Abstract
The progression and treatment response of cancer largely depends on the complex tissue structure that surrounds cancer cells in a tumour, known as the tumour microenvironment (TME). Recent technical advances have led to the development of highly multiplexed imaging techniques such as Imaging Mass Cytometry (IMC), which capture the complexity of the TME by producing spatial tissue maps of dozens of proteins. Combining these multidimensional cell phenotypes with their spatial organization to predict clinically relevant information is a challenging computational task and so far no method has addressed it directly. Here, we propose and evaluate MULTIPLAI, a novel framework to predict clinical biomarkers from IMC data. The method relies on attention-based graph neural networks (GNNs) that integrate both the phenotypic and spatial dimensions of IMC images. In this proof-of- concept study we used MULTIPLAI to predict oestrogen receptor (ER) status, a key clinical variable for breast cancer patients. We trained different architectures of our framework on 240 samples and benchmarked against graph learning via graph kernels. Propagation Attribute graph kernels achieved a class-balanced accuracy of 66.18% in the development set (N=104) while GNNs achieved a class-balanced accuracy of 90.00% on the same set when using the best combination of graph convolution and pooling layers. We further validated this architecture in internal (N=112) and external test sets from different institutions (N=281 and N=350), demonstrating the generalizability of the method. Our results suggest that MULTIPLAI captures important TME features with clinical importance. This is the first application of GNNs to this type of data and opens up new opportunities for predictive modelling of highly multiplexed images.
Competing Interest Statement
F.M. is the founder and director of Tailor Bio.
Funding Statement
This project has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement no. 766030 and the Cancer Research UK Cambridge Institute with core grant C14303/A17197. The views expressed are those of the authors.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
↵+ Shared senior authorship
{paula.martingonzalez{at}cruk.cam.ac.uk, mireia.crispinortuzar{at}cruk.cam.ac.uk, florian.markowetz{at}cruk.cam.ac.uk}
Data Availability
The data used is publicly available in their respective publications. The framework we developed is publicly available here: https://github.com/markowetzlab/MULTIPLAI
https://www.nature.com/articles/s43018-020-0026-6