Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Machine Learning Applied to Routine Blood Tests and Clinical Metadata to Identify and Classify Heart failure

View ORCID ProfileNick James, Lianna Gerrish, Nikita Rokotyan, Patrick A. Gladding
doi: https://doi.org/10.1101/2021.07.26.21261115
Nick James
1Waitematā District Health Board, Auckland, New Zealand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nick James
Lianna Gerrish
2GerishLLC, Colorado, United States of America
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nikita Rokotyan
3Interacta, Ekaterinburg, Russia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrick A. Gladding
1Waitematā District Health Board, Auckland, New Zealand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: patrick.gladding@waitematadhb.govt.nz
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/2021.07.26.21261115
History 
  • July 29, 2021.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Author Information

  1. Nick James1,
  2. Lianna Gerrish2,
  3. Nikita Rokotyan3 and
  4. Patrick A. Gladding1,*
  1. 1Waitematā District Health Board, Auckland, New Zealand
  2. 2GerishLLC, Colorado, United States of America
  3. 3Interacta, Ekaterinburg, Russia
  1. ↵*Corresponding Author
    Patrick A. Gladding, patrick.gladding{at}waitematadhb.govt.nz
Back to top
PreviousNext
Posted July 29, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Machine Learning Applied to Routine Blood Tests and Clinical Metadata to Identify and Classify Heart failure
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Machine Learning Applied to Routine Blood Tests and Clinical Metadata to Identify and Classify Heart failure
Nick James, Lianna Gerrish, Nikita Rokotyan, Patrick A. Gladding
medRxiv 2021.07.26.21261115; doi: https://doi.org/10.1101/2021.07.26.21261115
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Machine Learning Applied to Routine Blood Tests and Clinical Metadata to Identify and Classify Heart failure
Nick James, Lianna Gerrish, Nikita Rokotyan, Patrick A. Gladding
medRxiv 2021.07.26.21261115; doi: https://doi.org/10.1101/2021.07.26.21261115

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cardiovascular Medicine
Subject Areas
All Articles
  • Addiction Medicine (239)
  • Allergy and Immunology (521)
  • Anesthesia (124)
  • Cardiovascular Medicine (1418)
  • Dentistry and Oral Medicine (217)
  • Dermatology (158)
  • Emergency Medicine (291)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (582)
  • Epidemiology (10288)
  • Forensic Medicine (6)
  • Gastroenterology (527)
  • Genetic and Genomic Medicine (2625)
  • Geriatric Medicine (254)
  • Health Economics (496)
  • Health Informatics (1729)
  • Health Policy (789)
  • Health Systems and Quality Improvement (671)
  • Hematology (266)
  • HIV/AIDS (564)
  • Infectious Diseases (except HIV/AIDS) (12083)
  • Intensive Care and Critical Care Medicine (648)
  • Medical Education (273)
  • Medical Ethics (83)
  • Nephrology (288)
  • Neurology (2456)
  • Nursing (144)
  • Nutrition (377)
  • Obstetrics and Gynecology (491)
  • Occupational and Environmental Health (566)
  • Oncology (1320)
  • Ophthalmology (400)
  • Orthopedics (146)
  • Otolaryngology (235)
  • Pain Medicine (168)
  • Palliative Medicine (51)
  • Pathology (342)
  • Pediatrics (778)
  • Pharmacology and Therapeutics (329)
  • Primary Care Research (296)
  • Psychiatry and Clinical Psychology (2395)
  • Public and Global Health (4999)
  • Radiology and Imaging (893)
  • Rehabilitation Medicine and Physical Therapy (525)
  • Respiratory Medicine (681)
  • Rheumatology (309)
  • Sexual and Reproductive Health (255)
  • Sports Medicine (244)
  • Surgery (297)
  • Toxicology (45)
  • Transplantation (140)
  • Urology (108)