided valid coverage more often, particularly when the level of truncation and

survival-entry time dependency in both arms was the same (see Supplement). Even with valid

coverage, however, bias can be substantial in point estimates subject to dependent left

truncation.

When patients in a non-truncated treatment arm given a protective treatment are compared to a

dependently truncated cohort treated in a real world setting, the resulting bias in the hazard ratio

is directionally upwards, or towards the null. This is expected, given the survivorship bias (i.e.

artificially lower hazard in the truncated cohort) that cannot be corrected via risk set adjustment.

The resulting inference is then conservative since the treatment effect is more likely to be

declared non-significant. Therefore, if a non-truncated treatment arm shows a significantly lower

hazard of death compared to the real world arm, a decision to advance the treatment

development can be made with confidence. In drug development, conservative inference is

usually preferable to the bias being directionally away from the null, which would lead to a

greater likelihood of false positive results. We therefore conclude that there exist analyses

where bias due to dependent left truncation may be acceptable in direction or in magnitude.

Our simulation approach shows general trends in estimator performance given dependent left

truncation; however, the settings will not apply to all possible data analyses. Therefore, we also

generalized this simulation study into a sensitivity analysis procedure that can be applied to any
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arbitrary dataset subject to dependent left truncation. Under the Cox proportional hazards model

assumption, many of the corresponding generative model parameters are estimable from data;

the parameters determining the censoring and truncation probabilities are generally not. These

can instead be varied across a reasonable grid determined by domain knowledge or

comparisons to external datasets that are not truncated. Then, for each parameter

configuration, the simulation procedure can estimate the level of bias expected to then inform

how accurate the initial analysis on the observed dataset is. This method applies to a variety of

common estimands, including hazard ratios (that may be conditional on baseline covariates, or

marginal over the target population) or median survival time. We recommend that this approach

be used by analysts to better quantify uncertainty around results when dependent left truncation

is present.

A limitation of our work is that accurate bias quantification requires knowledge of the population

truncation proportion, which is not estimable from a truncated dataset. We treat this as a varying

sensitivity parameter, which results in a range of bias estimates. However, this range may be too

wide to provide useful information. In practice, we suggest that plausible estimates of the

truncation proportion be determined through domain knowledge or external data that is not

subject to truncation. Our method also does not provide guidance as to what level of bias is

considered low enough in order to draw conclusions from an analysis subject to dependent left

truncation; this would vary among different applications. An expected relative bias of 10% in the

treatment hazard ratio may not affect decision making in a phase I single arm trial, but could be

of greater concern for a final regulatory decision.

This study is the first to our knowledge, to quantify the bias resulting from applying standard

survival analysis techniques (i.e. Cox proportional hazards models and Kaplan-Meier

estimators) with risk set adjustment to left truncated data. Although more complex models have
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been proposed to account for dependent left truncation, they require unverifiable parametric

assumptions, are not commonly used in practice, or do not extend to regression modeling.11,17

Another common strategy for handling left truncated data is to restrict the sample to only include

subjects who satisfied the conditions for cohort entry before their index time. This eliminates

delayed entry (and therefore left truncation) by design, and resulting survival analyses are no

longer subject to bias. However, this changes the parameter being estimated; rather than

estimating marginal hazard ratios or survival distributions, we are now estimating parameters

conditional on entry before index. This results in inference on a population which may not be of

scientific interest. In summary, in light of the lack of available methods for mitigating bias from

left truncation, it is of interest to determine how reliable standard methods are for estimating

marginal parameters under dependent left truncation.
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Tables

Table 1. Summary of simulation designs implemented, with truncation mechanisms and
parameters of interest specified.

Simulation design

NT arm + rwCA Two RW arms Single rwA

Treatment arm No LT No LT
LT

Control arm LT LT

Estimand Hazard ratio Hazard ratio Median survival time
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