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Abstract

Early warning indicators based on critical slowing down have been suggested as a model-
independent and low-cost tool to anticipate the (re)emergence of infectious diseases. We
studied whether such indicators could reliably have anticipated the second COVID-19 wave
in European countries. Contrary to theoretical predictions, we found that characteristic
early warning indicators generally decreased rather than increased prior to the second wave.
A model explains this unexpected finding as a result of transient dynamics and the multiple
time scales of relaxation during a non-stationary epidemic. Particularly, if an epidemic that
seems initially contained after a first wave does not fully settle to its new quasi-equilibrium
prior to changing circumstances or conditions that force a second wave, then indicators will
show a decreasing rather than an increasing trend as a result of the persistent transient
trajectory of the first wave. Our simulations show that this lack of time scale separation
was to be expected during the second European epidemic wave of COVID-19. Overall, our
results emphasize that the theory of critical slowing down applies only when the external
forcing of the system across a critical point is slow relative to the internal system dynamics.

1 Introduction
Forecasting the (re)emergence of infectious diseases is of great importance to public health
(George et al., 2019; Heesterbeek et al., 2015; Morens & Fauci, 2013; Morens et al., 2004;
Reich et al., 2019; Viboud et al., 2018). In recent years, early warning indicators based on the
phenomenon of critical slowing down have been suggested as a way to anticipate transitions in
a wide range of dynamical systems (for overviews, see e.g., Dablander et al., 2020; Drake et al.,
2019; Drake et al., 2020; Lenton, 2011; Scheffer et al., 2009; Scheffer et al., 2015). Critical slowing
down describes the phenomenon that many systems, as they approach their critical point, return
more slowly to their equilibrium after small external perturbations, resulting in an increase in
statistics such as the local autocorrelation coefficient and variance (Drake & Griffen, 2010; Wissel,
1984). In standard models of infectious disease transmission, major outbreaks are possible when
the effective reproductive number, Rt, is greater than one. The threshold Rt = 1 corresponds to
a (dynamic) transcritical bifurcation, which is a type of bifurcation that is preceded by critical
slowing down (Kéfi et al., 2014; Kuehn, 2011). Early warning indicators based on critical slowing
down have been studied extensively and led to a promising research line that aims to utilize them
as a tool to forecast the (re)emergence as well as the elimination of infectious diseases (e.g., Brett
et al., 2020; Brett et al., 2017; Brett et al., 2018; Brett & Rohani, 2020; Dessavre et al., 2019;
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Dibble et al., 2016; Drake et al., 2019; Harris et al., 2020; Miller et al., 2017; O’Dea et al., 2018;
O’Regan & Burton, 2018; O’Regan & Drake, 2013; O’Regan et al., 2020; Southall et al., 2020).
Accordingly, some researchers have suggested that they could have been used to anticipate the
second wave of COVID-19 (Liu et al., 2021; O’Brien & Clements, 2021; Proverbio et al., 2021).

We question the applicability of early warning indicators based on critical slowing down in
the COVID-19 context, however, because the COVID-19 situation violates a key assumption of
the theory of critical slowing down: a separation of time scales such that the dynamics of the
epidemic settle down to a quasi-equilibrium from which there is a slow drift toward the critical
point. To our knowledge, there is presently no theory that would indicate whether early warning
signals, under such commensurate time scales, can be expected to be reliable. In this paper, we
report on a combination of empirical analysis and simulation studies to investigate this issue.
Focusing on Europe, we find that a suite of early warning indicators did not reliably rise prior
to the second wave in any country as the classical theory of critical slowing down would predict.
Using a simulation study that mimics the COVID-19 situation — a first outbreak closely followed
by a second one — we show that this contradictory result can be fully explained by the fact that,
in the case of COVID-19, in almost all countries Rt already began to creep up again before the
number of case reports stabilized at a low value after the first wave. These results indicate that
caution is warranted in applying early warning indicators to highly non-stationary settings, such
as multi-wave epidemics.

2 Early warning signals for COVID-19
In this section, we quantify the extent to which early warning indicators increased prior to the
second wave in a number of European countries.1 We outline our methodology aided by Figure
1 in Section 2.1, and report our results in Section 2.2.

2.1 Methods
Estimation of Rt. To identify the time at which the COVID-19 epidemic became supercritical
for the second time in each country, we followed Gostic et al. (2020) to estimate the instantaneous
Rt using the method of Abbott et al. (2020), which improves upon Cori et al. (2013). The
method simultaneously estimates the incidence of infections and Rt using Bayesian latent variable
modeling. The method proceeds in two steps. First, the incidence at each time step is estimated
by convolving the previous number of infections with a probability distribution for the generation
interval. This incidence is then convolved over an uncertain incubation period and reporting delay
distribution to yield the reported cases (for details, see Abbott et al., 2020). We applied this
method to a broad range of European countries using data from March to October 2020.

Selecting the time period between waves. Next, we selected a time period in which to
search for evidence of critical slowing down. Early warning indicators are sensitive to changes
in the effective reproductive number, and should rise prior to the critical point Rt = 1 (Drake
et al., 2019; O’Regan & Drake, 2013). Using our country-specific estimate for Rt, we defined
the start and end date of the time-series on which we computed the early warning indicators as
follows. We chose as start date the date at which Rt is at its lowest point before reaching Rt = 1
prior to the second wave. Similarly, we chose as end date the date at which Rt is at its maximum
(before going down again) after it crosses Rt > 1. Panel (a) in Figure 1 illustrates this selection

1We analyzed countries in the EU, excluding Spain because of a strong weekend reporting effect that presented
difficulties for model convergence, as well as the United Kingdom.
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procedure on a simulated example, with the black line showing Rt and the vertical blue lines
indicating its respective minimum and maximum after the first wave receded. We chose this
criterion for two reasons. First, after Rt drops below 1, it continues to decrease in all European
countries, and we would thus expect early warning indicators to fall, rather than rise. Panel
(a) in Figure 1 shows a characteristic bifurcation delay (see also Section 2.3) that describes that
cases lag behind the equilibrium value consistent with Rt < 1. Choosing for the starting date
the time of the minimum value of Rt before Rt rises again allows the system to come closer to
its new equilibrium value. Similarly, choosing to end the interval with the maximum of Rt after
it crosses the threshold should predispose the analysis toward detecting early warning indicators
because it yields the greatest possible length of the time-series and because of the bifurcation
delay (see Brett et al., 2017; Dibble et al., 2016, and Section 2.3). Overall, our selection criterion
is biased in favor of detecting critical slowing down.

Figure 2 shows the reported (gray) and estimated true number of cases (black) across Eu-
ropean countries, with vertical blue lines indicating the segment of the time-series for which we
calculated early warning indicators. Figures 8-12 in Appendix A provide a more detailed picture,
showing European countries together with their estimated effective reproduction numbers.

Detrending and estimation of early warning indicators. As illustrated in Panel (b) and
(c) in Figure 1, we detrended the time segment of interest and then estimated early warning
indicators using backwards rolling windows with a uniform kernel (i.e., equally weighted past
observations) and window sizes δ1 and δ2, respectively. A backward rolling window only uses
data from the past to estimate the current value of a particular statistic. For example, to estimate
the mean at time point t, we calculate:

ȳt =
1

δ1

t∑
j=t−δ1

yj ,

where yj is the number of reported cases at a particular time point j (see black line in Panel (b)
in Figure 1, for an example). Other early warning indicators we studied were variance, coefficient
of variation, index of dispersion, autocovariance, autocorrelation, decay time, skewness, kurtosis,
and first differenced variance (for mathematical definitions, see Brett et al., 2018, Table 3). All
of these indicators require an estimate of the mean, and so we first estimated the mean and then
estimated the particular early warning indicator using a rolling window size of δ2. For example,
the variance at time point t, which is shown in Panel (c) in Figure 1, is calculated as:

st =
1

δ2

t∑
j=t−δ2

(yj − ȳj)2 .

We conducted sensitivity analyses with rolling windows of size δ1 ∈ [2, 4, . . . , 18, 20] for detrending
and rolling windows of size δ2 ∈ [5, 10, . . . , 45, 50] for indicator estimation using the R package
spaero (O’Dea, 2016). A window size of 10, for example, means that the previous ten data
points are being used to compute the statistic at the current time point. To create a sampling
distribution under the null hypothesis of no increase in the early warning indicators that respects
the temporal ordering of the data, we fitted an ARMA(p, q) model to the country-specific data.
We selected the best fitting model using AIC and subsequently generated 500 surrogate time-
series from it, computed the early warning indicators as outlined above, and estimated their rank
correlation with time (Kendall’s τ). This resulted in the sampling distribution under the null
assumption of stationarity, which allowed us to test the actually observed Kendall’s τ against a
significance level α (Dakos et al., 2012).
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Figure 1: Illustration of methodology on simulated data. Panel (a) shows reported cases
(gray) and Rt (black). Vertical blue lines indicate the minimum and maximum Rt after the first
wave receded. Panel (b) shows reported cases (gray) during the selected time period and an
estimate of the mean (black) using a rolling window of size δ1 = 3. Panel (c) shows detrended
cases (gray) and an estimate of the (scaled) variance (black) using a rolling window of size
δ2 = 10.

2.2 Results
Figure 3 reports results for European countries for δ1 = 4 and δ2 = 25. It shows the value of
Kendall’s τ across all early warning indicators, coloring in red the countries for which τ was either
significantly smaller or significantly larger than values generated from the best-fitting country-
specific ARMA(p, q) at α = 0.05. Notably, many countries displayed a significant decrease in the
mean, with some showing a decreases in the variance, autocovariance, autocorrelation, and decay
time. Several countries exhibited a significant increase in the coefficient of variation, which is
given by the standard deviation divided by the mean, and in the dispersion index, which is given
by the variance divided by the mean. Hence, early warning indicators that were found to display
notable signal across a number of countries are the mean, variance, or combinations thereof.
Figures 13-22 in Appendix B show sensitivity analyses for the ten early warning indicators
across different rolling window sizes for detrending and estimation, indicating that the pattern
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Figure 2: Reported cases across European countries. Top: Reported cases (gray) and
posterior mean of inferred infected cases (black) for European countries. Vertical blue lines
indicate the portion of the time-series for which early warning indicators are computed.
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shown in Figure 3 is robust to different choices of these hyperparameters.
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Figure 3: Summary of results across countries and indicators. The figure displays
Kendall’s τ across European countries for ten early warning indicators using δ1 = 4 for de-
trending and δ2 = 25 for indicator estimation. Red colored points indicate countries for which τ
was either significantly smaller or larger than expected under a stationary time-series at α = 0.05.

Table 2.2 shows the number of significantly rising or falling early warning indicators, the
length of the selected time-series, the start of the second wave, and the respective posterior
mean for Rt. From theory we expect all early warning indicators to rise except the coefficient
of variation (Brett et al., 2018), yet we find that half of the indicators show a tendency to fall
instead.

We conducted simulations to investigate possible reasons that could underlie the poor per-
formance of early warning indicators to anticipate the second COVID-19 wave. In what follows,
we first illustrate how early warning indicators perform under ideal conditions, and then relax
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Country No. significant ↑ No. significant ↓ Duration E[Rmin | D] E[Rmax | D]
Portugal 4 1 39 0.82 1.07
Finland 3 2 53 0.80 1.22
Malta 3 1 27 0.52 2.38

Romania 3 1 28 0.87 1.14
Netherlands 2 5 27 0.77 1.32
Slovakia 2 5 49 0.66 1.33
Austria 2 4 76 0.63 1.25
Germany 2 4 51 0.77 1.22
Denmark 2 3 13 0.66 1.39
Croatia 2 2 26 0.38 2.85
Latvia 2 2 33 0.77 1.23

Lithuania 2 2 25 0.83 1.19
Bulgaria 2 1 24 0.84 1.31
Estonia 2 1 42 0.61 1.45
Greece 2 1 53 0.81 1.19
Sweden 2 1 28 0.68 1.17

United Kingdom 2 0 42 0.86 1.10
Slovenia 1 5 47 0.63 1.48
Cyprus 1 3 97 0.72 1.42

Luxembourg 1 3 74 0.67 1.48
France 1 2 109 0.77 1.27
Hungary 1 2 34 0.79 1.18
Italy 1 2 86 0.80 1.31

Ireland 1 1 60 0.72 1.28
Belgium 0 4 58 0.83 1.38
Czechia 0 1 58 0.79 1.38
Poland 0 0 34 0.91 1.16

Table 1: The number of significantly rising or falling early warning indicators, out of a total
possible of ten, for European countries together with the length of the selected time-series and
the respective posterior mean of Rt. D denotes the (country-specific) data, see Figure 2.

the separation of time scales to quantify the erosion in performance.

2.3 Model
We illustrate early warning indicators in the context of a first outbreak that is closely followed
by a second one by simulating from a stochastic SEIR model calibrated to COVID-19 using the
pomp R package (King et al., 2016). In particular, let S(t), E(t), I(t), R(t) denote the number of
individuals in the susceptible, exposed, infectious, and recovered compartment at time point t,
respectively, and let ∆NS→E , ∆NE→I , and ∆NI→R denote the number of individuals that have
transitioned from one compartment to another during the time interval [t, t+ ∆t]. The model is
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updated according to

∆NS→E ∼ Binomial
(
S(t), 1− e−λS(t)∆t

)
(1)

∆NE→I ∼ Binomial
(
E(t), 1− e−σE(t)∆t

)
(2)

∆NI→R ∼ Binomial
(
I(t), 1− e−γI(t)∆t

)
, (3)

where we assume an average incubation and infectious period of 1/σ = 5.2 days (Li et al., 2020)
and 1/γ = 10 days (CDC, 2021). The force of infection is given by

λ = β(t)
I(t)

N
+ η(t) , (4)

where η(t) is the sparking rate, which we assume to be 0 until day 50, from which point onward
cases are imported with a rate of η = 1/50,000. Our goal here is not to produce a simulation
model that accurately tracks the COVID-19 outbreak, but instead to investigate critical slowing
down in a standardized system that we understand well. To do so, we wish to force Rt to create
a multi-wave epidemic. We achieve this by changing β(t) accordingly, compensating for the
depletion of the susceptible population by multiplying with S0/S(t) at time point t. Lastly, we
assume that each infected person is reported without delay.

To illustrate the phenomenon of critical slowing down under ideal conditions, we start with
10, 000 infected persons out of N = 1, 000, 000 and R0 = 3. This results in a first outbreak,
which is rapidly brought down through control measures that we model as bringing Rt down to
0.50 within 25 days. We then force Rt to remain at this low value for 200 days, and then allow
it to rise linearly to Rt = 1, forcing a second wave. This simulation mimics the situation at
the start of the pandemic where the first outbreak caught countries by surprise and lockdown
was the key mitigation measure that substantially reduced the effective reproductive number.
In the illustration, mitigation measures are maintained for a long period of time. However, in
reality mitigation measures were slowly relaxed towards the summer, and with no vaccination
in place together with imported infections and increased mixing, the system could not reach
a disease-free equilibrium and the reproductive number increased again. This led to a second
outbreak in the fall of 2020 in virtually all European countries. Our simple model adequately
describes this general pattern as shown in Figure 4. In particular, the left column in Figure 4
shows the two waves of transmission and their associated early warning indicators, while the right
panels in Figure 4 show a similar situation except that no second outbreak occurs. In contrast
to the situation with a second wave, variance and autocorrelation do not rise in this case. This
illustration demonstrates that under these conditions a second epidemic wave can be anticipated
using nonparametric early warning indicators.

It is known that epidemiological systems can experience a bifurcation delay, which describes
the transient trajectory of an epidemic as its attracting equilibrium changes. One consequence
of bifurcation delays is that the time for a large outbreak to settle to its equilibrium even after
crossing Rt > 1 can be considerable. Dibble et al. (2016) studied bifurcation delays for disease
emergence, and Figure 4 indeed shows that it takes a while for the system to show a significant
rise in cases even after Rt > 1 (see Hungary in Figure 2, for a possible example with regards to
COVID-19). As can be seen in Figure 4, a bifurcation delay also occurs for disease elimination.
In particular, for Rt < 1 the disease is not endemic and the stable equilibrium consists of a
number of new cases that depends on the rate of at which cases are imported. There is, however,
a substantial delay between the point at which Rt < 1 for the first time and a low number of
newly reported cases. This means that early warning indicators computed immediately from the
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Figure 4: Signatures of critical slowing down in a simulated second-wave epidemic.
Left: Reported cases of a first outbreak closely followed by a second one (top) together with the
forcing of Rt (bottom). Vertical blue lines indicate the period on which we compute the early
warning indicators autocorrelation and variance, shown in the two bottom panels. Right: Same
under no second outbreak. The increase in variance and autocorrelation in the left panels is the
manifestation of critical slowing down. Shown are 50 simulation runs (gray) together with their
mean (black).
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period after Rt first declines to less than 1, are tracking a transient far from equilibrium and
thus do not provide information about the return rate to equilibrium from small perturbations,
i.e. the phenomenon of critical slowing down.

To understand the extent to which this bifurcation delay may influence the performance of
early warning indicators, we decreased the time interval for which Rt = 0.50 from 200 days
(Figure 4) to 50 days (Figure 5). We find that both the variance and autocorrelation first
increase and then decrease in the case of both a second outbreak (left panels) and in the case of
no second outbreak (right panels). The variance then rises slightly prior to the second wave, a
pattern that does not occur for the autocorrelation, nor for the indicators in case of no second
wave. This pattern hints at the fact that the bifurcation delay at elimination will interfere with
the detection of critical slowing down if the system is not allowed to settle to its new equilibrium
because the magnitude of the transient is commensurate with (or larger than) the magnitude of
the fluctuations.

2.4 Simulation setup
We conducted additional simulations to systematically assess the extent to which these patterns
impact the performance of early warning indicators. The forcing of Rt in the previous illustrations
depends on five parameters: the value of R0; the value of the lowest point Rt reaches; the time
it takes Rt to reach it; the time for which Rt stays at the lowest point; and the time it takes
Rt to reach criticality again. We again assume that R0 = 3 and that it takes the system 25
days to reach its lowest point of Rt = 0.50, but we vary the number of days for which Rt is
held constant to be t1 ∈ [25, 50, 100, 200] and the time it takes the system to reach Rt = 1
to be t2 ∈ [25, 30,. . . , 95, 200]. For comparison, we also simulate from a system that stays at
Rt = 0.50 and does not exhibit a second outbreak. We match the length of the time-series on
which we compute early warning indicators (t2) in case of no outbreak to when an outbreak does
occur. As before, backwards rolling windows with a uniform kernel were used for detrending
and nonparametric estimation of the mean, variance, coefficient of variation, index of dispersion,
skewness, kurtosis, autocovariance, autocorrelation, decay time, and first differences in variance.
We used rolling windows a tenth the size of the duration for which Rt stays constant; that is, for
t1 ∈ [25, 50, 100, 200] we used rolling windows of sizes 3, 5, 10, and 20, respectively. For indicator
estimation, we used rolling window sizes of 50, using the R package spaero (O’Dea, 2016). We
simulated 500 trajectories for each setting and calculated the Area under the Curve (AUC), a
measure of classification performance, for all indicators. For each indicator, we calculated its
rank correlation with time (Kendall’s τ), which indicates whether the early warning indicators
rise or fall prior to reaching the critical point. The AUC can then be estimated as the probability
that τtest is larger than τnull (Brett et al., 2018; Flach, 2016). A value of |AUC−1/2| = 0 indicates
chance performance, with AUC < 1/2 and AUC > 1/2 indicating a fall or rise in indicators prior
to criticality, respectively. Theory predicts a pre-critical increase of all early warning indicators
except the coefficient of variation (Brett et al., 2017; Brett et al., 2018). In addition to AUC,
which requires comparing the indicator trend in the case of a second outbreak to the case of
no second outbreak, we also use the method proposed by Dakos et al. (2012) and outlined in
Section 2.1 to ascertain whether an indicator rises significantly. This more closely mimics the
real-word situation where we do not have access to the counterfactual situation in which no
outbreak occurred. We report the true positive rate, that is, the proportion of times we find
p < α for each indicator and condition, using α = 0.05.
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Figure 5: Signatures of critical slowing down in a simulated second-wave epidemic
where the second wave is forced quickly after the first one. Left: Shows reported
cases of a first outbreak closely followed by a second one (top) together with the forcing of
Rt (bottom). Vertical blue lines indicate the period on which we computed the early warning
indicators autocorrelation and variance, shown in the two bottom panels. Right: Same under no
second outbreak. Shown are 50 simulation runs (gray) together with their mean (black).
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2.5 Simulation results
Figure 6 shows that the performance of early warning indicators improves with the time it takes
the epidemic to reach a second critical wave. For the case for which the system stays for 200 days
at Rt = 0.50 (top panel of Figure 6), we find that all indicators except the kurtosis and the index
of dispersion performed well, with the mean and the variance performing best. The coefficient of
variation, given by the ratio of the standard deviation to the mean, decreases prior to criticality,
indicating that the mean rises more quickly than the standard deviation. Most early warning
indicators perform worse when Rt = 0.50 for 100 days, yet the mean and variance still perform
well overall. Interestingly, the slight decrease in performance in the variance implies a stronger
decrease of the coefficient of variation and the index of dispersion especially when the system is
forced more quickly (i.e., t2 < 125).

For a period during which Rt = 0.50 of 50 days, the performance of the variance decreases,
leading to an increasingly strong decrease in the coefficient of variation and the index of disper-
sion. When forcing is rapid (i.e., t2 < 100), the autocovariance, autocorrelation, and decay time
also begin to show a downward trend (AUC < 1/2) prior to reaching the critical point. These
trends are exacerbated when the system stays at Rt = 0.50 for only 25 days. One may think
that the simulation shows the reverse pattern than the empirical analysis, summarized in Figure
3, because the mean and variance show a positive AUC (hence they increase compared to the
null simulation) while the mean and variance show a decrease in the empirical analysis. There is
no contradiction, however, because the mean and variance do in fact decrease in case of a second
wave, it is just that they decrease less compared to when there is no second wave, as can be seen
in Figure 5.

In the data, the median time for countries to go from their minimum Rt value after the first
crossing to their maximum Rt value after the crossing was 42 days. Figures 8-12 further show
that Rt basically never stays at a low constant value for a sustained period of time, but is forced
immediately towards the critical point. Under the most realistic scenario in our simulation study
(t1 = 25 and t2 < 50), many indicators perform poorly, yet we still find excellent performance of a
rising mean and excellent performance of a falling coefficient of variation and index of dispersion.
This does not imply, however, that they will lead to reliable warnings in practice. While we can
quantify discriminatory power using AUC in simulations, in practice early warning indicators
have to be calibrated. Figure 7 shows that testing for an indicator increase at α = 0.05 based on
a stationary null distribution created by using the best-fitting ARMA(p, q) model to the time-
series under consideration is poorly calibrated, leading to an extremely poor true positive rate
which mirrors the empirical results in Section 2.2. This is because the distribution of Kendall’s
τ under the stationary model is centered around zero, while the actually observed Kendall’s τ is
negative. As a result, hypothesis tests for an increase in indicator values are expected to suffer
from extremely low statistical power in realistic situations. This problem may be exacerbated
by a potentially poor fit of the model used to create the null distribution.
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Figure 6: Classification performance across simulation settings. Shows the Area under
the Curve (AUC) for ten early warning indicators as the number of days for which Rt = 0.50
and the number of days it takes the system to reach Rt = 1 again vary.

13

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2021. ; https://doi.org/10.1101/2021.07.27.21261226doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.27.21261226
http://creativecommons.org/licenses/by/4.0/


200 days constant
100 days constant

50 days constant
25 days constant

25 50 75 100

Variance (first diff.)
Kurtosis

Skewness
Decay time

Autocorrelation
Autocovariance

Dispersion index
Coef. of variation

Variance
Mean

Variance (first diff.)
Kurtosis

Skewness
Decay time

Autocorrelation
Autocovariance

Dispersion index
Coef. of variation

Variance
Mean

Variance (first diff.)
Kurtosis

Skewness
Decay time

Autocorrelation
Autocovariance

Dispersion index
Coef. of variation

Variance
Mean

Variance (first diff.)
Kurtosis

Skewness
Decay time

Autocorrelation
Autocovariance

Dispersion index
Coef. of variation

Variance
Mean

Number of days to reach Rt  = 1

0.00

0.25

0.50

0.75

1.00
TPR

True positive rate

Figure 7: True positive rate across simulation settings. Shows the true positive rate (TPR)
for ten early warning indicators as the number of days for which Rt = 0.50 and the number of
days it takes the system to reach Rt = 1 again vary using the best-fitting ARMA(p, q) model to
create a stationary null distribution and a decision criterion of finding a significant increase at
p < 0.05. 14
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3 Discussion
Early warning signals based on the phenomenon of critical slowing have been suggested as a way
to anticipate transitions in a wide range of dynamical systems, including the (re)emergence of
infectious diseases. We analyzed whether a suite of indicators could have given early warning
of the second COVID-19 wave in European countries. We found that the majority of indicators
did not rise reliably, instead showing a pronounced decrease, a finding inconsistent with previous
applications of the theory of critical slowing down. To understand this pattern, we conducted a
simulation study in which we varied the time that is available for the system to settle at its new
equilibrium after a first outbreak, as well as the speed with which a second wave is forced. We
analyzed the performance of early warning indicators using the area under the curve to quantify
classification performance and the true positive rate, using the same methodology with which we
analyzed the empirical data. We found that classification performance suffered when the system
had too little time to settle to its new (quasi-)equilibrium and the second wave is forced quickly
(due to changing conditions in the population, such as reduced adherence to control measures),
as we saw in the empirical data. Yet we also found that some indicators, such as the mean,
continued to perform well (in terms of AUC) in contrast to what we observed in the empirical
analysis. Using the same methodology as in the empirical analysis, however, we found a true
positive rate of close to zero when testing for an increase in indicators, in line with our empirical
results.

Our analyses suggest the following conclusions. First, violating a key assumption of early
warning indicators based on critical slowing down — namely that the driver (Rt) changes slowly
compared to the time it takes the system to return to its equilibrium after small external per-
turbations — dramatically reduces their performance. While this may be expected from theory,
our analyses underscore this point and show that early warning indicators cannot be used to an-
ticipate future outbreaks that are quickly forced after an initial wave. Second, as a consequence
of the fact that the system is not allowed enough time to settle at its new stable equilibrium
after an initial outbreak, the first part of the data used for early warning indicator estimation
constitutes a transient. Hence there is a bifurcation delay not only after Rt crosses one from
below, as previously observed and studied (e.g., Dibble et al., 2016), but also after Rt crosses one
from above. If this transient is incorporated in the indicator estimation, then indicators will show
a pronounced decrease rather than an increase. This does not imply, however, that we can use
a decrease in indicators as a signal for a future outbreak that quickly follows an initial one, be-
cause such a decrease also occurs in case of no outbreak. The poor performance of early warning
indicators in our empirical analysis is likely due to a combination of this transient phenomenon
and the quick forcing of Rt. The only two indicators that showed a relatively consistent increase
across countries are the coefficient of variation and the index of dispersion. This is likely due
to the fact that the mean decreased more quickly than the standard deviation and the variance
during the transient phase, leading to an increase in the indicators. In other words, the coefficient
of variation and the index of dispersion likely increased for reasons other than critical slowing
down. Third, our simulation study demonstrated that while early warning indicators can yield
high discrimination (i.e., a high AUC), in practice they need to be calibrated. We found that
the widely used methodology proposed by Dakos et al. (2012) with decision criterion p < 0.05 is
poorly calibrated. This leads to poor performance consistent with our empirical results. The key
issue is that the sampling distribution created under this methodology is not centered around a
negative Kendall’s τ (implying a decreasing trend) but a Kendall’s τ of around zero (implying
no trend). Thus the statistical power to reject the null hypothesis of no increase when actually
observing a strong decrease in indicators is too low for these tests to be of practical value in
realistic situations.
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Some limitations of this study should be kept in mind. Our empirical analysis takes the
reported number of cases across European countries at face value. While we accounted for
reporting delays, we disregarded any issues related to changes in reporting or testing that may
affect the estimation of Rt. While the flexible method proposed by Abbott et al. (2020) renders
any bias induced by a change of testing transient, any bias may have indeed changed the true value
at which Rt crosses one. A more extensive analysis would look at all countries that experienced
a second wave. However, we chose to limit ourselves to European countries because of the
comparatively good reporting standards and the fact that there is sufficiently large heterogeneity
in epidemic trajectories across European countries for the purposes of this study. On a similar
note, because the time period between the end of the first and the beginning of the second wave
was shorter than the time period it takes the system to settle at its new stable equilibrium
after the first wave recedes in virtually all countries, we expect our findings to generalize well
to non-European countries. We used an admittedly conservative criterion for date stamping the
end of the first wave and the start of the second one to reduce the extent of the transient period
we incorporate for indicator estimation. In particular, we chose the day at which Rt reaches
its lowest value as starting point for the computation of early warning indicators. If anything,
based on our finding that incorporating the transient decreases performance, our choice may be
too charitable. We chose the end date for the indicator computation as the day at which Rt
reaches its maximum after crossing one so as to increase the number of time points and reduce
the extent of any bifurcation delay. If anything, this may again have been too generous. At
the same time, while the epidemic unfolded quite distinctly in different European countries, Rt
never stabilized at a low value and rose quickly after the first outbreak. These are far from the
conditions under which to expect a reliable signal in early warning indicators, and our results
should not be interpreted as a rejection of their potential in other applications, including other
epidemics.

We used backwards rolling windows to avoid the use of data from the “future”, and our
results can thus translate to a situation in which indicators are computed in real-time. A critical
issue when using nonparametric estimation concerns the choice of the size of the rolling windows
(Dakos et al., 2012; Dessavre et al., 2019; Lenton et al., 2012). There is a trade-off between a
window size that is too small, where estimation accuracy suffers, and a window size that is too
large, where stationarity is (more severely) violated (Brett et al., 2017). If a model is available,
Dessavre et al. (2019) find that detrending based on model simulation works well, but this route
is unavailable as an epidemic unfolds for which accurate models do not yet exist. Similarly,
while Miller et al. (2017) found that indicator performance was robust to seasonal forcing, the
time scale of such seasonal forcing is much longer compared to the movements of Rt that were
observed in some European countries, and which hence may have further reduced performance.
We have addressed the issue of window size selection by reporting extensive sensitivity analyses.
Our finding that indicators poorly anticipate the second COVID-19 wave is robust to different
choices.

Critical slowing down is a phenomenon that has primarily been studied in low-dimensional
systems. It is prominent in the study of ferromagnetism and the Lenz-Ising model (Brush, 1967),
and has been known to proponents of catastrophe theory since at least the 1970s (Zeeman, 1976).
Wissel (1984) suggested critical slowing down as a way to forecast the extinction of a population
of rotifers (see also Dai et al., 2012; Drake & Griffen, 2010). Scheffer et al. (2009) brought
significant attention to the idea of using critical slowing down as an early warning signal which
led to a surge of interest across many fields. Yet there is the obvious question of whether we
should expect a phenomenon that pertains primarily to low dimensional systems to occur in
the high dimensional real-world. Infectious diseases do not spread in homogeneously mixed
populations with people being distinct only in terms of whether they are susceptible, exposed,
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infected, or recovered, as our simulation model assumes. Instead, infectious diseases spread
between unique individuals on a network that is itself continuously changing. Studying the
effect of test sensitivity and frequency on COVID-19 transmission, Larremore et al. (2021) find
essentially no difference between a homogeneous compartment model and an agent-based model
that is calibrated to New York City micro-census data. More relevant to our investigation, Brett
et al. (2020) found that early warning indicators based on critical slowing down do indeed rise
prior to an outbreak in high-dimensional network and agent-based models.

A related issue with early warning indicators based on critical slowing down concerns the
decision criterion. When do we decide that a rise in indicators is “significant” and constitutes
an early warning? In our empirical analysis, we chose a rise in trend to be significant at the
α = 0.05 level, but this may well require adaption to the specific case at hand. There is a
difference between making a statistical inference (e.g., estimating Kendall’s τ) and making a
decision (e.g., restricting mitigation measures; Boettiger & Hastings, 2012). The latter requires
calibration, which is understudied in the context of early warning indicators based on critical
slowing down but essential to use in applications. Importantly, some indicators, such as the
mean and variance, continue to rise even after Rt crosses one, as predicted by theory (O’Dea &
Drake, 2019; Southall et al., 2020). Others are expected to peak at the point at which Rt = 1,
although the exact maximum may not be clear (O’Dea et al., 2018). This means that it is hard
to assess whether, say, a rise in the autocorrelation from 0.50 to 0.70 is already problematic, or
whether one should wait until it reaches, say, 0.90 (if it ever will). The extent to which indicators
such as autocorrelation rise also depends on a number of reporting details such as the frequency
of reporting. It is therefore impossible to provide general guidelines for use in applications.
Simulation studies that incorporate reporting issues and focus on specific diseases may provide
further insight (Brett et al., 2018; Tredennick et al., under review).

Early warning indicators based on critical slowing down promise to be a quite general and
low-cost tool to monitor the emergence and elimination of infectious diseases (e.g., Drake &
Hay, 2017; Harris et al., 2020; Tredennick et al., under review). It is understudied how well
these indicators perform compared to other tools that may be used as early warning signals.
In the context of COVID-19, it seems plausible that by making stronger assumptions about the
dynamics of the system or using system-external information such as mobility would lead to much
better early warning systems. Simply estimating Rt and forecasting whether and when Rt > 1
may be a similarly low-cost but potentially more reliable approach. Conceptually, however, it is
not so clear that one would like to have an early warning indicator signalling that Rt is about
to cross one. This is due to two related reasons. First, because of the bifurcation delay, it may
take weeks or months for the actual outbreak to occur. A method that is able to incorporate
this bifurcation delay and produce an early warning of an actual exponential increase in cases
may therefore be preferable. Ideally, such a method produces a probabilistic assessment of an
outbreak, which can then feed into further decision making. Second, the simple fact that Rt
crosses one does not imply that a second wave is incumbent. Instead, it may stay there for a
while or fall again, as it did in several European countries during the current pandemic. One
cannot impose strong mitigation measures to curb virus spread whenever Rt > 1. All this
points to a more continuous approach in which multiple, system-external factors are taken into
account to assess the risk of future outbreaks. Early warning indicators may be a part of this
risk assessment toolbox for (re)emerging diseases when an outbreak is slowly forced — but not,
as we have shown, when one outbreak follows closely after another.
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A Estimation of Rt across European Countries
Figures 8-11 show countries and their estimated effective reproductive number, with vertical lines
indicating the time period on which we computed early warning indicators.
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Figure 8: Shows reported cases (gray) and posterior mean of inferred infected cases (black) as
well as posterior mean and 95% credible interval of Rt for various countries. Vertical blue lines
indicate the time-series on which early warning indicators are computed, see main text.
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Figure 9: Shows reported cases (gray) and posterior mean of inferred infected cases (black) as
well as posterior mean and 95% credible interval of Rt for various countries. Vertical blue lines
indicate the time-series on which early warning indicators are computed.
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Figure 10: Shows reported cases (gray) and posterior mean of inferred infected cases (black) as
well as posterior mean and 95% credible interval of Rt for various countries. Vertical blue lines
indicate the time-series on which early warning indicators are computed.
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Figure 11: Shows reported cases (gray) and posterior mean of inferred infected cases (black) as
well as posterior mean and 95% credible interval of Rt for various countries. Vertical blue lines
indicate the time-series on which early warning indicators are computed.
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Figure 12: Shows reported cases (gray) and posterior mean of inferred infected cases (black) as
well as posterior mean and 95% credible interval of Rt for various countries. Vertical blue lines
indicate the time-series on which early warning indicators are computed.
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B Sensitivity Analyses
Figures 13-22 show sensitivity analyses for the ten early warning indicators across different rolling
window sizes for detrending and estimation.
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Figure 13: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the mean
is significantly larger than expected under the null across detrending rolling window sizes. Note
that p = 0.25 in the legend means p ≥ 0.25.
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Figure 14: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the
variance is significantly larger than expected under the null across rolling window sizes. Note
that p = 0.25 in the legend means p ≥ 0.25.
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Figure 15: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the
coefficient of variation is significantly larger than expected under the null across rolling window
sizes. Note that p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the index of dispersion

Figure 16: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the index
of dispersion is significantly value than expected under the null across rolling window sizes. Note
that p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the autocovariance

Figure 17: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the
autocovariance is significantly larger than expected under the null across rolling window sizes.
Note that p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the autocorrelation

Figure 18: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the
autocorrelation is significantly larger than expected under the null across rolling window sizes.
Note that p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the decay time

Figure 19: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the decay
time is significantly larger than expected under the null across rolling window sizes. Note that
p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the skewness

Figure 20: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the
skewness is significantly larger than expected under the null across rolling window sizes. Note
that p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the kurtosis

Figure 21: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the
kurtosis is significantly larger than expected under the null across rolling window sizes. Note
that p = 0.25 in the legend means p ≥ 0.25.
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Sensitivity analysis for the first difference in variance

Figure 22: Shows bootstrapped p-values indicating whether the observed Kendall’s τ in the
first differences in the variance is significantly larger than expected under the null across rolling
window sizes. Note that p = 0.25 in the legend means p ≥ 0.25.
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