Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Machine Learning Applied to Routine Blood Tests and Clinical Metadata to Identify and Classify Heart failure

View ORCID ProfileNick James, Lianna Gerrish, Nikita Rokotyan, Patrick A. Gladding
doi: https://doi.org/10.1101/2021.07.26.21261115
Nick James
1Waitematā District Health Board, Auckland, New Zealand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nick James
Lianna Gerrish
2GerishLLC, Colorado, United States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nikita Rokotyan
3Interacta, Ekaterinburg, Russia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick A. Gladding
1Waitematā District Health Board, Auckland, New Zealand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: patrick.gladding@waitematadhb.govt.nz
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: July 2021 to May 2023

AbstractFullPdf
Jul 2021132016
Aug 202110601880
Sep 2021495652
Oct 202193758
Nov 2021799115
Dec 2021585108
Jan 2022471494
Feb 20225726128
Mar 2022559103
Apr 2022385104
May 20226512127
Jun 2022827127
Jul 202251291
Aug 202274796
Sep 2022456127
Oct 2022447104
Nov 2022292114
Dec 2022445115
Jan 2023251593
Feb 2023206113
Mar 202323791
Apr 202328378
May 202323349
Back to top
PreviousNext
Posted July 29, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Machine Learning Applied to Routine Blood Tests and Clinical Metadata to Identify and Classify Heart failure
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Machine Learning Applied to Routine Blood Tests and Clinical Metadata to Identify and Classify Heart failure
Nick James, Lianna Gerrish, Nikita Rokotyan, Patrick A. Gladding
medRxiv 2021.07.26.21261115; doi: https://doi.org/10.1101/2021.07.26.21261115
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Machine Learning Applied to Routine Blood Tests and Clinical Metadata to Identify and Classify Heart failure
Nick James, Lianna Gerrish, Nikita Rokotyan, Patrick A. Gladding
medRxiv 2021.07.26.21261115; doi: https://doi.org/10.1101/2021.07.26.21261115

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cardiovascular Medicine
Subject Areas
All Articles
  • Addiction Medicine (239)
  • Allergy and Immunology (521)
  • Anesthesia (124)
  • Cardiovascular Medicine (1418)
  • Dentistry and Oral Medicine (217)
  • Dermatology (158)
  • Emergency Medicine (291)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (582)
  • Epidemiology (10288)
  • Forensic Medicine (6)
  • Gastroenterology (527)
  • Genetic and Genomic Medicine (2625)
  • Geriatric Medicine (254)
  • Health Economics (496)
  • Health Informatics (1729)
  • Health Policy (789)
  • Health Systems and Quality Improvement (671)
  • Hematology (266)
  • HIV/AIDS (564)
  • Infectious Diseases (except HIV/AIDS) (12083)
  • Intensive Care and Critical Care Medicine (648)
  • Medical Education (273)
  • Medical Ethics (83)
  • Nephrology (288)
  • Neurology (2456)
  • Nursing (144)
  • Nutrition (377)
  • Obstetrics and Gynecology (491)
  • Occupational and Environmental Health (566)
  • Oncology (1320)
  • Ophthalmology (400)
  • Orthopedics (146)
  • Otolaryngology (235)
  • Pain Medicine (168)
  • Palliative Medicine (51)
  • Pathology (342)
  • Pediatrics (778)
  • Pharmacology and Therapeutics (329)
  • Primary Care Research (296)
  • Psychiatry and Clinical Psychology (2395)
  • Public and Global Health (4999)
  • Radiology and Imaging (893)
  • Rehabilitation Medicine and Physical Therapy (525)
  • Respiratory Medicine (681)
  • Rheumatology (309)
  • Sexual and Reproductive Health (255)
  • Sports Medicine (244)
  • Surgery (297)
  • Toxicology (45)
  • Transplantation (140)
  • Urology (108)