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Abstract: 16 

The COVID-19 pandemic highlighted the lack of understanding around effective public health 

interventions to curtail the spread of an emerging respiratory virus. Here, we examined the public 18 

health approaches implemented by each state to limit the spread and burden of COVID-19. Our 

analysis revealed that stronger statewide interventions positively correlated with fewer COVID-20 

19 deaths, but some neighboring states with distinct intervention strategies had similar SARS-

CoV-2 case trajectories. Additionally, more than two weeks is needed to observe an impact on 22 

SARS-CoV-2 cases after an intervention is implemented. These data provide a critical framework 

to inform future interventions during emerging pandemics.  24 

 

Introduction: 26 

Starting in December of 2019, there were reports of a novel coronavirus (CoV) emerging 

in China; on March 11, 2020, the World Health Organization (WHO) declared COVID-19 a 28 

pandemic. In response, many countries around the world began implementing non-pharmaceutical 

interventions (NPI) and providing guidance to keep their citizens safe, with several countries (such 30 

as China, South Korea, Singapore, Japan and in Europe) doing so in late February and March of 

2020 (1-3). In contrast, the United States federal government did not implement and oversee any 32 

federal NPIs to restrict transmission of COVID-19 during all of 2020. Instead, individual states 

carried out the responsibility of implementing restrictions and creating reopening plans with their 34 

respective state-level resources (4).  

 This necessary action from US state and local governments resulted in a variegated 36 

approach to managing an emerging pandemic and over 600,000 deaths in the US as of July 2021 

(https://coronavirus.jhu.edu/ ). In the face of this unfathomable loss, there exists an opportunity to 38 

understand how specific NPIs may affect transmission of COVID-19 in the United States. We 

aimed to characterize the effectiveness of NPIs implemented at the state level at reducing COVID-40 

19 transmission as well as compare the overall effectiveness of NPI implementation strategies 

across states.  42 

To explore the dynamics of NPI implementation and changes in daily COVID-19 cases, 

we created an interactive dashboard (www.phightcovid.org) that displays state-specific time series 44 

with normalized daily COVID-19 cases to compare the potential impact of NPIs across states. This 

dashboard is periodically updated to incorporate more recent case counts and NPIs. Clustering the 46 
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estimated basis-spline models underlying the state time series revealed geographical groupings, 

indicating that similar SARS-CoV-2 case trajectories may be based on state location in addition to 48 

NPIs. Finally, we observed a statistically significant negative correlation between COVID-19 

deaths and state NPI score, solidifying the importance of implementation of public health 50 

interventions. 

 52 

Heterogeneity in State NPI restrictions 

 54 

To capture the heterogeneity in protective measures implemented by each state, including 

the District of Columbia (DC), we collected state mandated COVID-19 NPI orders from each 56 

governor website for one year (March 11, 2020-March 31, 2021). NPI orders for the following 

five categories were included in this study: stay-at-home orders, non-essential business 58 

restrictions, indoor gathering limitations, restaurant/bar restrictions, and mask/face covering 

mandates. Daily cumulative NPI scores were calculated for each state based on the stringency of 60 

each intervention in these five categories (see methods for score rubric). Fig. 1 highlights the 

heterogeneity in the NPIs implemented by each state, at three distinct times during the pandemic. 62 

A time-lapse movie of the NPI map with daily COVID-19 cases is provided in movie S1. 

Interestingly, implementation strategies varied by state with some states directly placing orders on 64 

all residents, while others delegated the responsibility for ordering NPIs to county or city 

governments (fig. S1A). In some cases, states initially placed statewide orders on all residents, but 66 

as the pandemic progressed, implementation of interventions was moved to a county or city level. 

Fig. S1 provides a snapshot of states that implemented statewide, county-level, or city-level NPIs, 68 

note that the various levels of NPI implementation were not exclusive. In some states, statewide 

NPIs were implemented for all residents, but individual counties would extend or modify the NPIs 70 

(fig. S1). To explore the accessibility of NPI guidelines per state, we additionally measured the 

time it took for a new user to find NPI information for each state (fig. S1B). We observed that 72 

information for the majority of states could be found in under five minutes (fig. S1B).  

All states, except for South Dakota where there weren’t any mandatory statewide NPIs, 74 

implemented a different combination of interventions statewide during the pandemic 

(www.phightcovid.org ). Initially, 43 states implemented stay-at-home orders, of which 93% were 76 

lifted by June 15, 2020. Restaurant/bar closures were implemented in 49 states (including DC) 

 
Figure 1: Spatial temporal maps showing state NPI score over time display heterogeneity in state 

responses. Each restriction was out of a maximum of one point. States had the maximum score of five 

points when all five categories had restrictions at 100%, (i.e., either full closure or extreme limitations, 

depending on the category). The darker the color of a state the stronger the NPI restrictions (and the 

higher the score). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.28.21261286doi: medRxiv preprint 

http://www.phightcovid.org/
https://doi.org/10.1101/2021.07.28.21261286
http://creativecommons.org/licenses/by-nc-nd/4.0/


between March 15 and April 3, 2020. These states, except Missouri, eased restaurant/bar 78 

restrictions for the first time between April 24 and June 15, 2020, with the largest proportion doing 

so between May 9 and May 19, 2020. Missouri did not ease this NPI, rather the closure was 80 

completely lifted on June 16, 2020. Between June 1, 2020, and January 2, 2021, 41 states and DC 

reissued restaurant/bar restrictions for some duration of time before again easing them. A similar 82 

scenario of alternating between easing and re-issuing mandates occurred with indoor gathering 

limitations and non-essential business restrictions. Temporal restrictions by state are available in 84 

an interactive format on www.phightcovid.org/graphs.  

 86 

SARS-CoV-2 case trajectories cluster by geographical region 

 88 

 
Fig 2: SARS-CoV-2 cases and non-pharmaceutical interventions are distinct between states. Time 

series graphs for Maryland (A) and Tennessee (B) from March 11, 2020, through March 31, 2021. Daily 

SARS-CoV-2 cases were normalized to state population represented per 500,0000 people (black circles), 

and the seven-day rolling average is indicated by the grey line. State NPI score per day is indicated by 

the colored bar along the x-axis. The NPIs are labeled with the category abbreviation, and colored as 

magenta if restricting, or teal if easing. The duration of the stay-at-home order is indicated by the grey 

band; black vertical lines represent implementation of statewide mask mandate, labor-day, and each 

vaccine FDA approval dates. 

 

To compare the implementation of various NPIs per state over the last year to the trajectory 90 

of COVID-19 cases, we created time series graphs, (including a seven-day rolling average) for 

each state as displayed in Fig. 2 and fig. S2. In Fig. 2, Maryland and Tennessee are highlighted as 92 

representative states that implemented strong interventions throughout the past year (Maryland) 

versus states that had implemented fewer interventions (Tennessee) (table S1). The 94 

implementation dates of the statewide government NPIs are indicated on the graphs. As NPIs were 

implemented and eased, the NPI score changed based on the heuristic NPI scoring rubric, indicated 96 

by the colored horizontal bar (table S2). While most states, including Maryland and Tennessee, 

implemented NPIs early in the pandemic, Tennessee was far less stringent with NPIs in the fall of 98 

2020 when cases began to rise. At the beginning of October, Tennessee lifted all NPIs (NPI score 

= 0), and in December the state experienced record new daily SARS-CoV-2 cases during the 100 

fall/winter wave. Tennessee briefly reissued indoor gathering limitations of ten people from 

December 21, 2020 to January 19, 2021 to curtail the spread of COVID-19 (table S1). Many states, 102 

like Maryland, eased restrictions during the summer, but reissued multiple restrictions in the fall 

as cases began to increase. For example, Maryland reissued restrictions in November that limited 104 

indoor gatherings to 25 people as well as restrictions on restaurant/bar occupancy, alcohol curfews, 
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and occupancy limits at non-essential business (table S1). Like most states, Maryland and 106 

Tennessee experienced record new daily COVID-19 cases in winter months (December 2020 to 

January 2021), although the amplitude of the peaks differed. The COVID-19 peak of new daily 108 

COVID-19 cases was 271% greater in Tennessee compared to Maryland. Across all 50 states there 

was variation in SARS-CoV-2 case trajectories, but states with consistent NPI restrictions 110 

throughout the year had smaller fall/winter peaks (www.phightcovid.org/graphs). This observation 

would suggest states may have similar epidemic curves related to the strength of the NPI 112 

restrictions implemented in each state.  

 114 

 
Fig 3: Grouping of states geographically based on SARS-CoV-2 case trajectories. (A) Map 

showing the most common state groupings produced in our B-spline model clustered at 7, with 

15 knots for 20 simulations. (B) Map showing the median state NPI score for each state. States 

were colored according to the colored bar shown in Fig. 2.  

 

 To identify similarities between state SARS-CoV-2 case curves, we estimated a basis 116 

spline (B-spline) model for every state (5). Each estimated B-spline is a weighted piecewise 

combination of 15 polynomials, connected at “knots”. Examples of the estimated B-splines and 118 

their SARS-CoV-2 case curves for three states (Texas, Georgia, and Maine) are included in fig. 

S3A-F; these panels show how the different polynomials are combined into the overall estimated 120 

spline. Estimated splines and weight coefficients are closely related in states with similar 

underlying case curves. We compared the estimated state splines by using the K-means algorithm 122 

to cluster similar sets of weight coefficients, identifying groups of states with similar SARS-CoV-

2 case trajectories. Returning to our three example states, we see that the coefficients for two states 124 

in the same cluster (Texas, Georgia) are more similar than those in a different cluster (Maine) (fig. 

S3D&E compared to F).  126 

 Standard best-fit criteria for K-means and repeated simulation identified a set of seven 

clusters of states, each with a distinct case curve shape shared across each group. The most 128 

common clustering is depicted in (Fig. 3A). Interestingly, the clusters demonstrate that states 

grouped geographically even though no geographic or NPI information was included when 130 

identifying the clusters, indicating that neighboring states tended to have similar case curve 

trajectories even if their NPI interventions differ (Fig. 3A). 132 

 

An assessment of state median NPI score from March 2020 to March 2021 is depicted in 134 

Fig. 3B; surprisingly, a similar clustering pattern was not observed between these two maps. For 

example, Minnesota and Wisconsin have distinct state median NPI scores but fall within the same 136 
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K-means clusters (Fig. 3A and B), suggesting that implementation of various NPIs may not solely 

dictate the trajectory of SARS-CoV-2 cases. Aside from geographical location, environmental 138 

conditions such as humidity and temperature are thought to contribute to the seasonality of 

influenza viruses (6). Recently, humidity and temperature have been implicated in SARS-CoV-2 140 

spread (7). However, the identified clusters may not correlate directly to environmental conditions, 

rather it could be driven by interstate travel patterns, similarities in state demographics, or when 142 

specific interventions were implemented(8, 9). Mobility and social behavior have also been linked 

to transmission of COVID-19 and may also influence the spread between states(10-12). These 144 

potential confounders all require further investigation.  

 146 

Impact of NPI on case change occurs at greater than 2 weeks 

 148 

 
Figure 4: More than two-weeks is needed before a NPI has an impact on case change.  Case 

change between the date a restrictive NPI intervention was issued two (A), four (B) and five (C) 

weeks later for Michigan. Interventions are represented by the points, with easing shown in red 

and restricting in blue. The circled areas show where the points will be located if there is a 

considerably greater (red), or less (blue) number of cases at 2, 4 and 5 weeks later. The line of 

identity, where x=y is the diagonal dashed line in the center of the graph. (D) Overlapping time 

series graphs showing the number of days since the first time a restaurant/bar easing was issued 

after May 2020, represented by day 0 on the x-axis. NPIs that were eased are represented by 

circles. NPIs that were restricted are represented by triangles. The Fourth of July is marked with 

an X for reference.  
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Effective implementation of NPI requires an understanding of the impact of NPIs on the 

trajectory of SARS-CoV-2 transmission. During the COVID-19 pandemic, discussion around the 150 

impact of interventions focused on case changes less than two weeks after an intervention. This 

included both easing or a restricting of an NPI (13, 14). However, that may not be a realistic time 152 

lag between NPI and case change. To examine this relationship, we graphed the number of cases 

at the time of an intervention versus the number of cases some point in the future, either 2-, 4-, and 154 

5-weeks after an intervention (Fig. 4). Michigan was chosen as a representative of states that 

implemented many NPI over the course of the last year. By examining the NPIs within Michigan, 156 

we found that cases 2-weeks after either an easing or restricting NPI were similar to cases when 

this NPI was implemented, as the spots are still along the line of identity (x=y). The farther away 158 

from the line of identity the greater the case change; we anticipate that as cases raise after lifting 

of restrictions the cases will increase and move toward the red circle. In contrast as cases reduce 160 

after the implementation of an NPI, cases will decrease and move toward the blue circle. Fig. 4B 

and 4C examine case change after NPIs at 4- and 5- weeks later. Cases 4 weeks after a NPI is eased 162 

have increased such that the red easing restrictions are in the red circle (Fig. 4B). In contrast, cases 

4 weeks after a restrictive NPI is implemented have lower cases, but they continue to decrease 5 164 

weeks after the restrictive intervention (Fig. 4C). The observations made in Michigan pose 

interesting implications regarding the duration of time an NPI should be left in place until it 166 

becomes effective or when NPIs should be implemented. This analysis did not distinguish between 

the type of NPI and impact on cases, which could impact the effect on cases and requires further 168 

exploration.  

 To assess the impact of a specific type of NPI, we overlayed the SARS-CoV-2 case 170 

trajectories from multiple states on the day a specific intervention was implemented. Using states 

from multiple different clusters as shown earlier (Fig. 3A), we graphed the lag in days from the 172 

first-time restaurant/bar restrictions were eased after May 2020. Two weeks after the first 

restaurant and bar easing in May all states were relatively similar in that all experienced little case 174 

change. However, between two and four weeks, and even more so between four and five weeks, 

cases increased. This analysis further supports the observation that a lag of more than 2-weeks is 176 

needed before a change in cases after an NPI is eased or implemented (Fig. 4D).  

 178 

COVID-19 disease outcome correlates with NPI score 
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Figure 5: Higher state NPI scores are associated with lower COVID-19 cases and deaths. (A) Linear 

regression of state median score and SARS-CoV-2 case rate March 2020-April 2021. State cumulative 

cases are normalized to 100,000 by state population. Dashed lines show the 95% confidence interval. (B) 

Linear regression of state median score and SARS-CoV-2 mortality rate June 1, 2020- April 13, 2021. 

State mortality rate is normalized to 100,000 by state population. Dashed lines show the 95% confidence 

interval. (C) Scatter plot of all state median scores, US mortality rate and population density. Dashed 

line along the y-axis highlights median score of 2.5. States are colored as blue if their COVID-19 

mortality rate was at or above the US COVID-19 mortality rate. State population density is the number 

of people per square mile and is represented by the circle size. States with a large circle size have a high 

population density. We grouped population density as follows, extra-small: 1-50 people/sq. mile; small: 

50-100 people/sq. mile; medium: 100-200 people/sq. mile; large: 200-350 people/sq. mile; extra-large: 

350+ people/sq. mile. 

 180 

To determine whether the implementation of various NPIs and their stringency impacted 

COVID-19 outcomes in each state we compared the median state NPI score for each state to 182 

SARS-CoV-2 cases and COVID-19 deaths. A linear regression of cumulative SARS-CoV-2 cases 

normalized to state population and state median NPI score revealed a statistically significant 184 

negative relationship (Fig. 5A, p <0.0001). This suggested that greater NPI restrictions led to lower 

cases, similar to what was reported by other recent modeling approaches (15, 16). Since case 186 

reporting has been found to vary by state (17, 18), we compared state median NPI score to 

cumulative COVID-19 deaths, normalized to state population, from June 2020 - March 31, 2021 188 

to remove the potential confounder of variable case reporting (Fig. 5B). Linear regression indicated 

that median state scores were negatively correlated with cumulative COVID-19 deaths (p=0.02), 190 

indicating that states with more interventions had reduced mortality rates in addition to fewer 

cases.  192 
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While the trendlines are clearly significant between NPI score and SARS-CoV-2 cases or 

COVID-19 deaths, there are a number of states that reside outside of the 95% confidence interval 194 

(Fig. 5A and B). In particular, we were surprised by the states that had high NPI scores, but a 

similar case or cumulative death value as states with much lower NPI scores, suggesting that there 196 

may be an optimal NPI restriction threshold. To define the ‘goldilocks’ or ‘just right’, of NPI 

combinations, we compared the states with cumulative cases below the national cumulative case 198 

or death average for common interventions, including mask orders, some level of restaurant/bar 

restrictions, and gathering limitations. Using our rubric, states with all three intervention 200 

combinations at some stringency level for a prolonged period of time during the pandemic would 

have a median state NPI score of ~2.0-3.0, and a greater likelihood of lower mortality and fewer 202 

cases than states without these interventions. For example, Maryland, shown in Fig. 2A, had a 

median score of 2.55 and had the 12th lowest mortality rate out of all states.   204 

Overall, 45% of states had a median NPI score above 2.5 and of these only 8 out of 23 had 

a mortality rate above the national average. In contrast, in states that had a median score below 206 

2.5, 18 out of 25 had a mortality rate higher than the US average mortality rate (Fig. 5C). It is 

interesting to note that in states with the highest population density, 14 of 16, had a median score 208 

above 2.5, indicating stronger restrictions. In contrast, only 5 out of 24 states with the smallest 

population densities had median NPI scores above 2.5. To compare how population density may 210 

contribute to COVID-19 mortality in the context of NPI orders, a regression between average 

cumulative deaths per state by population density was performed for states with median NPI. 212 

Surprisingly, we did not find a statistically significant relationship between population density and 

cumulative mortality rate from June 2020 - March 31, 2021, for state median NPI scores either 214 

above or below a median score of 2.5 (fig. S4).  

 216 

Discussion 

 218 

During the course of the COVID-19 pandemic a number of studies have attempted to examine the 

effectiveness of NPIs on SARS-CoV-2 cases around the world and in the US. These studies 220 

focused on NPIs implemented early in the pandemic (prior to June 2020) and found that NPIs 

reduced SARS-CoV-2 cases and mobility with both real and modeled data (1, 2, 10, 15, 18-21). 222 

Comparison of 190 countries from January 23, 2020 to April 13, 2020 found that countries with 

NPIs (specifically: face mask, quarantines, social distancing, and travel restrictions) may have had 224 

a lower Rt value, suggesting a decrease in secondary SARS-CoV-2 transmission events in these 

spaces (1). However, this broad view does not integrate social behavioral variations or climate 226 

impacts that could also influence SARS-CoV-2 transmission. In other studies focused on U.S. 

counties or states, it was found that NPIs reduced mobility of the population and increased the 228 

doubling time of SARS-CoV-2 infections (18, 19). These studies again examined NPIs 

implemented early in the pandemic and could not account for issues with SARS-CoV-2 testing or 230 

the multiple rounds of issuing and easing interventions throughout the course of the past year. In 

contrast, our study includes data from all 51 U.S. states (including DC) and encompasses the NPIs 232 

implemented from March 2020 to April of 2021, to incorporate multiple waves of SARS-CoV-2 

infections in states.   234 

 

Taken together our results indicate that state implemented NPIs can lead to less COVID-19 cases 236 

and mortality. While it was previously thought that more NPIs led to a better outcome of disease 

burden (15), we found that even a moderate amount of restrictions can have a substantial impact 238 
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on lowering COVID-19 transmission. In addition, we observed a clear geographical impact on 

SARS-CoV-2 trajectories, and it is likely that consideration of geographical neighbors should be 240 

considered when designing future pandemic NPI plans. Finally, additional analysis into the impact 

of interventions in each state is needed to account for the numerous confounders that limit this 242 

type of analysis. A more refined analysis examining the impact of interventions, when they were 

implemented, the state of the disease at time of implementation, the strength of interventions, and 244 

implementation of similar interventions in neighboring states, is needed.  

 246 

Methods 

 248 

Data Collection  

COVID-19 case and death data were obtained from the COVID-19 Data Repository by the 250 

Center for Systems Science and Engineering (CSSE) at Johns Hopkins University. For JHU CSSE 

COVID-19 Data see https://github.com/CSSEGISandData/COVID-19. Using this data, we 252 

calculated the new daily cases/500,000 people for every state by normalizing a state’s new 

confirmed cases to the state population then multiplying by 500,000.  254 

NPI intervention data was collected from a variety of sources and evolved over time. Data 

was collected manually from state government and governor websites. Data obtained on these 256 

websites was found in press releases, FAQ pages, reading through executive orders, or in the most 

accessible format, through an informative interactive portal detailing current restrictions and any 258 

changes from past restrictions. Data obtained through various news sources or governor’s twitter 

page, was validated through a search for an official state government or governor announcement 260 

or order.  

Implementation of NPIs varied between statewide or county specific order, which will 262 

impact the ability for residents to obtain this information and their awareness of the NPI in their 

region. To address the accessibility of the NPI orders in place for each state, we measured the time 264 

it took to 1) find state issued COVID-19 restrictions and 2) determine if state government orders 

apply statewide or county-specific. Additionally, we identified if there were county government 266 

issued NPIs and the specific stringency of the orders. The search process was consistent for all 50 

states and took place Feb 17, 2021. Starting at google.com the keywords “[state of interest] covid 268 

restrictions” was queried. The most relevant (state government page or governor page) first result 

was chosen. After entering the website, a process of looking for the above-mentioned questions 270 

was carried out. The time was recorded upon finding each of the questions of interest. Furthermore, 

if the site was exceptionally easy to navigate and the current restrictions in place were found in 272 

less than a minute without downloading and opening additional files, the state was noted as being 

outstanding in user accessibility (n=16, CA, CO, CT, DE, DC, ID, IL, MI, MN, NJ, NM, OH, OR, 274 

PA, RI, and WA). Although states without any NPI orders or no detail on the NPI orders state were 

also easy to navigate. In situations such as this the state was not marked as being outstanding in 276 

user accessibility due to their lack of information displayed at all (AR, FL, and SD). Details of the 

time, sources, and notes per state for this analysis is available as table S3. 278 

 

Scoring System  280 

 In order to compare the stringency of interventions implemented in each state, we 

developed a detailed scoring system. The system scores on the following five categories: Stay at 282 

Home Orders, Non-Essential Business Restrictions, Indoor Gathering Bans, Restaurant/Bar 

Restrictions and Mask/Face Covering Mandates. The highest score possible for each of the five 284 
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categories is 1.00, with the collective highest score possible being 5.00. The scoring criteria are 

presented in table S2 and briefly described here: 286 

• Stay at home orders had a score impact of 1.0 when issued and -1.0 when removed. 

• Non-essential business sectors that we impacted the score on are as follows: retail (+/- 288 

0.25), hair salons/barbershops (+/- 0.10), personal care services (+/- 0.10), gyms/fitness 

centers (+/- 0.2), indoor entertainment (+/- 0.2). Each of these business sectors could have 290 

between 0 and their max score depending on the level of the restrictions in place. For 

example, if hair salons were open but only at 50% occupancy, the score impact would be 292 

0.05).  

• Indoor gathering bans primarily applied to indoor private social gatherings, however, as 294 

states eased restrictions, indoor gathering sizes described were more closely associated 

with larger private events. See table S2, category 3 for the scores associated with gathering 296 

sizes.  

• Restaurants and bars being completely closed resulted in a score impact of 1.0. The 298 

breakdown of the 1.0 is as follows: restaurant outdoor dining (+/- 0.1), restaurant indoor 

dining (+/- 0.45), bar outdoor service (+/- 0.1), bar indoor service (+/- 0.25), restaurant 300 

and/or bar having any distancing or sanitation practices (+/- 0.05) and restaurant and/or bar 

having a service or alcohol curfew (+/- 0.05). See table S2, category 4, for further details.  302 

• Mask and facial covering restrictions had a score impact of 1.0 if they were required in 

both indoor and outdoor spaces and a score impact of 0.8 if they were only required indoors.  304 

Scoring of states that adopted a state government issued county risk-level metric (CA, CO, HI, IL, 

IN, NM, ND, OR, UT, WA) was more complicated than just scoring for the state as by itself. In 306 

these states the NPIs scored on were whatever they were for the majority risk level out of all 

counties. For example, if Oregon had 16 counties at low, 6 at moderate and 2 at high risk levels, 308 

then the entire state would be considered as being at a low risk level. The low risk level NPIs 

would be recorded and the state as a whole scored scoring accordingly.  310 

 

Time Series 312 

 Time series graphs were generated for each state to visualize an individual state’s precise 

interventions (either restrictive or easing), NPI score (calculated based on the system described 314 

above), new daily SARS-CoV-2 cases, and seven day rolling average line. Daily SARS-CoV-2 

cases were normalized to state population (based on the U.S. census bureau 2017 population 316 

estimates) and presented per 500,000 people. Interactive time series graphs are displayed on 

www.phightcovid.org, where the user can hover over each intervention and see the description of 318 

the type of intervention. The code to generate each of the time series is available on the phightcovid 

Github repository (see code availability section). 320 

 

Lags 322 

 Lag graphs were created for gaining a better initial understanding of the time needed 

between when an NPI is implemented and when cases begin to change as a result. Using the 324 

programming language R we plotted today’s new daily cases per 500,000 people on the x-axis and 

the new daily cases per 500,000 people at a lag of 2-, 4, and 5- weeks later, on the y-axis. We then 326 

use larger circles to highlight where it was expected to see the points if there was a considerable 

case change. R code for the lag graphs can be found in our Github repository 328 
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Spline model and clustering: Basis spline models were generated with 15 knots per state. K-330 

mean clustering of the 15 B-spline coefficients (adapted from Rory Michelen, 

https://github.com/RoryMichelen/Medium-Articles/blob/master/) was used to compare the SARS-332 

CoV-2 case trajectories between states. Code for generation of splines and clustering can be found 

at the Github repository.  334 

 

Code and data accessibility: The data analyzed in this manuscript, including the NPI scores per 336 

state, all code developed to generate time series graphs, lag graphs, and spline models as well as 

a collection of many pdfs and screenshots of the raw data sources organized by state are 338 

available on Github at https://github.com/Lakdawala-Lab/PHIGHTCOVID_StNPI_Publ2021. 

Case data for time series plots was obtained every other month from March 2020 to April of 340 

2021 from the COVID-19 Data Repository by the Center for Systems Science and Engineering 

(CSSE) at Johns Hopkins University, available on Github at 342 

https://github.com/CSSEGISandData/COVID-19 (17).   
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Table S1. List of NPIs from Maryland and Tennessee by Date 
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Table S2: Heuristic NPI Scoring Rubric  
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 416 

 

 418 

 

 
Fig S1: Implementation strategies and accessibility of NPI in each state (A) State governments issuing 

NPI on all residents either with entire state orders or county-based orders. Indicated with a star are state 

governments that adopted a county risk-level metric and regularly changed specific county NPIs depending 

on the current COVID-19 risk level determined by the state (green). State governments delegating NPI 

responsibility to counties (red). County governments either delegating NPI responsibilities, or city and 

health departments deciding to implement NPI on their own (brown and blue respectively). Given the 

complexity of differentiating between health department and county level implementation, we were unable 

to capture all the states that implemented NPI through local health departments (B) To quantify accessibility 

of state COVID-19 NPI information, we timed how long we had to spend searching for NPI information on 

each state COVID-19 website. Data is from Feb 2021. Some states may have changed the NPI 

implementation strategy and website for ease.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2021. ; https://doi.org/10.1101/2021.07.28.21261286doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.28.21261286
http://creativecommons.org/licenses/by-nc-nd/4.0/


 420 

 

 

Fig S3: Generation of Basis Spline for Each Sate. Basis spline models were created for the 

SARS-CoV-2 cases in each state using R package XX, with 15 different knots. (A-C) represents 

the spline model (red) for three different states (Texas, Georgia, and Maine) on top of each daily 

case increase. (D-F) Breakdown of the 15 different polynomials that created the spline model 

and list of the specific coefficient for each spline model.  

 422 

 

 424 

 
Fig S2: COVID-19 deaths and non-pharmaceutical interventions between states. Time series graphs 

for Maryland (A) and Tennessee (B) from March 11, 2020 through March 31, 2021. Daily COVID deaths 

were normalized to state population represented per 1,00,0000 people (black circles) and the 7-day 

rolling average is indicated by the grey line. State NPI score per day is indicated by the colored bar along 

the x-axis. The NPIs are labeled with the category abbreviation, and colored as magenta if restricting, or 

teal if easing. Additionally, the duration of the stay-at-home order is highlighted by the grey band and 

black lines indicate implementation of statewide mask mandate, labor-day, and each vaccine FDA 

approval dates. 
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Fig S4: Population density does not correlate with mortality rate. Linear regressions comparing state 

median score and COVID-19 mortality rate June 1, 2020- April 13, 2021, by state population density. 
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