A mucosal antibody response is induced by intra-muscular SARS-CoV-2 mRNA vaccination

Salma Sheikh-Mohamed¹, Gary Y.C. Chao¹*, Baweleta Isho¹*, Michelle Zuo¹*, George R. Nahass², Rachel E. Salomon-Shulman², Grace Blacker², Mahya Fazel-Zarandi³, Bhavisha Rathod³, Karen Colwill³, Alainna Jamal³, Zhijie Li⁴, Keelia Quin de Launay⁵, Alyson Takaoka⁵, Julia Garnham-Takaoka⁵, Christina Fahim⁵, Aimee Paterson³, Angel Xinliu Li³, Nazrana Haq³, Shiva Barati³, Lois Gilbert³, Karen Green³, Mohammad MozafariHashjin³, Philip Samaan⁶, Walter L. Siqueira⁷, Samira Mubareka⁶, Mario Ostrowski¹,², James M. Rini⁴,¹¹, Olga L. Rojas¹², Allison McGeer³, Irving L. Weissman², Michal Caspi Tal², Sharon Straus⁵, Anne-Claude Gingras³,⁴,¹³, Jennifer L. Gommerman¹,¹³

¹Department of Immunology, University of Toronto, Toronto, Canada
²Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University School of Medicine, Stanford, CA, USA
³Lunenfeld-Tanenbaum Research Institute and Mount Sinai Hospital, Toronto, Canada
⁴Department of Molecular Genetics, University of Toronto, Toronto, Canada
⁵Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Unity Health Toronto, Canada
⁶Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
⁷College of Dentistry, University of Saskatchewan, Saskatoon, Canada.
⁸Sunnybrook Health Sciences Centre, Toronto, Canada
⁹Department of Medicine, University of Toronto
¹⁰Keenan Research Centre for Biomedical Science, Toronto, Canada
¹¹Department of Biochemistry, University of Toronto
¹²Krembil Research Institute, University Health Network, Toronto, Canada
¹³Correspondence to sharon.Straus@unityhealth.to, gingras@lunenfeld.ca and jen.gommerman@utoronto.ca

*Equal Contribution

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Summary

Vaccines against SARS-CoV-2 administered via the parenteral route (intra-muscular – i.m.) are effective at preventing COVID-19 in part by inducing neutralizing antibodies in the blood. The first line of defense against SARS-CoV-2 is in the upper respiratory tract, yet we know very little about whether COVID-19 vaccines induce immunity in this compartment, if at all. We analysed salivary antibodies against the SARS-CoV-2 Spike protein and its receptor binding domain (RBD) following 2 i.m. injections of either BNT162b2 or mRNA-1273 vaccines. Salivary anti-Spike/RBD IgG was detected after 1 dose and increased further after dose 2, reflecting the systemic immune response. Interestingly, salivary anti-Spike/RBD IgA associated with the secretory component (sIgA) was detected in nearly all vaccinated participants after one dose of mRNA vaccine, with anti-Spike sIgA diminishing after dose 2. Vaccination with ChAdOx1-S (Ad) followed by mRNA induced similar levels of salivary anti-Spike/RBD IgG and IgA, and both mRNA/mRNA and Ad/mRNA regimes provoked modest neutralizing capacity in this biofluid. Our results demonstrate that SARS-CoV-2 mRNA/mRNA and Ad/mRNA vaccination induces antibodies in the saliva, and in response to one dose of mRNA, a compartmentalized and transient antigen-specific sIgA response is generated that does not correlate with systemic immunity.
SARS-CoV-2 is a novel and highly contagious respiratory virus that has quickly spread across the globe. The virus uses a protein called Spike and its associated receptor binding domain (RBD) to interact with angiotensin converting enzyme 2 (ACE2) on the surface of epithelial cells in the upper respiratory tract1. SARS-CoV-2 is mainly transmitted via inhaled respiratory droplets, making the immune response in the oral and nasal mucosa an important first line of defense2.

Saliva is an important biofluid that can provide information about the mucosal antibody response to SARS-CoV-23,4. Antibodies detected in the saliva may be derived from the blood, entering via the gingival crevicular fluid5. However, local antibody responses that include secretory IgA (sIgA) can also be generated in the salivary glands. sIgA exist as IgA dimers that are associated with the secretory component, a proteolytic cleavage product which remains associated with IgA after it is transported across epithelial cells via the polymeric Ig receptor (pIgR)6.

Recent studies have shown that saliva contains infectious viral particles in symptomatic and asymptomatic individuals exposed to the virus, and a positive correlation exists between salivary viral load and COVID-19 symptoms3, highlighting the importance of saliva as a proxy for studying the early mucosal immune response. The salivary glands themselves express ACE2 and harbour a significant population of IgA-producing plasma cells3. We and others recently showed that IgM, IgG and IgA antibodies against the SARS-CoV-2 Spike and RBD proteins are readily detected in the saliva of COVID-19 acute and convalescent patients4,7.

...
Approximately 4 billion people doses of COVID-19 vaccines have been administered worldwide, including, but not limited to, mRNA vaccines (e.g., BNT162b2, mRNA-1273) and adenovirus-based vaccines (e.g., Ad26.COV2). These vaccines are administered via the parenteral intramuscular route (i.m.). While these i.m. vaccinations induce a robust systemic IgG response capable of neutralizing SARS-CoV-2, whether they can induce antibodies in the saliva is unclear. To address this gap, we applied a previously established ELISA-based method for the detection of SARS-CoV-2-specific antibodies in saliva⁴ to samples from 150 long-term care home (LTCH) workers that received either BNT162b2 or mRNA-1273 (Supplementary Table 1). Saliva from 51 participants that were collected pre-pandemic or during the early months of the pandemic in a low prevalence region were pooled, and a positive cut-off was established that was 2 standard deviations above the median for these negative samples (Supplementary Tables 2a, b). Saliva from COVID-19 acute and convalescent patients was used as a positive control (Supplementary Table 2c). We expressed the data as a percentage relative to a pooled positive control that was present in each plate (see Methods). When we analyse only those participants who had no evidence of prior SARS-CoV-2 infection (n=107), we found that 94% and 41% of participants were positive for anti-Spike IgG and IgA, and 93% and 20% of participants, were positive for anti-RBD IgG and IgA antibodies in their saliva (Fig 1). Furthermore, anti-Spike and anti-RBD IgG and IgA levels correlated well with the level of these antibodies in the blood (Supplementary Fig. 1), suggesting that antibodies detected in the saliva after 2 doses of mRNA COVID-19 vaccine were at least in part derived from the systemic immune response. In multivariable analysis, age and prior SARS-CoV-2 infection were independently associated with the salivary anti-Spike IgA response (Supplementary Table 3a). In contrast, male sex had a negative independent association with the salivary anti-Spike IgG response (Supplementary Table 3b) as has been observed before for other vaccines.¹² Lastly, prior
SARS-CoV-2 infection and time since vaccination were independently associated with higher and lower serum anti-RBD IgA levels, respectively (Supplementary Table 3c).

In some countries, including Canada and the United Kingdom, vaccine dose sparing has resulted in a delayed administration of COVID-19 booster shots. As of June 2021, although most LTCH workers had been fully vaccinated, significant sectors of the Canadian population had only been administered a single dose of a COVID-19 vaccine, and the interval between dose 1 vs dose 2 was extended. Thus, we wished to ascertain if salivary antibodies could be detected after a single dose of a COVID-19 mRNA vaccine, and how long these titres would persist. Therefore, to measure anti-SARS-CoV02 salivary antibodies over time we collected samples from a second cohort of healthy adults that we followed over time (Medical Sciences Building cohort – MSB-1; Supplementary Table 4). These subjects received 1 dose of BNT1162b2 and a second dose approximately 3 months later with samples taken at baseline, 2 weeks post-dose 1, 3 months post-dose 1-, and 2-weeks post-dose 2. For the entire sampling period, of those participants that did not show evidence of prior SARS-CoV-2 infection (n=27) IgM levels were higher than baseline only for anti-Spike post-dose 2, and anti-RBD at 2 weeks post-dose 1 measurements (Fig. 2A-B). Focusing therefore on IgG and IgA we observed that 97% and 93% of participants were positive for anti-Spike IgG and IgA, and 52% and 41% were positive for anti-RBD IgG and IgA antibodies in their saliva 2 weeks after dose 1. However 3 months after dose 1, the median level of salivary anti-Spike and anti-RBD IgG had diminished (25.14+/−15.35 and 73.93 +/− 35.22 versus 13.56+/− 1.197 and 0.4545 +/− 0.1 at 2 weeks and 3 months post-dose 1, respectively. Two weeks after the second dose, median IgG levels recovered (anti-RBD) or were elevated (anti-Spike). Thus 2 doses are required to maintain anti-Spike/RBD IgG levels in the saliva (Fig. 2C-F). Curiously, in contrast
to IgG, anti-Spike and anti-RBD IgA levels were higher 2 weeks after dose 1 compared to 2 weeks after dose 2 (11.55 +/- 9.64 and 20.82 +/- 12.72 versus 5.757 +/- 2.686 and 2.435 +/- 1.5 at 2 weeks post-dose 1 and post-dose 2, respectively).

Of note, although the level of anti-Spike and anti-RBD IgG in the serum and saliva correlate with each other after a single dose of BNT162b2, this is not the case for anti-Spike and anti-RBD IgA (Supplementary Fig. 2). We hypothesized that the IgA response to Spike and RBD induced by i.m. BNT162b2 vaccination provoked a localized IgA response in the oral cavity. To test this, we designed an ELISA that would detect secretory chain associated with anti-Spike/RBD antibodies. We determined that the secretory chain signal associated with anti-SARS-CoV-2 salivary antibodies could be out-competed with recombinant secretory chain, and no anti-Spike/RBD secretory chain signal was detected in pre-pandemic colostrum, demonstrating assay specificity (Supplementary Fig. 3A). We then measured secretory component associated anti-SARS-CoV-2 antibodies in the saliva of vaccinated LTCH participants who had received two doses of either BNT162b2 or mRNA-1273. We found that secretory component associated anti-Spike and anti-RBD antibodies could be detected in 30% and 58% of participants, respectively, although the levels were lower than what was observed in COVID-19 patients (Fig. 3A-B). The anti-SARS-CoV2 associated secretory chain signal was independent of prior SARS-CoV-2 exposure as we observed no significant difference in this signal comparing participants who were positive vs negative for serum anti-nucleocapsid protein antibodies (Fig. 3C-D). Of note, if we divided the LTCH cohort into those participants who were positive versus negative for anti-Spike/RBD IgA, we observed that the secretory component signal was only detected in the IgA+ participants (Fig. 3E-F). In combination with the finding that most participants did not produce IgM antibodies to
anti-Spike/RBD, we conclude that secretory component is associating with anti-Spike/RBD IgA (sIgA). Therefore, a local sIgA response to Spike/RBD is produced in response to vaccination with BNT162b2 or mRNA-1273.

In addition to a longer interval between dose 1 and dose 2 (3 months), an additional modification in the Canadian COVID-19 response has been to provide a second dose of mRNA vaccine to subjects who received a first dose of ChAdOx1-S (Ad). Serum antibody levels to Ad/mRNA heterologous vaccination have only been recently assessed13, and nothing is known about how this regime impacts salivary antibodies. To test this, we recruited participants who had received a first dose of ChAdOx1-S followed 3 months later by a second dose of either BNT162b2 or mRNA-1273 (MSB-2 cohort) and compared the salivary and serum antibody levels to those elicited by 2 doses of BNT162b2, also 3 months apart (MSB-1 cohort). With respect to salivary anti-SARS-CoV-2 antibodies, we observed no significant difference 2 weeks post-dose 2 for either mRNA/mRNA versus Ad/mRNA participants for any of the IgM, IgG, IgA or secretory component readouts, except for anti-RBD IgG levels which were higher in the Ad/mRNA group (Fig. 2A-F last two columns). In the serum, no significant differences in anti-SARS-CoV-2 IgG or IgA antibodies were observed between MSB-1 mRNA/mRNA and MSB-2 Ad/m-RNA cohorts. However, the LTCH mRNA/mRNA cohort exhibited higher levels of anti-Spike and anti-RBD serum IgG antibodies compared to MSB-1 and MSB-2 (Supplementary Fig. 4A-B). In addition, correlation analysis showed that, like in the LTCH cohort, IgG but not IgA levels in the serum versus saliva were positively correlated (Supplementary Fig. 5). In summary, when first and second doses are 3 months apart, heterologous Ad/mRNA vaccination induces similar or greater
levels of anti-RBD and anti-Spike salivary antibodies compared to mRNA/mRNA vaccination, and like mRNA/mRNA vaccination, Ad/mRNA can induce antigen specific sIgA.

Antibodies against SARS-CoV-2 can prevent viral spread through a variety of mechanisms, including preventing cellular entry by blocking interactions between the viral RBD and angiotensin converting enzyme-2 (ACE-2) expressed on host cells. To assess if either COVID-19 vaccine provokes neutralizing antibodies (nAb) against SARS-CoV-2 in the oral cavity, we tested saliva from the MSB-1 and MSB-2 cohorts in a pseudovirus entry assay. Specifically, saliva at two-fold dilutions was added to hACE2-mCherry expressing HEK293 cells that were co-incubated with recombinant Vesicular Stomatitis Virus (rVSV)-eGFP-SARS-CoV-2-Spike. Infection of HEK293 cells was measured by fluorescence over the course of 72 hours (see methods). In most cases, a greater proportion of hACE2 expressing HEK293 cells were infected with rVSV-eGFP-SARS-CoV-2-Spike when co-incubated with baseline saliva compared to saliva acquired after 1 or 2 doses of BNT162b2 (Supplementary Fig. 6A). Moreover, the highest concentration of MSB-1 saliva samples had the strongest inhibitory effect on hACE2 HEK293 infection (Supplementary Fig. 6B). However, when FRNT50 or FRNT70 values was tabulated across the cohort, statistical significance was not achieved compared to baseline (Supplementary Fig. 6C). Similar results were observed for Ad/mRNA MSB-2 participants (Supplementary Fig. 6D-E). Thus, saliva from MSB-1 and MSB-2 vaccinated participants has a modest impact on preventing infection of hACE2 expressing HEK293 cells by rVSV-eGFP-SARS-CoV-2-Spike.

In summary, we observe a robust IgG response to Spike/RBD in the saliva of participants immunized with BNT162b2 or mRNA-1273 that correlates with the systemic IgG response, and...
heterologous Ad/mRNA vaccination provokes a similar response in the saliva compared to a homologous mRNA/mRNA vaccine regime. We further show that IgG antibodies to SARS-CoV-2 diminish at 3 months post-dose 1, suggesting that a timely boost is required to maintain salivary antibody levels - future work will determine how long salivary IgG antibodies can be detected post-dose 2. In many participants we also observed an IgA response to Spike/RBD in the saliva, particularly after dose 1, although anti-Spike/RBD IgA are lower than what is observed in COVID-19 patients. Our results are consistent with a recent report by Ketas et al who likewise showed that after two doses of BNT162b2 or mRNA-1273 anti-Spike and anti-RBD antibodies could be detected in saliva15. However, in our study we now distinguish between locally produced and systemically derived IgA using secretory chain detection. To our surprise, we detect anti-Spike/RBD sIgA in the saliva, and these sIgA levels do not correlate with the levels of systemic anti-Spike/RBD IgA in serum, suggesting that mRNA vaccination induces a compartmentalized sIgA response in the oral mucosae.

It is unclear how sIgA anti-Spike/RBD are generated in the saliva following i.m. immunization with BNT162b2 or mRNA-1273. Of note, Spike protein can be detected in the plasma, increasing one to 5 days after mRNA-1273 vaccination using an ultra-sensitive detection technique16. Thus one possibility is that plasma-associated Spike antigen may reach the salivary glands (which are surrounded by capillaries17), provoking a local sIgA response. We further hypothesize that the decline in anti-RBD sIgA at dose 2 may be due to rapid opsonization of Spike antigen by the exceedingly high levels of pre-existing serum anti-Spike IgG induced by dose 1. While beyond the scope of this study, using a highly sensitive assay such as Simoa® to measure Spike antigen in the saliva 1-5 days post-dose 1 versus post-dose 2 (which we did not collect) would be a logical
next step to test this hypothesis. Another possibility is that a mucosal IgA response to mRNA vaccination takes place in the gut, and plasma cells generated at this location leave the gut (as we have shown before18) and disseminate to other mucosal surfaces, including the salivary glands. Indeed, transient expression of the gut homing integrin α4β7 on yellow fever specific CD8+ T cells is observed following sub-cutaneous yellow fever vaccination in humans19. If gut priming occurs in response to mRNA vaccination, then the kinetics and relative level of antibodies we detect in the saliva post-vaccination should also be evident in the feces. Animal models are ideal for obtaining further insights into mechanisms that explain how SARS-CoV-2 mRNA vaccines provoke antigen-specific sIgA production at mucosal surfaces.

There are some limitations to our study: due to the sudden and rapid vaccine rollout we were only able to collect samples from LTCH participants after their second dose of mRNA. Moreover, this cohort contained a mixture of BNT162b2 and mRNA-1273 recipients, and these two mRNA vaccines have been shown to elicit slightly different levels of anti-SARS-CoV-2 nAb which may have impacted our results11. Moreover, while the interval between dose 1 and dose two in the LTCH cohort was 3-4 weeks, the interval for MSB1 and MSB2 was 3 months due to dose sparing measures implemented in the Canadian vaccine rollout. For this reason, heterologous Ad/mRNA vaccinated subjects (MSB-2) were directly compared with MSB-1, and this could likewise explain why the LTCH participants had higher levels of serum anti-Spike/RBD IgG compared to MSB-1 and MSB-2 subjects. Lastly, while both MSB-1 and MSB-2 saliva showed hints of neutralizing activity, when averaged across the cohort as an FRNT50 or FRNT70 value, this did not reach statistical significance over baseline samples. The reason for this may be technical – anti-viral properties of saliva beyond antibodies (i.e. enzymes) may impact the ability of rVSV-eGFP-
SARS-CoV-2-Spike to infect hACE2 expressing HEK293 cells, thus introducing background into the assay20.

A single dose of BNT162b2 has been shown to blunt transmission21. Among other mechanisms, protection against transmission could involve an antibody response that engages effector mechanisms (i.e., blocking viral entry and/or engagement of antibody-dependent or complement-dependent cytotoxicity) at the site of infection. We provide evidence of anti-Spike/RBD IgG and sIgA antibodies in the saliva of vaccinated participants that may have the capacity to contribute to reducing person-to-person transmission of SARS-CoV-2.
Main references

Methods

Study Approvals: The Mount Sinai Hospital Research Ethics Board (REB) granted approval for recruiting staff in long-term care facilities located in the Greater Toronto Area for blood and saliva collection and for conducting serum ELISAs at the Lunenfeld-Tanenbaum Research Institute (study number: 20-0339-E). The University of Toronto REB granted approval for subject recruitment to collect blood and saliva samples and for conducting saliva ELISAs (study number: 23901). The University of Saskatchewan REB granted approval for saliva sample collection during the pre-COVID era (study number: BIO-USask-1579).

Recruitment and participants: LTCH cohort (Supplementary Table 1): Staff working in Long-Term Care Homes (LTCHs) in Ontario were eligible to participate in the study if: 1) they were over the age of 18, 2) they were comfortable a) reading and writing in English, b) providing blood samples, and c) sharing their COVID-19 diagnostic status with the study team. To invite LTCH staff to participate in the study, study staff approached the administrators and/or directors of LTCHs to assess if they were interested in being a participating site in the study. If they were interested, the administrators and/or directors shared information about the study with their staff and provided a deadline by which staff should opt-out if they did not want to be contacted about the study by a member of the study team. The LTCH administration then shared with the study team the contact information of all LTCH staff who did not opt-out of further communication about the study. The study team then contacted these staff by phone to invite them to participate in the study. This active recruitment strategy was paired with passive recruitment strategies, including having the participating LTCHs and/or relevant staff organizations share recruitment advertisements about the study, as well as having participants approach study staff when they were
on-site for sample collection. A total of 12 LTCHs participated as a site in this study. Across these 12 sites, 647 individuals were invited to participate. Of these 647, a subset of individuals was not able to be reached by phone (n=242, 37%), were not eligible to participate (n=105, 16%), or refused to participate (n=131, 20%). Common reasons for participant ineligibility included being beyond 6 weeks after their 2nd dose of their COVID-19 vaccine or not being interested in receiving a COVID-19 vaccine. The most common reason for refusal to participate was lack of interest in being part of research. Finally, a subset of individuals (n=13) withdrew prior to their first sample collection, resulting in a final sample size of 156 participants.

Recruitment of negative control subjects (Supplementary Table 2a): Control saliva samples were collected from unexposed, asymptomatic individuals residing in an area of very low COVID-19 case numbers (Grey County, Ontario) and throughout the Greater Toronto Area (GTA) in April of 2020. Pre-COVID era samples were collected at the University of Saskatchewan.

Recruitment and participants- COVID-19 acute and convalescent participants (Supplementary Table 2b): Acute and convalescent serum and saliva samples were obtained from patients identified by surveillance of COVID-19 (confirmed by PCR; in- and out-patients) by the Toronto Invasive Bacterial Diseases Network in metropolitan Toronto and the regional municipality of Peel in south-central Ontario, Canada (REB studies #20-044 Unity Health Network, #02-0118-U/05-0016-C, Mount Sinai Hospital). Consecutive consenting patients admitted to four TIBDN hospitals were enrolled: these patients had serum and saliva collected at hospital admission, and survivors were asked to submit repeat samples at 4-12 weeks PSO. Consecutive out-patients diagnosed at the same 4 hospitals prior to March 15th and on a convenience sample of later days were
approached for consent to collect serum and saliva at 4-12 weeks PSO. Patients were interviewed and patient charts reviewed to determine age, sex, symptom onset date, and disease severity (mild, moderate, and severe).

Recruitment and participants – Medical Sciences Building (MSB-1). Supplementary Table 4: Pre-vaccination baseline, 2-3 weeks post-dose 1, 3 months post-dose 1- and 2-4-weeks post-dose 2 serum and saliva samples were obtained from an independently recruited cohort at the University of Toronto in Toronto, Ontario, Canada under REB protocol 23901. Of the n=31 recruited participants, 2 were excluded based on prior COVID-19 exposure and 2 left the study after the first sampling (moved out of country). For the 3 months post-dose 1, 11 out of the 27 eligible participants provided samples, whereas all other timepoints had n=27 subjects. Upon arrival at the sampling site, participants gave informed consent and serum and saliva samples were collected.

Recruitment and participants – MSB-2. Supplementary Table 5: Subjects who received 1 dose ChAdOx1-S and a second dose of either BNT162b2 or mRNA-1273 were independently recruited through a Twitter drive and sampled for blood and serum 2-4 weeks post-dose 2 at the University of Toronto in Toronto, Ontario, Canada under REB protocol 23901. 42 subjects were sampled in total; however one sample did not provide enough saliva for analysis resulting in a total of 41 samples analyzed from this cohort.

Enzyme-linked immunosorbent assays for detecting antigen-specific IgG, IgA, and IgM in serum: We used a previously published method for detection of saliva and serum anti-SARS-CoV-2 antibodies. Briefly, an automated chemiluminescent ELISA assay was used to analyze the levels of IgG, IgA, and IgM antibodies to the Spike trimer, its RBD, and the nucleocapsid, as reported
previously with the following modifications. The nucleocapsid (PRO47, 7 ng/well) and RBD (PRO1151, 20 ng/well) antigens were produced in CHO (Chinese Hamster Ovary) cells, and were a kind gift from Dr. Yves Durocher, National Research Council of Canada (NRC). The secondary antibody for IgG was an IgG-HRP fusion (PRO1146, 1:6700 or 0.9 ng/well), donated by the NRC. A standard curve of the VHH72 monoclonal antibody fused to a human IgG1 Fc domain (PRO23, also from the NRC) was generated for calibrating the anti-Spike and anti-RBD IgG response. All other antigens, detection reagents and calibration reagents were as previously described. The data analysis also proceeded as in, with the following exceptions. Blanks were not subtracted from the chemiluminescence raw values of the samples, and the raw values were normalized to a blank-subtracted point in the linear range of the calibration standard curve (for Spike and RBD, the reference point was 0.0156 µg/ml and for N, 0.0625 µg/ml). The results are represented as a “relative ratio” to this reference point. To define the cutoff for positive antibody calls for each antigen for IgG when 0.0625 µl/well of sample was added, 3 standard deviations from the mean of the log negative control distribution from >20 different runs collected over 4 months was used. For IgA, negatives from 2 different runs over one month and for IgM negatives from 3 runs over 2 months were used. In all cases, the selected cut offs correspond to <2% False Positive Rate (FPR) assessment, based on Receiver Operating Characteristic Curves.

Saliva collection: Saliva samples from both cohorts were collected using Salivette® tubes (Sarstedt, Numbrecht, Germany), a collection system which consists of a cotton ball which participants chew for exactly three minutes and place into a tube, which is then placed into a larger outer tube. The entire system is spun in a centrifuge at 1000 x g for five minutes at room temperature. The inner tube contains a hole at the bottom, which allows all the saliva absorbed by
the cotton ball to filter into the larger outer tube. The total saliva volume from each participant was
then separated into 300-500µl aliquots and stored at -80°C until the time of testing. Given that
these samples were collected from vaccinated participants who reported no symptoms of COVID-
19 infection, we did not conduct any measures for viral inactivation.

Antigen production- Saliva assay: The expression, purification and biotinylation of the SARS-
CoV-2 RBD and Spike ectodomain were performed as recently described\(^4\). The human codon
optimized cDNA of the SARS-CoV-2 Spike protein was purchased from Genscript
(MC_0101081). The soluble RBD (residues 328-528, RFPN...CGPK) was expressed as a fusion
protein containing a C-terminal 6xHis tag followed by an AviTag. The soluble trimeric Spike
protein ectodomain (residues 1-1211, MFVF...QYIK) was expressed with a C-terminal phage
tfold trimerization motif followed by a 6xHis tag and an AviTag. To help stabilize the Spike
trimer in its prefusion conformation, residues 682–685 (RRAR) were mutated to SSAS to remove
the furin cleavage site and residues 986 and 987 (KV) were each mutated to a proline residue (51).
Stably transfected FreeStyle 293-F cells secreting the RBD and soluble Spike trimer were
generated using a previously reported piggyBac transposon-based mammalian cell expression
system (52). Protein production was scaled up in 1L shake flasks containing 300 mL FreeStyle
293 medium. At a cell density of 10^6 cells/mL, 1 µg/mL doxycycline and 1 µg/mL Aprotinin were
added. Every other day 150 mL of medium was removed and replaced by fresh medium. The
collected medium was centrifuged at 10000 × g to remove the cells and debris and the His-tagged
proteins were purified by Ni-NTA chromatography. The eluted protein was stored in PBS
containing 300 mM imidazole, 0.1% (v/v) protease inhibitor cocktail (Sigma, P-8849) and 40%
glycerol at -12°C. Shortly before use, the RBD and Spike proteins were further purified by size-
exclusion chromatography on a Superdex 200 Increase (GE healthcare) or Superose 6 Increase (GE healthcare) column, respectively. Purity was confirmed by SDS-PAGE. For the Spike protein, negative stain electron microscopy was used to show evidence of high-quality trimers. The Avi-tagged proteins, at a concentration of 100 μM or less, were biotinylated in reaction mixtures containing 200 μM biotin, 500 μM ATP, 500 μM MgCl₂, 30 μg/mL BirA, 0.1% (v/v) protease inhibitor cocktail. The mixture was incubated at 30°C for 2 hours followed by size-exclusion chromatography to remove unreacted biotin.

Enzyme-linked immunosorbent assays for detecting anti-Spike and anti-RBD IgA, IgG and IgM in saliva: 96-well plates pre-coated with streptavidin were used for all saliva assays. We have previously determined that coating plates with 50ul per well of 2ug/ml of biotinylated RBD or 20ug/ml of biotinylated Spike diluted in sterile phosphate-buffered saline (PBS) was the ideal coating solution. Control wells were coated with 50ul per well of sterile PBS. After coating with the antigen of interest and incubating overnight at 4°C, the coating solution was discarded and plates were blocked with 5% BLOTTO solution (5% w/vol skim milk powder (BioShop, CAT#SKI400.500)). Plates were incubated with the blocking solution at 37°C for 2 hours, and the solution was discarded immediately prior to adding samples to each well. During the blocking incubation, frozen saliva samples were removed from -80°C storage, thawed and diluted using 2.5% BLOTTO at a range of 1:5-1:20. Sample dilutions were pre-incubated in a separate streptavidin-coated plate with no antigen to reduce anti-streptavidin activity in the saliva. Samples were incubated in the pre-adsorption plate for 30 minutes at 37°C, after which 50ul of each sample from the pre-adsorption plate was transferred to the corresponding wells of the antigen-coated plates and incubated for 2 hours at 37°C. Next, samples were discarded from the antigen-coated
plates, and the plates were washed 3x with PBS+0.05% Tween 20 (PBS-T (BioShop, CAT# TWN510)). 50ul of Horse radish peroxidase (HRP)-conjugated goat anti human-IgG, IgA and IgM secondary antibodies (Southern Biotech, IgG: 2044-05, IgA: 2053-05, IgM: 2023-05) were added to the appropriate wells at dilutions of 1:1000, 1:2000 and 1:1000 in 2.5% BLOTTO, respectively, and incubated for 1 hour at 37˚C. Plate development was done by adding 50uL of 3,3’,5,5’tetramethylbenzidine (TMB) Substrate Solution (ThermoFisher, 00-4021-56) to each well. The reaction was then stopped by adding 50µl/well of 1N H2SO4, and optical density (OD) was read at a wavelength of 450nm (OD450) on a spectrophotometer (Thermo Multiskan FC).

ELISA for detection of secretory component associated anti-Spike/RBD antibodies: Secretory chain associated antibodies were detected by modifying our saliva Spike/RBD ELISA by using an HRP-conjugated Goat anti-human secretory component detection reagent at a dilution of 1/750 from Nordic MUBio (Cat# GAHu/SC/PO).

Flow Cytometry method for detection of nAb antibodies: Neutralizing antibodies were measured at two step saliva dilutions (1:12-1:384) following incubation with recombinant Vesicular Stomatitis Virus (rVSV)-eGFP-SARS-CoV-2-Spike in which the VSV-G protein was replaced with SARS-CoV-2-Spike protein was propagated on MA104 cells23. MA104 cells were maintained in Medium 199 (Gibco, Cat. No. 11150067) supplemented with 10% FBS and 1% Penicillin/Streptomycin (Fisher Scientific, Cat. No. 15-140-163). After visible cytopathic affect, supernatant was filtered, aliquotted and stored at –80 °C. Supernatant was added to Human Embryonic Kidney (HEK) 293 cells were engineered to encode human angiotensin converting
enzyme 2 (hACE2 in the pDEST-mCherry vector) as previously described24. HEK293-hACE2-
mCherry cells were cultured in Gibco Dulbecco’s Modified Eagle Medium (DMEM) formulation
containing glucose, L-glutamine and sodium pyruvate (Gibco, Cat. No. 11995065) with 1x
Penicillin/Streptomycin. Geneticin Selective Antibiotic (G418) (Gibco, Cat. No. 10131035) was
added at a concentration of 500 μg/mL to maintain hACE2-mCherry expression. Cells were grown
in 5% carbon dioxide (CO2) at 37 °C and passaged every 3 days using Versene solution (Gibco,
Cat. No. 15040066). HEK293-hACE2-mCherry cells were seeded at a density of 25,000 cells per
well in a 96-well, flat-bottom tissue culture coated plate. Outer rows were avoided to reduce assay
variations resulting from edge effect in the IncuCyte. In a separate 96 well plate, samples were
serially diluted and incubated with 50 μl of rVSV-eGFP-SARS-CoV-2-S for 2 hours at 37 °C in
5% CO2. Each sample plate included a dilution of anti-RBD antibody (Invitrogen, Cat. No.
703958) of 10 μg/mL, 5 μg/mL, 1 μg/mL, 0.5 μg/mL, 0.1 μg/mL, and 0.05 μg/mL as a positive
control. After incubation, the mixture of sample and rVSV-eGFP-SARS-CoV-2-S was transferred
to the plated HEK293-hACE2-mCherry cells at a 1:1 ratio of culture media to virus/sample
suspension. Plates loaded in the IncuCyte were imaged every 1-4 hours for a total of 72 hours with
4 scans per sample well to visualize neutralization. The total integrated intensity of the fluorescent
value of the lowest anti-RBD condition (0.05 μg/mL) with the rVSV-eGFP-SARS-CoV-2-S
controls at 12-hour intervals was used to normalize separate experiment runs. Each plate was
normalized either to the mean of the rVSV-eGFP-SARS-CoV-2-S supernatant controls or to the
0.05 μg/mL anti-RBD antibody. Normalization to 0.05 μg/mL anti-RBD was performed only if
division by the triplicate rVSV-eGFP-SARS-CoV-2 control conditions resulted in loss of a
sigmoidal shape of the anti-RBD curve. To quantitatively determine assay sensitivity, fluorescent
reduction of neutralization titers (FRNT) 50 and 70 were calculated to determine the amount of
monoclonal anti-RBD needed to prevent 50% and 30%, respectively, of the maximum infection (Sup. Fig. 10B and C) and plotted in log10 scale for plasma and log2 scale for saliva due to variations in antibody titers in different tissue types. This assay is sufficiently sensitive down to 5 μg/mL of neutralizing antibodies.

Sample Analysis: For each sample, the raw OD$_{450}$ for the PBS control well was subtracted from the raw antigen-specific OD$_{450}$ value for each sample, at each sample dilution (1:5, 1:10, 1:20). The adjusted OD$_{450}$ value for each sample dilution (1:5, 1:10, 1:20) was used to calculate the area under the curve (AUC) for each individual sample. The sample AUC was then normalized to the AUC of the positive control, which consisted of saliva collected from COVID-19 acute and convalescent participants. The normalized AUC was multiplied by 100 to give a final percentage, which we deemed the “% of positive control”. Each plate also included 1-3 negative controls, which consisted of pre-COVID era saliva incubated in antigen-coated wells. Integrated scores were calculated for all negative control samples, using the same calculation method used for cohort 1 and 2 samples. “Positive” cut off values for each antigen-specific isotype were calculated using the following formula: average integrated scores of negative samples + 2(standard deviation of negative control integrated scores). Samples whose score was above the resulting cut off for each antigen-specific isotype was used to determine which samples from cohorts 1 and 2 had detectable antibody levels in their saliva.

Multivariable analysis: The relationships between clinical predictors (age, sex, SARS-CoV-2 infection prior to vaccination, and time from vaccination to sample collection) and antibody levels

medRxiv preprint doi: https://doi.org/10.1101/2021.08.01.21261297; this version posted August 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
were examined in bivariate and *a priori* multivariable linear regression models. For saliva, four multivariable linear regression models were constructed to examine potential independent associations between the four clinical predictors and anti-RBD IgA/IgG and anti-Spike IgA/IgG. For serum, two multivariable linear regression models were constructed to examine potential independent associations between the four clinical predictors and anti-RBD IgA/IgG. In each model, antibody levels were appropriately transformed to ensure homoscedasticity, and the absence of multicollinearity was confirmed with variance inflation factors being <5 for all predictors. All analysis was performed in SAS 9.4M6 (SAS Institute, Cary, NC). P values of <0.05 were considered statistically significant.
Acknowledgments

This work was supported by an “Ontario Together” province of Ontario grant to JG and ACG and a Foundation grant from the Canadian Institutes of Health Research to JG (Fund #15992). Funding for the LTCH cohort was provided through a Canada COVID-19 Immunity Task force grant (to SS, AM, MO, ACG and JG). Funding for initial development of the assays in the Gingras lab was provided through generous donations from the Royal Bank of Canada (RBC) and the Krembil Foundation to the Sinai Health System Foundation. The robotics equipment used is housed in the Network Biology Collaborative Centre at the Lunenfeld-Tanenbaum Research Institute, a facility supported by Canada Foundation for Innovation funding, by the Ontarian Government and by Genome Canada and Ontario Genomics (OGI-139). Dr. Yves Durocher at the National Research Council of Canada (NRC) kindly donated reagents for the serum assays. Recombinant Vesicular Stomatitis Virus (rVSV)-eGFP-SARS-CoV-2-Spike was generously provided by Dr. Sean Whelan, and hACE2-mCherry expressing HEK293 cells was generously provided by Dr. Siyuan Ding, Washington University, St. Louis for neutralization assays performed by the Stanford scientists. We thank Elizabeth Yue, Antonio Estacio, Serena Loklam Chau, Ryan Law and Eric Yixiao Cao for LTCH sample processing and sustaining the infrastructure of sample processing in the Ostrowski lab. We thank Jeff Browning for critical reading of this manuscript. We would like to thank Florian Krammer for advice on secretory component detection by ELISA.

Author contributions

SS-M, BI and MZ conducted experiments and prepared figures. SS-M also wrote portions of the manuscript. GC performed phlebotomy and sample intake, coordinated sample collection and storage and created and managed a sample database. GRN, RES-S and GB performed the nAb assays under the supervision of ILW and MCT. MF-Z performed sample intake, ELISAs and data
analysis. BR performed sample intake and ELISAs. KC performed data analysis and project oversight. MF-Z, BR and KC were supervised by A-CG who also contributed to the writing of this study. AJ conducted the multivariate analysis. JR and ZL synthesized Spike and RBD proteins. KQdL, AT, JG-T and CF coordinated the LTHC study under the leadership of SS. PS and MO recruited and prepared samples from COVID-19 patients at St. Michael’s Hospital. AP, AXL, NH, SB, LG, KG and MM recruited and prepared samples from COVID-19 from Mount Sinai Hospital and Sunnybrook Hospital under the supervision of AM and SM. WLS coordinated sample collection and storage and created and managed a sample database. AM recruited and collected samples from COVID-19 patients at Mount Sinai Hospital.

Competing interest declaration

The authors have not competing interests that are relevant to the work in this study. None of the authors have commercial interests in any of the 3 vaccines that were studied herein.

Additional information

The study contains 5 supplementary Tables and 6 supplementary Figures. Correspondence should be directed to Drs. Sharon Straus Sharon.Straus@unityhealth.to, Anne-Claude Gingras gingras@lunenfeld.ca and Jennifer Gommerman, jen.gommerman@utoronto.ca

Data Availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
Figures and Figure Legends

Fig 1. Detection of anti-SARS-CoV-2 Spike and RBD specific antibodies in the saliva of mRNA vaccinated participants.

Anti-Spike (A,C,E) and anti-RBD (B,D,F) antibodies were detected using an ELISA-based assay in the saliva of vaccinated participants after two-doses of either BNT162b2 or mRNA-1273 (n=107 for both combined). COVID-19 controls consisted of saliva collected from acute and convalescent patients (n = 18). These were compared to n=9 individually run negative controls. The positive cutoff (dotted line) was calculated as 2 standard deviations above the mean of a pool of negative control samples (n=51) for each individual assay. Y-axis was set at 1500% for all plots as this was the highest value for measurements in Fig. 2D, allowing for cross-isotype comparison in all cohorts. All data is expressed as a percentage of the pooled positive plate control, calculated using the AUC for each sample normalized to the AUC of the positive control (see Methods). Solid black bars denote the median for each cohort. Mann-Whitney U test was used to calculate significance, where ns=not significant, *=p<0.05 and ****=p<0.0001.
Fig 2. Detection of anti-SARS-CoV-2 Spike and RBD specific antibodies in the saliva of a longitudinal mRNA/mRNA cohort and Ad/mRNA vaccinated participants.

Anti-Spike (A,C,E) and anti-RBD (B,D,F) antibodies were detected using an ELISA-based assay in the saliva of vaccinated participants that were followed at sequential timepoints before and after dose 1 and dose 2 of BNT162b2 (MSB-1, n=27 with † = n=11 participants at this timepoint), as well as participants who received dose 1 of ChAdOx1-S and dose 2 of either BNT162b2 or mRNA1273 (MSB-2, n=36). Y-axis was set at 1500% for all plots as this was the highest value for measurements in Fig. 2D, allowing for cross-isotype comparison in all cohorts. All data is expressed as a percentage of the pooled positive plate control, calculated using the AUC for each sample normalized to the AUC of the positive control (see Methods). Solid black bars denote the median for each cohort. Mann-Whitney U test was used to calculate significance, where ns=not significant, *=p<0.05, **=p<0.01, ***=p<0.001 and ****=p<0.0001.
Fig 3. Secretory component is associated with Spike/RBD-specific antibodies in the saliva of mRNA vaccinated participants

We used an ELISA-based method to detect secretory component associated with anti-Spike (A) and anti-RBD (B) antibodies in the saliva of 2-dose vaccinated subjects (n=93), as well as saliva taken from COVID-19 negative and positive patients (n=77 and 75, respectively). Subjects receiving 2 doses of BNT162b2 or mRNA1273 (C,D) were further grouped based on anti-NP antibody status, which is indicative of previous exposure/infection. For comparison, pre-COVID era negative control saliva is included for further validation, we grouped a subset of 2-dose vaccinated subjects into those that were considered above (n=34) or below (n=19) the positive cut off for salivary IgA and analyzed them for the presence of secretory component (E,F). Lastly, Secretory component associated with anti-spike (G) and anti-RBD (H) antibodies in samples collected post-dose 1 and dose 2 from both MSB-1 (n=27) and MSB-2 (n=36) cohorts was also detected using an ELISA-based method. Solid black bars denote the median for each cohort, while the dotted black line denotes the positive cutoff, calculated as 2 standard deviations above the mean of a pool of negative control samples Mann-Whitney U test was used to calculate significance, with ns=not significant, and ****=p<0.0001.