Abstract
The first line of defense against SARS-CoV-2 is the upper respiratory tract, yet we know little about the amount, type, and kinetics of mucosal anti-Spike antibodies (Ab) in response to intramuscular (i.m.) COVID-19 vaccination. We analyzed salivary Ab against SARS-CoV-2 Spike following mRNA/mRNA and adenovirus (Ad)/mRNA regimes. While anti-Spike/RBD IgG was detected in the saliva and correlated with the systemic response, anti-Spike/RBD IgA associated with the secretory component (sIgA) was also detected, and did not necessarily correlate with serum Ab. Only modest levels of neutralizing capacity were observed in saliva at 2 weeks post-dose 2, and by 6 months, anti-Spike/RBD IgG were greatly diminished. In contrast, low levels of anti-Spike sIgA persisted up to 6 months after dose 2. Our results show that SARS-CoV-2 vaccination induces an IgG response in the saliva that decays over time and an sIgA response that does not necessarily correlate with systemic immunity.
One-Sentence Summary Our study delves into how intra-muscular mRNA/mRNA or mRNA/Ad COVID-19 vaccination regimes confer immunity in the oral cavity with important implications for understanding protection against breakthrough infections in healthy vaccinated people.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by an Ontario Together province of Ontario grant to JG and ACG and a Foundation grant from the Canadian Institutes of Health Research to JG (Fund #15992). Funding for the LTCH cohort was provided through a Canada COVID-19 Immunity Task force grant (to SS, AM, MO, ACG and JG). Funding for initial development of the assays in the Gingras lab was provided through generous donations from the Royal Bank of Canada (RBC) and the Krembil Foundation to the Sinai Health System Foundation. The robotics equipment used is housed in the Network Biology Collaborative Centre at the Lunenfeld-Tanenbaum Research Institute, a facility supported by Canada Foundation for Innovation funding, by the Ontarian Government and by Genome Canada and Ontario Genomics (OGI-139).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Mount Sinai Hospital Research Ethics Board (REB) granted approval for recruiting staff in long-term care facilities located in the Greater Toronto Area for blood and saliva collection and for conducting serum ELISAs at the Lunenfeld-Tanenbaum Research Institute (study number: 20-0339-E). The University of Toronto REB granted approval for subject recruitment to collect blood and saliva samples and for conducting saliva ELISAs (study number: 23901). The University of Saskatchewan REB granted approval for saliva sample collection during the pre-COVID era (study number: BIO-USask-1579).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
We have added new data in Figure 1 and Supplemental Figure 6.
Data Availability
The data will be available upon reasonable request.