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Abstract 9 

Epidemiological evidence shows that some diseases tend to co-occur; more exactly, certain groups of 10 

patients with a given disease are at a higher risk of developing a specific secondary condition. Despite 11 

the considerable interest, only a small number of connections between comorbidities and molecular 12 

processes have been identified. 13 

Here we develop a new approach to generate a disease network that uses the accumulating RNA-seq 14 

data on human diseases to significantly match a large number of known comorbidities, providing 15 

plausible biological models for such co-occurrences. Furthermore, 64% of the known disease pairs can be 16 

explained by analysing groups of patients with similar expression profiles, highlighting the importance of 17 

patient stratification in the study of comorbidities. 18 

These results solidly support the existence of molecular mechanisms behind many of the known 19 

comorbidities. All the information can be explored on a large scale and in detail at http://disease-20 

perception.bsc.es/rgenexcom/.  21 
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 2 

Introduction  25 

Disease comorbidity is defined as the co-occurrence of two or more conditions in the same patient1. 26 

Comorbidity incidence increases with age and has a high impact on life expectancy, as it increases 27 

patient mortality and complicates the choice of therapies, posing a major problem for patients and health 28 

care systems. Accumulating evidence from epidemiological studies indicates that such co-occurrences 29 

do not appear randomly and that specific trends are observed, with some diseases co-occurring more 30 

than expected by chance2,3. Systematic studies using electronic health records have been performed to 31 

analyze comorbidity patterns in a given population where disease co-occurrences are represented by 32 

static networks2,3 or network trajectories if their progression over time is considered4. These studies 33 

demonstrated the predictive value of comorbidity patterns to determine disease progression and 34 

outcome, including mortality risk.  35 

The observed patterns suggest that comorbid diseases might share underlying molecular mechanisms 36 

and risk factors, which can be both genetic and environmental, such as drug exposure and lifestyle. 37 

Thus, a better understanding of the molecular mechanisms behind comorbidities is a crucial step 38 

towards improved prevention, diagnosis, and treatment of these conditions.  39 

Recent studies on disease comorbidities have included molecular information often analyzing pairs of 40 

diseases based on shared disease-related genes5. Similar to functionally related genes, disease-41 

associated genes tend to colocalize in the protein-protein interaction network forming disease modules 42 

which can aid the identification of novel candidate genes and inform about disease associations, 43 

including phenotypic similarity and comorbidities6. In this context, previous work showed that the 44 

overlapping gene expression signatures between several Central Nervous System disorders (CNSd) and 45 

cancer types could inform about the molecular mechanisms underlying their direct and inverse 46 

comorbidities7,8. More recently, we have observed that disease similarity networks based on gene 47 

expression profiles can be used to identify known comorbidity relationships8. Although these efforts 48 

were able to capture interesting examples, they were unable to recapitulate what is known at the medical 49 

level in a systematic manner. The mentioned approaches based on PPIs and microarrays reproduced a 50 

very small percentage of the epidemiology, and other networks based on miRNAs9 and the 51 

microbiome10 had no capacity for it. Hence, we address the still largely unknown extent to which 52 

molecular information can provide a general explanation to disease comorbidities.  53 

Here, we reformulate the problem and we show, for the first time, that gene expression data is 54 

definitively able to reproduce medically known disease co-occurrences. To achieve that, we integrate 55 
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 3 

publicly available RNA-seq data sets, which are currently replacing microarrays due to their improved 56 

sensitivity, reproducibility, and detection’s dynamic range11,12. We characterize the gene expression 57 

signature of human diseases based on differential expression and functional enrichment analyses. Then, 58 

we generate a disease similarity network based on the similarities between diseases’ differential 59 

expression profiles. Afterwards, we build a stratified similarity network grouping patients of the same 60 

disease with a similar expression profile (here called meta-patients), addressing the fact that patients 61 

suffering from a given disease present different risks of developing specific secondary conditions, as 62 

evidenced by the Danish medical records4. Both networks are able to significantly recapitulate a large 63 

proportion (up to 64%) of the medically known comorbidities2, providing a well-defined set of pathways 64 

and molecular functions potentially implicated in disease comorbidities, which can be analyzed at 65 

http://disease-perception.bsc.es/rgenexcom/.  66 

 67 

Results 68 

Gene expression fingerprint of human diseases 69 

First, we collected published studies analyzing human diseases with RNA-seq data. Uniformly 70 

processed gene counts were obtained from the GREIN platform13. After quality filtering (see Methods), 71 

58% of the samples were kept, corresponding to 2.705 samples from 62 studies and comprising 45 72 

diseases (Supplementary Data 1). 73 

We performed differential expression analyses to obtain significantly differentially expressed genes 74 

(sDEGs) for each disease (see Methods, Supplementary Table 1). As expected, the number of sDEGs 75 

positively correlates with the sample size, whereas it does not correlate with the average library size 76 

(average number of sequenced reads) of the diseases (Supplementary Fig. 1). 77 

To better understand the transcriptomic alterations associated with the analyzed diseases, we performed 78 

functional enrichment analyses14 and, focusing on the significantly enriched Reactome pathways 79 

(FDR<=0.05)15, we clustered diseases based on their binarized Normalized Effect Sizes (see Methods, 80 

Fig. 1 and Supplementary Fig. 2-4). 81 
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 82 

Fig. 1. Reactome pathways significantly dysregulated in human diseases grouped by pathway 83 

category. For each disease, Reactome pathways significantly up- and down-regulated were identified using 84 

the GSEA method (FDR <= 0.05). Ward2 algorithm was applied to cluster diseases based on the Euclidean 85 

distance of their binarized Normalized Effect Size (1s, and -1s for up- and down-regulated pathways). The 86 

heatmap shows the dysregulated Reactome pathways (rows) in the diseases (columns), where up- and down-87 

regulated pathways are blue and red colored respectively. Reactome pathways are sorted and grouped by 88 

pathway categories (separated by black horizontal lines). Diseases are colored by ICD9 disease category. 89 

Diseases with 0 dysregulated pathways are not shown. 90 

 91 

When considering the pathway enrichment (Fig. 1), two main clusters are defined, one containing less 92 

enriched pathways than the other. Most ICD9 disease categories have diseases distributed across the 93 

branches, pointing to the involvement of some specific shared biological processes in their pathology. 94 

Among others, neuronal system- and extracellular matrix (ECM) organization-related pathways are 95 
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over and underexpressed respectively in mental and nervous system disorders (bipolar disorder, 96 

schizophrenia, Huntington's disease (HD), Parkinson's disease and autism), as previously described in 97 

the literature16,17. On the other hand, most neoplasms present the expected overexpression of pathways 98 

related to the cell cycle, DNA repair, DNA replication, ECM, as well as a decreased hemostasis. 99 

Nonetheless, alterations related to developmental biology, immune system and signal transduction are 100 

generally observed in specific cancer types18–20.  101 

Moreover, diseases of the digestive system like the Inflammatory Bowel Diseases (IBD): Crohn's 102 

disease and ulcerative colitis, as well as the closely related lymphocytic colitis and ulcer, present an 103 

overexpression of a broad set of immune system-related pathways (Supplementary Fig. 2a). 104 

Specifically, ulcerative colitis, Crohn's disease and ulcer form a distinct cluster and share pathways 105 

mainly related to cell-cell communication, hemostasis, metabolism, and signal transduction 106 

(Supplementary Fig 2b-d and 3a). A common overexpression of multiple specific pathways regarding 107 

the ECM organization is observed in IBD (Supplementary Fig. 4c), recently described not only as a 108 

consequence of the in situ inflammation but also as an active mediator of it21. Among other pathways, 109 

ECM processes are also observed and described to be altered in diseases for which IBD is a risk factor, 110 

such as ulcer and colorectal cancer22,23. 111 

 112 

Disease similarity network 113 

Next, we built a disease similarity network (DSN) connecting diseases based on the Spearman’s 114 

correlation (FDR<=0.05) of the genes in the union of their sDEGs (see Methods, Fig. 2). The network 115 

is composed of one single connected component - 63.37% positive interactions, 36.63% negative 116 

interactions - with a mean degree of 29.24 (Supplementary Table 2, Supplementary Fig. 5, see 117 

Methods). Nodes’ degree positively correlates with the number of sDEGs and the sample size of the 118 

diseases (Supplementary Fig. 6).  119 
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 6 

 120 

Fig. 2. Heatmap representation of the disease similarity network. Pairwise disease correlations were 121 

computed based on the Spearman’s correlation of the union of the sDEGs of each pair of diseases. A disease-122 

disease network was built, containing the significantly positive and negative correlations (FDR <= 0.05), 123 

where the edge weights in the network correspond to the Spearman’s correlations (see Methods). The 124 

heatmap shows the network’s positive and negative disease interactions, in red and blue respectively. White 125 

represents pairs of diseases that are not connected. Diseases are colored by ICD9 disease category. 126 

 127 

The DSN captured the previously described IBD comorbidities, as well as intra-disease category 128 

comorbidities regarding neoplasms (e.g. lung and liver cancer). We also observed a positive correlation 129 

between the differential expression profiles of Kaposi’s sarcoma (KS) and human immunodeficiency 130 

virus’ infection (HIV), being this neoplasm one of the most common malignancies in HIV patients as a 131 
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consequence of their immune deficiency24. We also captured a previously described less frequent link 132 

between KS and other diseases characterized by an immune system imbalance, such as IBD25,26. 133 

Many positive interactions entailing diseases of the nervous system and mental disorders are observed, 134 

mainly due to shared neurological dysfunction, ECM dysregulation and, in some cases, immune system 135 

involvement (Fig. 1 and 2). Among others, schizophrenia was found to be connected to bipolar disorder, 136 

autism, and Parkinson’s and Huntington’s diseases, which are known to be comorbid. 137 

Additionally, we observed some negative correlations between the expression profiles of specific 138 

central nervous system disorders (CNSd) and cancers27. For instance, HD presents negative correlations 139 

with liver, lung, and breast cancer and chronic lymphocytic leukemia, which are known to co-occur less 140 

than the expected by chance28. When comparing the altered pathways for both diseases, we find opposite 141 

molecular tendencies in multiple of their key pathogenic processes. On one hand, cancer is characterized 142 

by an overexpression of cell cycle and gene transcription processes, whereas HD shows increased cell 143 

death, apoptosis, mitochondrial dysfunction and a negative regulation of gene expression 144 

(Supplementary Fig. 3c-d, 2c and 4a). Kinesins-related pathways, involved in cell division and 145 

intracellular transport, are overexpressed in cancer as previously described29, and underexpressed in 146 

HD, where its impairment is also characterized30 (Supplementary Fig. 2c). Additionally, immune 147 

abnormalities have been extensively described as central to HD and cancerous processes31,32. For 148 

instance, we observed an increased interleukin production and signaling regarding Th1-type immune 149 

response (e.g. IL-12) in HD, as well as an activation of the complement cascade, being both processes 150 

underexpressed in cancer and previously linked to carcinogenesis31–33 (Supplementary Figure 2a). 151 

Subsequently, we evaluated to what extent the DSN is able to capture medically known comorbidities 152 

by computing its overlap with the epidemiological network from Hidalgo et al2. We observed that the 153 

DSN significantly overlaps 46.2% of the interactions in Hidalgo et al.2 over the common set of diseases 154 

(p-value = 0.0018) (Supplementary Table 3, see Methods). We also showed that the overlap of the 155 

negative interactions was not significant (p-value = 0.867). The DSN precision and recall varies 156 

depending on the disease category pair (Fig. 3a). For instance, diseases of the digestive system present 157 

the highest precision (66.4%) with a mean recall of 53.6%. Interactions entailing congenital anomalies 158 

are also captured at a high level. On the contrary, highly heterogeneous diseases (e.g. mental disorders) 159 

tend to present lower recall values and neoplasms, which often share the dysregulation of multiple 160 

pathways without being comorbid, exhibit the lowest precision.  161 
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 162 

Figure 3. Precision and recall of the DSN and SSN by disease category. Precision and recall of the (a) 163 

Disease Similarity Network (DSN) and the (b) Stratified Similarity Network (SSN) by disease category 164 

pairs. The precision is the percentage of interactions in the molecular networks present in the epidemiological 165 

network from Hidalgo et al.2 and the recall is the percentage of epidemiological interactions captured by the 166 

molecular networks. For the SSN, interactions between meta-patients and diseases were considered (See 167 

Methods). Each point in the symmetric matrix corresponds to the subnetwork that results from selecting the 168 

interactions between diseases of the indicated disease categories. The area of the circles represents the recall 169 

and the color corresponds to the precision. Green and yellow colors indicate higher and lower precisions 170 

than the one of the DSN (43.8%), represented in white. Disease pairs without epidemiological interactions 171 

present a single black point. (c) Mean precision of each disease category in the SSN. Disease categories are 172 

sorted by their mean precision. Green and yellow colors indicate higher and lower precisions than the one 173 

of the DSN, represented in the horizontal grey line. (d) Mean recall of each disease category in the SSN. 174 

Disease categories are sorted by their mean recall. Green and yellow colors indicate higher and lower recalls 175 

than the one of the DSN (46.2%), represented in the horizontal grey line. Black points indicate the mean (c) 176 
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precision or (d) recall of the disease categories in the DSN. The differences between the values at the meta-177 

patient and disease level are plotted in the base of the bars. 178 

 179 

Moreover, we studied the topological properties of the molecular and epidemiological networks 180 

(Supplementary Table 4). Both networks contain one single connected component that comprises all 181 

the diseases, being the DSN denser. The DSN composed only of positive interactions and the 182 

epidemiological network present a transitivity around 0.5, meaning that nodes connected to a third one 183 

have 0.5 probability of being connected. Also, both networks present a mean distance below 2, 184 

indicating a high connectivity. Then, we compared the topological properties of the positive ICD9-185 

based DSN subnetwork and the epidemiological network, considering only the common set of diseases 186 

(Supplementary Table 5). We observe that both subnetworks have a very similar global topology. For 187 

instance, they present a significantly equal mean degree and a very similar density and mean distance 188 

(slightly higher for the epidemiology) around 0.42 and 1.6 respectively. Although both networks have 189 

a similar mean transitivity above 0.5, it is significantly higher for the epidemiological network, possibly 190 

due to other forces such as common risk factors or lifestyle. The networks also present a significantly 191 

equal mean closeness, betweenness and degeneracy. Finally, we computed the assortativity of the 192 

networks labeling the nodes with their ICD9 disease category. We found that both networks present an 193 

assortativity around 0; the epidemiological network is slightly depleted in within-category disease links 194 

whereas the DSN seems to present a minimal enrichment in those.  195 

Next, we compared our overlap with the ones derived from published disease-disease networks based 196 

on other molecular data (see Methods). Both the microbiome10 and the miRNA9 networks yielded non-197 

significant overlaps with the epidemiological network over their respective common diseases and over 198 

the common diseases also present in the DSN. The network derived from protein-protein interaction 199 

(PPI) networks presented significant yet small overlaps with the epidemiology (8.71% for the entire 200 

network and 18.52% over the diseases in the DSN), and the one generated by Sánchez-Valle et al.8 201 

using microarrays presents a significant overlap of 16% with the epidemiological network from Hidalgo 202 

et al.2 (Fig. 4a and Supplementary Table 6). 203 

Finally, we compared the networks that present a significant overlap with the epidemiology (PPI and 204 

microarray-based networks) with the DSN (Supplementary Table 7-8). The network derived from PPIs 205 

and the DSN share 19 ICD9 codes and only 6 out of the 20 interactions present for these diseases in the 206 

former are found in the later (there is no significant overlap between them) (Supplementary Table 7-8). 207 

Between these common diseases, 29 epidemiologically known comorbidities are connected only in the 208 
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DSN whereas 10 are unique to the other network (Fig. 4b). The entire DSN provides information for 22 209 

new ICD9 codes and uniquely captures 149 disease links described in the epidemiology.   210 

On the other hand, the microarrays’ network contains 92 ICD9 codes, where 27 of them are analyzed 211 

in the DSN. We computed the overlap of both networks over the common set of ICD9 codes, yielding 212 

a significant overlap (p-value = 0.027) of 47.02% of the microarrays’ network. Specifically, positive 213 

interactions have a significant overlap (p-value = 0.002) of 62.22% whereas the overlap of the negative 214 

interactions is not significant (p-value = 0.624) (Supplementary Table 8). Among these common 215 

diseases, the DSN yielded 42 new positive interactions that are described in the epidemiological 216 

network by Hidalgo et al.2 (e.g. Crohn's disease and ulcerative colitis) (Fig. 4c). Additionally, the DSN 217 

provides information for 14 new ICD9 codes and captures 141 new interactions that match known 218 

comorbidities.  219 

 220 

 221 

Figure 4. Comparison of the epidemiological interactions described in the Disease Similarity Network 222 

(DSN) and other disease-disease networks based on molecular information. (a) Percentages of 223 

interactions in the epidemiological networks, significantly captured by molecular networks. It shows the 224 

overlap of our DSN based on RNA-seq and the networks based on microarrays and protein-protein 225 

interactions (PPI) (See Methods). (b) Network visualization of the positive disease-disease interactions 226 

described in the epidemiological network by Hidalgo et al.2 that captured only by the DSN (blue), only by 227 

the network based on PPIs6 (yellow) or by both of them (green). It shows the interactions over the common 228 

set of ICD9 codes in both molecular networks. Diseases are colored by their ICD9 code category. (c) 229 

Network visualization of the positive disease-disease interactions described in the epidemiological network 230 
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by Hidalgo et al.2 that captured only by the DSN (blue), only by the DMSN based on microarrays8 (yellow) 231 

or by both of them (green). 232 

 233 

Molecular mechanisms behind comorbidities     234 

Once confirmed that the DSN captures a significant percentage of comorbidities, we inspected which 235 

are the molecular mechanisms underlying its epidemiological (EIs) and non-epidemiological 236 

interactions (NEIs), i.e. interactions for which it was not possible to find a correspondence with the 237 

current medical data. We observe that the Reactome pathway categories behind most interactions tend 238 

to display a wider range of dysregulation than those affected only in some interactions; i.e. they share 239 

a higher number of altered pathways (Fig. 5). Impressively, 95.2% of the EI in the DSN share at least 240 

one -and a mean of 21.2- overexpressed immune system pathways, followed by pathways related to the 241 

ECM, metabolism of proteins, metabolism and signal transduction, all involved in over 90% of the 242 

interactions (means = 10.9, 10.1, 6.3, 16.1). The underexpressed pathways involved in most of the EIs 243 

are related to the metabolism of proteins, signal transduction, metabolism, and developmental biology 244 

(means = 4.9, 7.2, 13.5, 2.5). 245 

To adequately detect which pathways are specific to EI, we also take into account the ratio between the 246 

mean number of shared over or underexpressed pathways by Reactome category in EIs versus NEIs 247 

(Fig 5, Supplementary Fig. 7). Overexpressed circadian clock pathways explain more EIs than NEIs, 248 

being the mean number of shared pathways 1.7 times higher in the former than in the latter. Digestion 249 

and absorption and protein localization are 3.8 and 1.6 times more commonly underexpressed in the 250 

EIs.  251 
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 252 

Figure 5. Over and underexpressed pathways behind epidemiological and non-epidemiological 253 

interactions. Percentage of epidemiological versus non-epidemiological interactions that share (a) 254 

overexpressed or (b) underexpressed pathways. Each point represents a Reactome pathway category. The 255 

size of the points corresponds to the mean number of shared pathways in the epidemiological interactions. 256 
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The color corresponds to the ratio of the mean number of shared pathways in epidemiological versus non-257 

epidemiological interactions (e.g. red indicates that epidemiological interactions share more altered 258 

pathways than non-epidemiological interactions). 259 

 260 

Higher resolution results can be obtained by considering interactions between pairs of disease 261 

categories. For instance, the shared overexpression of circadian clock pathways seems to be highly 262 

specific of EIs entailing CNSd (Fig. 5 and 6a). Actually, the pivotal and putatively causal role of the 263 

circadian system in CNSd and their comorbidities has recently been proposed34–36. Although each 264 

individual comparison has its particular portrait of the mechanisms underlying disease interactions, 265 

some general patterns become apparent. We observe that pathways tend to cluster according to their 266 

ability to explain EI versus NEIs. In Fig. 6a we can see a cluster of pathways whose dysregulation is 267 

shared by all EIs whereas smaller clusters are mostly present in NEIs. Interestingly, pathway categories 268 

involved in more EIs than NEIs also present a higher number of pathways commonly dysregulated in 269 

EIs than in NEIs (Fig. 6a, within the upper cluster, redder dots are observed at the left side). In summary, 270 

EIs have been found to present more shared altered pathways than NEIs. In fact, if we remove 271 

neoplasms, EIs share the alteration of 53.1% and 56.8% more over and underexpressed pathways, 272 

respectively. Nonetheless, by inspecting the interactions between neoplasms, we can discern between 273 

the mechanisms that are potentially responsible for their common cause from the ones that are more 274 

likely due to the convergence of some common functions (i.e. overexpression of pathways related to 275 

the immune system or cell-cell communication as well as the underexpression of developmental biology 276 

or DNA repair processes) (Fig. 6b and Supplementary Fig. 8). Comorbid neoplasms tend to share a 277 

higher number of overexpressed pathways related to organelle biogenesis and maintenance, chromatin 278 

organization or cell cycle and an underexpression of pathways such as: metabolism, transport of small 279 

molecules or the immune system. Interestingly, around 30% of comorbidities within neoplasms share a 280 

highly specific overexpression of protein localization pathways.  281 
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Figure 6. Examples of overexpressed pathways behind epidemiological and non-epidemiological 283 

interactions. Percentage of epidemiological (EIs) versus non-epidemiological interactions (NEIs) that share 284 

overexpressed pathways. Each point represents a Reactome pathway category. The size of the points 285 

corresponds to the mean number of shared overexpressed pathways in the EIs. The color corresponds to the 286 

ratio of the mean number of shared pathways in EIs versus NEIs (e.g. red indicates that epidemiological 287 

interactions share more pathways than non-epidemiological interactions). The number of EIs and NEIs is 288 

indicated between parentheses in the y and x axis labels, respectively. (a) Interactions between congenital 289 

anomalies and diseases of the nervous system and sense organs. (b)  Interactions within neoplasms.  290 

 291 

Defining disease meta-patients  292 

It has been shown that patients suffering from a given disease often present different risks of developing 293 

specific secondary conditions4. We hypothesize that such differential risks might be driven by the 294 

existence of disease subtypes. To evaluate it, we studied disease similarities in a stratified manner by 295 

applying clustering algorithms to obtain subgroups of cases with a similar expression profile for each 296 

disease (see Methods). We consider those subgroups as meta-patients. To evaluate our approach, we 297 

selected breast cancer, a disease with known molecular subtypes for which we have two independent 298 

studies. The first study contains 20 estrogen positive (ER+) samples and 18 triple negative (TN) and 299 

the second study entails 9 estrogen negative (ER-) samples and 9 ER+. Our two independently obtained 300 

clusters (using PAM37 and Ward238 clustering algorithms separately) yielded similar results, being PAM 301 

the most accurate when grouping cases according to their defined molecular subtypes (Supplementary 302 

Fig. 9 and Supplementary Table 9). Breast cancer patient’s clustering and pairwise similarity shows 303 

that PAM clustering classifies most of the cases correctly into estrogen negative (ER-), triple negative 304 

(TN) and estrogen positive (ER+) (Fig. 7a), even grouping cases with shared molecular subtypes that 305 

belong to two independent studies. 306 
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 307 

Fig. 7. Breast cancer meta-patients and breast cancer molecular similarity interactions at the disease 308 

and meta-patient level. (a) Heatmap showing breast cancer patients’ similarity and classification through 309 

PAM algorithm. The similarity has been defined as 1 – Spearman’s correlation of the gene expression values. 310 

Orange represents a positive correlation between the expression profile of the patients whereas blue 311 

represents a negative correlation between them. Patients are colored based on their molecular subtype. 312 

Patients are divided in 3 subtypes: ER- (Estrogen negative) in green, TNEG (Triple negative patients) in 313 

blue and ER+ (Estrogen positive) in red. Patient’s clustering is marked on the left side of the figure. (b) 314 

Percentages of interactions in the epidemiological networks, captured by molecular networks in a significant 315 

manner. It shows the overlap of the interactions at the meta-patient and disease level based on RNA-seq and 316 
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the networks based on microarrays and protein-protein interactions (PPI) (See Methods). (c) Interactions 317 

between breast cancer disease and its meta-patients with human diseases. Positive interactions are 318 

represented in red and negative interactions in blue. Dashed-faded lines represent interactions at the disease 319 

level and shared by all the meta-patients whereas solid lines represent meta-patient specific interactions.  320 

 321 

Stratified Similarity Network 322 

Since meta-patients are groups of patients from a given disease, they can be treated as any phenotype 323 

to which we can apply gene expression analysis methods that assign a significance to their conclusions. 324 

Hence, and first of all, we characterized the obtained meta-patients in terms of their differential 325 

expression profiles (see Methods). Then, we built a network based on the gene expression similarity 326 

between all the meta-patients and analyzed diseases following the methodology described for the 327 

generation of the DSN (see Methods). The resulting Stratified Similarity Network (SSN) contains three 328 

types of interactions: (1) the previously described disease-disease interactions, (2) interactions 329 

connecting different meta-patients and (3) interactions connecting meta-patients to diseases. The SSN 330 

can be fully explored in the web application (see Methods) and its topological properties can be found 331 

in the Supplementary Table 4. Since the SSN has a considerably higher number of nodes, we observe a 332 

large increase in mean degree with respect to the DSN. As captured by the moderate increase in density 333 

and mean transitivity, the meta-patients have added some new interactions that were missed by the 334 

DSN, being able to uncover new transitive relationships. These properties, along with a concordant 335 

decrease in diameter and mean distance, occur across the entire network and subnetworks entailing 336 

positive or negative interactions. In fact, by defining meta-patients we significantly increase the number 337 

of diseases linked to each disease by 7.64 diseases (p-value=1.596e-10) and 7.29 (p-value = 6.159e-15) 338 

for the positive and negative interactions respectively (Supplementary Fig. 10a). We confirmed that this 339 

increase in detection power is significant compared to randomly generated meta-patients (p-value = 0 340 

for positive and negative interactions) (see Methods) (Supplementary Fig. 11). 341 

We inspected the links between breast cancer disease and its meta-patients with the rest of diseases (Fig. 342 

7c). We observe that while most of the interactions are shared between breast meta-patients and the 343 

disease, several interactions are specific to some of them. For instance, a negative interaction with 344 

multiple sclerosis is only found in ER+ and ER- meta-patients while a positive interaction with autism 345 

and bipolar disorder is specific to TN and ER- meta-patients.  346 

While breast cancer meta-patients share most of their connections, this is not the case for all the diseases. 347 

Actually, the percentage of positive and negative links shared by all the meta-patients from a given 348 
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disease varies greatly (Supplementary Fig. 10b). For example, CNSd (e.g. schizophrenia, bipolar 349 

disorder, MS or autism), known to be highly heterogeneous, show little consistency in their meta-350 

patients’ interactions. On the other hand, neoplasms - that tend to present a consistent and high alteration 351 

of multiple biological processes - seem to present a higher correspondence in their meta-patients’ 352 

connections.  353 

To evaluate the ability of meta-patients to uncover new comorbidities, we computed the overlap of the 354 

interactions between meta-patients and diseases with the epidemiological data (see Methods). 355 

Remarkably, meta-patients significantly captured 64.1% (p-value = 0.0187) of the interactions in the 356 

epidemiological network from Hidalgo et al.2, which corresponds to an increase in recall of 17.9% with 357 

respect to the DSN with a very small decrease in precision of 0.7%. On the contrary, negative 358 

interactions do not show a significant overlap (p-value = 0.8035) (Supplementary Table 10). As Fig. 3 359 

shows, most disease categories benefit from the stratification of diseases, since they tend to present a 360 

considerable increase of the recall which is usually accompanied by a slight decrease in precision. 361 

Aligned with previous results, highly heterogeneous diseases (nervous system and mental disorders) 362 

present some of the highest increases in recall (up to 30%); strikingly, also gaining precision. More 363 

moderately, this tendency also occurs for circulatory diseases. Respiratory diseases, which often display 364 

a wide range of immune system responses, present 10.9% more recall with the same precision than in 365 

the DSN.  366 

Finally, we developed a web application (http://disease-perception.bsc.es/rgenexcom/) in which the 367 

networks and their underlying molecular mechanisms can be easily inspected (see Methods).  368 

 369 

Discussion 370 

So far, many molecular representations of disease interactions have failed to explain a noteworthy 371 

number of the medically known comorbidities, being unable to answer the long-standing question of 372 

the molecular origin of comorbidities. The generated networks based on RNA-seq profiles provide a 373 

convincing and comprehensive answer to this matter, being able to significantly capture and 374 

meaningfully explain 64% of the known comorbidities. Hence, they render a qualitative difference over 375 

previous studies, providing a solid support to the key role of molecular mechanisms behind 376 

comorbidities in a generalized manner.  377 

Actually, the DSN and the epidemiological network are very similar from a topological perspective. 378 

They present significantly equal mean degree, closeness, betweenness and degeneracy, as well as very 379 
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similar density and mean distance; indicating a general resemblance in their overall structure and 380 

information flow. They also show close to zero assortativities with respect to disease categories 381 

(minimally negative in the epidemiology and positive in the DSN), which implies a slight tendency of 382 

diseases from the same category to be linked more than expected in epidemiology. For instance, while 383 

the observed molecular similarities connect some neoplasms that are indeed comorbid (e.g. liver cancer 384 

with glioblastoma, lung, or colorectal cancer), they also link specific cancers that are not 385 

epidemiologically linked. This evidence shows that the presence of shared molecular mechanisms does 386 

not always translate into an increased relative risk that is observed in the currently limited medical data. 387 

However, we can discern between the mechanisms behind well-established comorbidities from the ones 388 

that may be a consequence of an overall molecular similarity, which is especially relevant for neoplasms 389 

that share similar dysregulated pathways. Indeed, without considering neoplasms, EIs tend to share over 390 

50% more altered pathways than pairs of diseases without clear evidence of a medical relation (NEIs). 391 

Several ways in which shared molecular mechanisms can underlie direct comorbidities have been 392 

proposed. Essentially, molecular mechanisms can be causally or consequentially altered in a given 393 

disease; which, in turn, can contribute to the development of a secondary condition. Thus, molecularly 394 

based comorbidities can be explained by the following scenarios: (1) both diseases share the same or 395 

correlated causal alterations, (2) the molecular mechanisms altered as a consequence of one disease are 396 

associated to the second condition or (3) there is a third condition that increases the risk of developing 397 

both of them1. These schemes are not mutually exclusive and can be combined in complex manners. In 398 

fact, the study of direct comorbidities in longitudinal studies has shown disease trajectories that can be 399 

explained by an underlying aggravation and accumulation of specific molecular processes, especially 400 

in a chronic manner39. This is the case for the discussed progression of IBD into colorectal cancer40 and 401 

for the highly prevalent disease trajectory that has recently been called metabolic syndrome, including 402 

obesity, insulin resistance, diabetes, cardiovascular disease or even cancer41. These observations 403 

supported the central role of the underlying molecular mechanisms in the study of individual diseases 404 

and disease comorbidities, to the point where efforts have already been destined to redefining diseases 405 

by incorporating both their clinical features and molecular profiles42.  406 

Comorbidity relationships can be better understood if disease subtypes and patient-specific patterns are 407 

taken into account4. Indeed, previous epidemiological studies have identified comorbidities that depend 408 

on the disease subtype43–45. In line with this, we introduced the concept of meta-patients and the 409 

stratified exploration of their molecular similarities with diseases. The definition of meta-patients 410 

unraveled a significant mean of around 14 new subgroup-specific disease connections per disease, 411 
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increasing the detection power of disease similarities (Supplementary Fig. 10a). This subclassification 412 

of diseases based on similarities of the patients’ gene expression profiles can be related to 413 

epidemiological observations of comorbidities that depend on patients’ characteristics. In the case of 414 

breast cancer, we observed that although the three meta-patients share most of the disease interactions, 415 

some specific and interesting ones emerge. For instance, TN and ER- meta-patients are the only ones 416 

presenting a positive interaction with autism and bipolar disorder (Fig. 7c). While several studies46,47 417 

have found no significant correlations, recent molecular and epidemiological evidence suggests cancer 418 

as a comorbidity of autism48,49. Besides, an enhanced cancer risk has been described for bipolar disorder 419 

patients in both genders, being the risk for breast cancer higher but non-significant50. Additionally, we 420 

observed a negative interaction between breast cancer, ER+ and ER- meta-patients with multiple 421 

sclerosis (Fig. 7c). Again, opposite tendencies are described in the literature for this connection, where 422 

the order of appearance of the disease seems to drive the comorbidity pattern. It has been shown that 423 

breast cancer patients are 45% less likely to develop multiple sclerosis51. On the other hand, multiple 424 

sclerosis patients have been shown to have a significantly increased risk of breast cancer, presumably 425 

driven by immunosuppression derived from the associated treatment52. Therefore, our analysis provides 426 

new evidence on subgroup-specific comorbidities with a potential molecular explanation. Moreover, 427 

we showed that the percentage of recapitulated epidemiological interactions increased from almost half 428 

to 64.1% when considering the interactions between diseases and meta-patients, with a slight decrease 429 

in precision of 0.7%.   430 

As shown, the generated networks provide the first systematic translation of disease comorbidities into 431 

molecular patterns. Previous efforts based on disease-associated genes in a PPI network were limited 432 

by the incompleteness of the interactome and the biased knowledge of disease-associated genes for 433 

highly studied diseases6. Furthermore, networks based on other molecular sources such as the 434 

microbiome10 and miRNAs9 do not overlap epidemiological interactions significantly.  435 

There are at least three factors that allowed us to significantly improve the explainability of known 436 

comorbidities captured with gene expression information. First, the better quality and coverage of RNA-437 

seq data, that unbiasedly increases the number and quality of features whose similarity can be compared 438 

between diseases. Secondly, an improved methodology based on the existence of a significant 439 

correlation between the differential gene expression profiles of each disease pair. As a result, our disease 440 

links are robust, stable and independent of the rest of diseases, even if the disease universe changed; 441 

contrary to previous attempts based on relative molecular similarities, where disease links depended on 442 

the rest of the network8. Finally, the stratification of diseases into subgroups of cases named meta-443 
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patients. Opposite to patient-centric approaches, meta-patients can be methodologically treated as 444 

phenotypes are handled in gene expression studies; thus, a significance can be associated to their altered 445 

genes, pathways and, importantly, disease interactions in the SSN.  446 

Still, there are a number of issues that, if addressed, could improve the quality of the results and the 447 

coverage of the comorbidity space. First, the generated networks contain both positive and negative 448 

interactions potentially representing direct and inverse comorbidities. While it is possible to validate 449 

the positive ones, it is more difficult to validate the less abundant - but equally interesting- negative 450 

ones (36.63%) since they are not systematically described in large studies and are only sporadically 451 

addressed in the literature53. Nonetheless, we detected known inverse comorbidities such as: HD and 452 

specific cancer types or Parkinson’s disease and rheumatoid arthritis54. Therefore, a current limitation 453 

in this study is the lack of epidemiological networks entailing inverse comorbidity relationships.  454 

Another limitation is the lack of sample information, such as age, sex, or treatments, which may drive 455 

transcriptomic differences between patients. Also, our samples belong to published studies focused on 456 

a specific disease in a given tissue (e.g. brain, liver or blood). Since we have cases and controls for each 457 

study and disease, we were able to correct for the tissue effect when generating sDEGs at the disease 458 

and meta-patient level. However, it would be optimal to have comprehensive data sets of diseases from 459 

the same tissue or an array of interesting tissues. Moreover, better defined and annotated disease 460 

subgroups as well as their differential comorbidities could help us refine the definition of meta-patients 461 

and increase their power to capture their epidemiological associations. We observed that patient 462 

stratification is specially important for highly heterogeneous diseases. While some diseases (e.g. breast 463 

cancer) showed few links specific to some meta-patients, more heterogeneous diseases (e.g. CNSd like 464 

schizophrenia or bipolar disorder and immune system disorders like asthma) present a majority of meta-465 

patient specific links (Supplementary Fig. 10b).  466 

Future perspectives include increasing sample size, so sex-specific disease similarities can be extracted 467 

and compared to their epidemiologically described disease interactions55. Furthermore, the molecular 468 

coverage of disease comorbidities could be improved by considering other molecular information that 469 

may underlie comorbidities within an integrative approach56. For this, large disease cohorts comprising 470 

different kinds of omics as well as clinical information would be needed. Furthermore, the obtained 471 

molecular similarities could be used to guide drug repurposing and development57.  472 

In summary, we built disease similarity networks based on transcriptomic information that, for the first 473 

time, capture and meaningfully explain a sizable percentage of medically known comorbidities in a 474 

significant manner. This supports the idea that disease comorbidities have a strong molecular 475 
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component that is better captured with gene expression profiles than with other molecular sources. 476 

Actually, differential gene expression profiles portray the diseases’ altered state in a rich manner since 477 

its signal might reflect from genetic alterations to the epigenetic influence on gene expression due to 478 

internal or external factors such as treatments, contaminants or lifestyle.  479 

This study shed light into the biological processes underlying known disease comorbidities, leading to 480 

a better understanding of the molecular profile and etiology of diseases and their comorbidity 481 

relationships. Importantly, although we showed that many of these mechanisms have already been 482 

validated experimentally, our efforts propose numerous key genes and pathways that are still to be 483 

explored. Thus, we focused our discussion on some examples and provided the molecular 484 

characterization of all the diseases and meta-patients at the different levels of granularity (genes and 485 

pathways) within a framework that allows for the comparison of the molecular profiles for direct and 486 

inverse comorbidities in a detailed and user-friendly manner (http://disease-487 

perception.bsc.es/rgenexcom/).   488 

Finally, our study stresses the need to integrate the study of disease comorbidities and their underlying 489 

molecular similarities within a personalized medicine scope, with the aim to capture those disease 490 

interactions that might depend on the disease subtype or other patient-specific factors. This would allow 491 

us, not only to better understand the putative secondary conditions of specific patients, but to better 492 

characterize the underlying molecular processes that might explain those relationships.  493 

 494 

Methods 495 

Gene Expression Analysis 496 

Uniformly processed RNA-seq gene counts were downloaded from the GREIN platform13 for 72 human 497 

diseases analyzed by 107 studies, including a total number of 4.267 samples. 498 

An RNA-seq pipeline destined to the parallel processing of a collection of RNA-seq studies for a given 499 

set of diseases was developed (Supplementary Fig. 12). First, samples with a percentage of aligned 500 

reads to the genome lower than 70% were removed, as well as studies with less than 3 cases (from now 501 

on patients) and control samples meeting the mentioned requirement. Secondly, and in order to perform 502 

the analysis at the disease level, gene counts and metadata for each disease were integrated (only studies 503 

with the disease, tissue and disease state information were considered). We performed quality controls 504 

using the edgeR pipeline58 and we applied within-sample normalization by considering the logarithm 505 

of the counts-per-million (log2CPM). Afterwards, we filtered out lowly expressed genes (those with 506 
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less than 1 log2CPM in more than 20% of the samples) and we applied between-sample normalization 507 

using the trimmed mean of M values (TMM) method59. After performing batch effect identification, we 508 

used the limma pipeline60 for differential expression analysis. Specifically, we built a model considering 509 

sample type (case vs. control) as our outcome of interest and adjusting for the study effect, as it is the 510 

most descriptive independent variable (tissue, platform and others depend on the study of origin). Genes 511 

with an FDR <=0.05 were considered significantly differentially expressed genes (sDEGs). Moreover, 512 

we used Combat61 and QR Decomposition60 batch effect removal methods to check the clustering of 513 

the samples with t-Distributed Stochastic Neighbor embedding (tSNEs)62. 514 

Functional enrichment analysis  515 

In order to better characterize the molecular processes underlying the analyzed diseases, we performed 516 

Gene Set Enrichment Analyses (GSEA)14 on the ranked lists of genes based on the differential 517 

expression -log Fold Change (logFC)- results using annotations from Reactome15, Kyoto Encyclopedia 518 

of Genes and Genomes63 and Gene Ontology64. We considered gene sets and pathways with an FDR 519 

<= 0.05 to be significant. 520 

To facilitate the interpretation of the molecular processes altered in diseases and potentially involved in 521 

disease comorbidity relationships, we selected the Reactome pathways15 significantly enriched in each 522 

disease and applied Ward2 algorithm38 to cluster diseases based on the Euclidean distance of their 523 

binarized Normalized Effect Sizes (1s and -1s for up- and down-regulated pathways) (Fig. 1).  524 

Disease similarity network  525 

To define disease-disease similarities we computed, for each disease pair, the Spearman’s correlation 526 

between the logFC values of the genes in the union of their sDEGs. We kept the interactions between 527 

different diseases that were significant after correcting for multiple testing (FDR <= 0.05). The resulting 528 

disease similarity network (DSN) contains positive and negative interactions (significantly positive and 529 

negative correlations respectively).  530 

Then, we evaluated the overlap of the obtained positive interactions extracted from diseases’ gene 531 

expression similarities  with the ones described by Hidalgo et al.2 (based on medical records). To do so, 532 

we transformed our disease names into the International Code of Diseases, version 9 (ICD9 codes). 533 

Since some diseases share the same three-digits ICD9 code (e.g. muscular dystrophy, myotonic 534 

dystrophy and facioscapulohumeral dystrophy share the code 359 - muscular dystrophies and other 535 

myopathies), we grouped their samples together and ran the whole analysis (gene expression analysis 536 

and disease-disease network building) on them, generating an ICD9 similarity network. Next, we 537 

computed the overlap as the percentage of interactions of the epidemiological network -entailing 538 



 24 

common diseases- captured by the ICD9 DSN’s positive and negative interactions independently. To 539 

show the enrichment of our network in epidemiological interactions, we also computed the overlap in 540 

the opposite direction. That is, the percentage of interactions in the ICD9 DSN contained in the 541 

epidemiological network. We assessed the significance of the overlaps by shuffling the interactions 542 

while preserving the degree distribution. We also computed the overlaps directly from the DSN 543 

(Supplementary Notes, Supplementary Table 11). 544 

Finally, we compared our overlap with the one obtained with other disease-disease networks based on 545 

molecular data. We downloaded networks that link diseases based on the similarities of their 546 

microbiome10 and miRNAs9 and we generated a disease-disease network based on protein-protein 547 

interactions (PPIs) by selecting the disease pairs that present a significant overlap of their network 548 

modules as described by Menche et al.6. Next, we computed their overlap with the epidemiological 549 

network over their common set of diseases and over the common set that is contained in our disease set. 550 

Finally, we compared the ICD9-level DSN with the networks that significantly overlap the 551 

epidemiology (the network based on PPIs and the microarrays’ disease molecular similarity network by 552 

Sánchez-Valle et al.8).  553 

Meta-patients generation  554 

We stratified diseases into subgroups of patients with similar expression profiles (meta-patients) by 555 

applying clustering algorithms to the normalized and batch effect corrected gene expression matrix. 556 

Both PAM (k-medoids)65 and Ward238 algorithms were applied independently (Supplementary Fig. 12).  557 

In the k-medoids approach, we calculated pairwise distances as 1 - the Spearman’s correlation. To 558 

obtain the diseases’ meta-patients, first we obtained the optimal number of clusters for each disease by 559 

running k-medoids for a cluster number between 2 and 15. After that, the cluster number with the 560 

highest average Silhouette value was used to obtain the final meta-patients66.  561 

To evaluate our approach, we selected breast cancer, a disease with known molecular subtypes and for 562 

which we have two independent studies. We compared our two independently obtained clusters with 563 

the defined disease subtypes (Supplementary Table 9). 564 

Stratified Similarity Network 565 

To analyze the disease subtype-associated comorbidities, we built the Stratified Similarity Network 566 

(SSN) connecting meta-patients and diseases based on the pairwise Spearman’s correlation of the union 567 

of their sDEGs. First, meta-patient’s gene expression analysis was performed using the same approach 568 

described for the diseases, where all the samples corresponding to a given meta-patient were compared 569 
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with all the controls for the disease. Then, the SSN was built following the same methodology described 570 

for the DSN by treating meta-patients and diseases equally as phenotypes. To assess if the meta-patients 571 

increase the detection power significantly, we generated 1000 random meta-patients for each disease 572 

by shuffling the cases while maintaining the meta-patients’ number and size.  Next, we obtained 1000 573 

SSNs and evaluated if the number of positive and negative interactions in the SSN could be observed 574 

by chance. To evaluate if meta-patients capture epidemiologically known associations with diseases, 575 

we selected the positive interactions between meta-patients and diseases, transformed them into ICD9 576 

codes and computed their overlap with the epidemiological network from Hidalgo et al.2, as described 577 

for the DSN. This is comparable to the available epidemiological network, that comprises interactions 578 

at the disease level by evaluating if a group of patients from a given disease is at a higher risk of 579 

developing a specific secondary condition.  580 

Web application 581 

To facilitate the visualization and exploration of the generated networks, we implemented a web 582 

application that displays the DSN and SSN in a dynamic manner67. The user can filter the networks by 583 

the type of interactions (positive or negative) and by selecting a minimum and maximum threshold for 584 

the edge’s weight. Community detection algorithms (greedy modularity optimization68 or random 585 

walks69 can be applied to the filtered network and interactions involving specific nodes can be filtered 586 

and highlighted. Furthermore, the molecular mechanisms behind diseases and disease interactions can 587 

be easily inspected and compared.  588 

 589 

Data Availability 590 

The code of the experiments is available at https://github.com/beatrizurda/Urda-Garcia_et_al_2021 and 591 

the code of the web application can be found at https://github.com/bsc-life/rgenexcom.  The data is 592 

publicly available (Supplementary Data 1); the raw data can be downloaded from GEO 593 

(https://www.ncbi.nlm.nih.gov/geo/) and the counts can be downloaded from the GREIN platform 594 

(http://www.ilincs.org/apps/grein/). 595 
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