Machine Learning Applied to Routine Blood Tests and Clinical Metadata to Identify and Classify Heart failure
View ORCID ProfileNick James, Lianna Gerrish, Nikita Rokotyan, Patrick A. Gladding
doi: https://doi.org/10.1101/2021.07.26.21261115
Nick James
1Waitematā District Health Board, Auckland, New Zealand
Lianna Gerrish
2GerishLLC, Colorado, United States of America
Nikita Rokotyan
3Interacta, Ekaterinburg, Russia
Patrick A. Gladding
1Waitematā District Health Board, Auckland, New Zealand

Data Availability
Anonymised data from this study is available on request from the corresponding author, pending approval from local research boards at their respective institutions Freely available data is provided access via URLs within the manuscript
Posted July 29, 2021.
Machine Learning Applied to Routine Blood Tests and Clinical Metadata to Identify and Classify Heart failure
Nick James, Lianna Gerrish, Nikita Rokotyan, Patrick A. Gladding
medRxiv 2021.07.26.21261115; doi: https://doi.org/10.1101/2021.07.26.21261115
Subject Area
Subject Areas
- Addiction Medicine (243)
- Allergy and Immunology (525)
- Anesthesia (125)
- Cardiovascular Medicine (1435)
- Dermatology (158)
- Emergency Medicine (292)
- Epidemiology (10334)
- Gastroenterology (533)
- Genetic and Genomic Medicine (2654)
- Geriatric Medicine (255)
- Health Economics (499)
- Health Informatics (1744)
- Health Policy (791)
- Hematology (269)
- HIV/AIDS (571)
- Medical Education (276)
- Medical Ethics (83)
- Nephrology (291)
- Neurology (2483)
- Nursing (145)
- Nutrition (381)
- Oncology (1335)
- Ophthalmology (403)
- Orthopedics (153)
- Otolaryngology (239)
- Pain Medicine (172)
- Palliative Medicine (51)
- Pathology (345)
- Pediatrics (786)
- Primary Care Research (297)
- Public and Global Health (5032)
- Radiology and Imaging (902)
- Respiratory Medicine (688)
- Rheumatology (309)
- Sports Medicine (246)
- Surgery (300)
- Toxicology (45)
- Transplantation (141)
- Urology (108)