1 Research Paper

- 2 Spread of infection and treatment interruption among Japanese workers during the
- **3** COVID-19 pandemic: a cross-sectional study
- 4
- 5 **Running title:** Spread of infection and treatment interruption in Japan
- 6

7 Author names and affiliations.

- 8 Jun Akashi¹, M.D., Ayako Hino², M.D., Ph.D., Seiichiro Tateishi³, M.D., Ph.D.,
- 9 Tomohisa Nagata⁴, M.D., Ph.D., Mayumi Tsuji⁵, M.D., Ph.D., Akira Ogami⁶, M.D.,
- 10 Ph.D., Shinya Matsuda⁷, M.D., Ph.D., Masaharu Kataoka¹, M.D., Ph.D., and Yoshihisa
- 11 Fujino⁸, M.D., M.P.H., Ph.D., for the CORoNaWork Project
- 12¹ Second Department of Internal Medicine, School of Medicine, University of
- 13 Occupational and Environmental Health, Japan
- ² Department of Mental Health, Institute of Industrial Ecological Sciences, University of
- 15 Occupational and Environmental Health, Japan
- 16 ³ Department of Occupational Medicine, School of Medicine, University of
- 17 Occupational and Environmental Health, Japan
- ⁴ Department of Occupational Health Practice and Management, Institute of Industrial
- 19 Ecological Sciences, University of Occupational and Environmental Health, Japan
- ⁵ Department of Environmental Health, School of Medicine, University of Occupational
- 21 and Environmental Health, Japan

- ⁶ Department of Work Systems and Health, Institute of Industrial Ecological Sciences,
- 23 University of Occupational and Environmental Health, Japan
- ⁷ Department of Preventive Medicine and Community Health, School of Medicine,
- 25 University of Occupational and Environmental Health, Japan
- ⁸ Department of Environmental Epidemiology, Institute of Industrial Ecological
- 27 Sciences, University of Occupational and Environmental Health, Japan

28

29 Corresponding author, Present address

- 30 Address correspondence to Yoshihisa Fujino, M.D., M.P.H., Ph.D.
- 31 Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences,
- 32 University of Occupational and Environmental Health, Japan
- 33 1-1, Iseigaoka, Yahatanishiku, Kitakyushu, 807-8555, Japan
- **34** Tel: +81-93-691-7401

35

- 36 Word count:
- 37 Main text: 1969 words
- **38** Abstract: 242 words

40 Abstract

41 **Objectives:** This study aimed to examine the relationship between regional infection

- 42 level and treatment interruption for chronic diseases.
- 43 Methods: A cross-sectional Internet monitoring survey was performed between

44 December 22 and 26, 2020. Data from 9,510 (5,392 males and 4,118 females)

45 participants needing regular treatment or hospital visits were analyzed. We determined

46 the age-sex- and multivariate-adjusted odds ratios (ORs) of treatment interruption

47 associated with various indices of infection level by nesting multilevel logistic models

48 in prefecture of residence. In the multivariate model, sex, age, marital status, job type,

49 equivalent household income, education, self-rated health, and anxiety were adjusted.

50 **Results:** The ORs of treatment interruption for the lowest versus highest levels of

51 infection were 1.32 (95% CI: 1.09–1.59) for the overall incidence rate (per 1,000

52 population), 1.34 (95% CI: 1.10–1.63) for the overall number of people infected, 1.28

53 (95% CI: 1.06–1.54) for the monthly incidence rate (per 1,000 population), and 1.38

54 (95% CI: 1.14–1.67) for the number of people infected per month. For each index of

55 infection level, higher infection was linked to more workers experiencing treatment

56 interruption.

57 Conclusion: Higher local infection levels were linked to more workers experiencing
58 treatment interruption. Our results suggest that apart from individual characteristics
59 such as socioeconomic and health status, treatment interruptions during the pandemic
60 were also subject to contextual effects related to regional infection levels. Preventing
61 community spread of COVID-19 may thus protect individuals from indirect effects of
62 the pandemic, such as treatment interruption.

63

- 64 Keywords: COVID-19, Japan, Patient Acceptance of Health Care, Treatment Refusal,
- 65 Regional Medical Programs

67 Introduction

68	COVID-19, first identified at the end of 2019, is continuing to rage around the							
69	world [1-4]. Japan has experienced four waves of the disease through June 2021. In							
70	addition to direct effects of severe pneumonia and acute respiratory failure, COVID-19							
71	has also had indirect health effects. COVID-19-related treatment interruption,							
72	particularly in patients with chronic diseases, is an emerging issue in several countries							
73	[5.6], including Japan [7]. Studies have reported a significant decrease in the number of							
74	prescriptions during the pandemic compared to before, and that 40% of patients							
75	requiring regular visits have been seen less frequently [8,9].							
76	Treatment interruption can cause serious health care problems in several ways.							
77	First, it can worsen the medical condition of patients with chronic diseases that require							
78	regular management. Second, fewer opportunities for regular physical examinations							
79	may lead to undiagnosed complications and delayed treatment. Further, such medical							
80	problems, which could have been avoided by continued treatment, increases medical							
81	costs [10]. Studies performed during the COVID-19 pandemic have reported that							
82	treatment interruption among patients with chronic diseases is associated with a variety							
83	of factors, including fear of becoming infected when seeing the doctor [11,12],							
84	scheduling changes by hospitals [13,14], and shortage of medical resources [11]. These							
85	factors presumably have differing degrees of impact depending on the level of infection							
86	in the region. In addition, patients with unstable socioeconomic status are more likely to							
87	discontinue treatment [7,15,16]. Areas with higher prevalence of COVID-19 may be							
88	more affected by the loss of job security and other factors that affect individuals with							
89	unstable socioeconomic status.							

90	In Japan, the spread of COVID-19 has varied widely by region in terms of the							
91	scale of infection and the speed of spread [17.18]. We hypothesize that differences in							
92	regional infection rates will affect treatment interruption in each region. The level of							
93	infection in a community may directly or indirectly affect fear of visiting medical							
94	institutions, anxiety about going out, and financial difficulties, which may cause							
95	treatment interruption. For example, the number of people infected with COVID-19 is							
96	reported daily by region. Such information will arouse some degree of anxiety and fear							
97	in people living in regions with high levels of infection about the safety of the area and							
98	the disease. Tokyo, which has recorded the greatest number of infections in Japan, saw							
99	a significant drop in prescriptions through May 2020 [8]. Given that pandemics are							
100	known to overwhelm medical resources [19], Japan's lack of capacity to conduct							
101	COVID-19 tests in areas with high levels of infection and limited hospital beds has							
102	exposed the limits of the country's medical resources [20].							
103	However, the relationship between regional COVID-19 infection level and							
104	treatment interruption remains to be elucidated. Japan provides an ideal opportunity to							
105	test our hypotheses due to the country's large regional variation in COVID-19 infection							
106	levels. Therefore, we investigated the relationship between local infection level and							
107	treatment interruption in Japan.							

108

109 Materials and Methods

110 Study Design and Subjects

- 111 A cross-sectional study of Internet monitors was conducted from December 22
- to 26, 2020, the period corresponding to Japan's third wave of infection. Data were
- obtained from participants who indicated they were employed at the time of the survey,
- 114 with participants selected based prefecture of residence, job type, and sex. A detailed
- description of the protocol of this survey is provided elsewhere [21]. Of the 33,302
- 116 participants in the survey, 6,266 were excluded for providing fraudulent responses. Of
- the 27,036 remaining participants, data from 9,510 (5392 males and 4118 females) who
- 118 stated they needed regular treatment or hospital visits were analyzed.

119 This study was approved by the Ethics Committee of the University of

- 120 Occupational and Environmental Health, Japan (reference No. R2-079 and R3-006).
- 121 Participants provided informed consent by completing a form on the survey website.

122

123 Treatment status

We used a single-item question to assess participants' treatment status: "Do you

125 have a condition that requires regular hospital visits or treatment?" Participants chose

- 126 from "I do not have such a condition," "I am continuing with hospital visits and
- 127 treatment as scheduled," and "I am not able to continue with hospital visits and
- 128 treatment as scheduled."

129

130 Infection level indices

131	The infection level in each participant's prefecture of residence was assessed
132	based on the incidence rate for the entire period (per 1,000 population), the number of
133	people infected for the entire period, the incidence rate in one month (per 1,000
134	population), and the number of infected people in one month.
135	
136	Socioeconomic status, health status, and anxiety
137	Socioeconomic status, health status, and anxiety were assessed through
138	questionnaires in the Internet survey. Socioeconomic factors were age, sex, marital
139	status (married, unmarried, bereaved/divorced), occupation (mainly desk work, mainly
140	interpersonal communication, mainly labor), education, and equivalent income
141	(household income divided by the square root of household size). Health and
142	psychological factors were assessed through participants' self-rated health status and
143	anxiety about contracting COVID-19. We used the following question to assess anxiety:
144	"Do you feel anxious about being infected with COVID-19?" Participants chose from
145	"yes" or "no."
146	

147 Statistical analysis

We estimated age-sex- and multivariate-adjusted odds ratios (ORs) of treatment interruption associated with regional infection level by nesting multilevel logistic models in prefecture of residence. We used four indices of regional infection level: incidence rate for the entire period (per 1,000 population), number of people infected for the entire period, incidence rate in one month (per 1,000 population), and number of people infected in one month. For analysis, these indices were divided into

- 154 quartiles and used as area-level variables. In the multivariate model, sex, age, marital
- status, job type, equivalent household income, education, self-rated health, and anxiety
- 156 were adjusted. p<0.05 indicated statistical significance. All analyses were conducted
- 157 using Stata (Stata Statistical Software: Release 16; StataCorp LLC, TX, USA).

159 **Results**

160	The participants' characteristics together with residential area according to the
161	number of people infected for the entire period are summarized in Table 1. We stratified
162	the 9,510 participants in need of regular treatment into four groups according to the
163	regional infection level. Socioeconomic factors including sex, age, marital status,
164	household income, education, and occupation, and self-assessment of health status and
165	anxiety related to COVID-19 infection were similar among the four groups.
166	The association between the regional infection level and treatment interruption is
167	summarized in Table 2. According to multivariate analysis, the ORs of treatment
168	interruption for the lowest versus highest regional infection level were 1.32 (95% CI:
169	1.09–1.59; p=0.003) for the overall incidence rate (per 1,000 population), 1.34 (95% CI:
170	1.10–1.63; p=0.002) for the overall number of people infected, 1.28 (95% CI:
171	1.06–1.54; p=0.013) for the monthly incidence rate (per 1,000 population), and 1.38
172	(95% CI: 1.14–1.67; p=0.001) for the number of people infected per month. For each
173	index of infection level, a higher infection level was linked to more workers
174	experiencing treatment interruption for chronic diseases in Japan. The results remained
175	unchanged after adjusting for age and sex.

177 Discussion

178	We found that higher regional levels of COVID-19 infection in Japan were							
179	correlated with more workers with diseases requiring regular hospital visits and							
180	treatment experiencing treatment interruption. To our knowledge, this is the first report							
181	to show that community infection levels are associated with treatment interruption.							
182	It is important to emphasize that the association between infection level and							
183	treatment interruption remained after adjusting for individual factors such as							
184	socioeconomic and health status. These results suggest that apart from individual							
185	characteristics, treatment interruptions during the COVID-19 pandemic were also							
186	subject to contextual effects related to regional infection levels. For example, while							
187	anxiety related to fear of becoming infected during a medical visit is a personal reaction,							
188	individuals living in areas with high levels of infection are likely to feel more anxious							
189	than those living in areas with low levels of infection. Rescheduling by medical							
190	institutions and health care providers is also expected to occur in areas with higher							
191	infection levels. Additionally, the COVID-19 pandemic is affecting individuals'							
192	socioeconomic status, which is determined by factors such as employment instability.							
193	Higher levels of infection have greater socioeconomic impact, which may be a factor							
194	affecting treatment interruption. Our findings are consistent with those of a previous							
195	study showing that such individual factors influence treatment interruption [7]. Thus,							
196	our study demonstrates that local spread of COVID-19 infection may affect the							
197	behavioral characteristics of workers living in the area. These findings suggest that, in							
198	addition to an individual patient approach, a population strategy is also needed to							
199	prevent the spread of infection and to avoid treatment interruption for manageable							
200	diseases.							

201	In this study, both the number of infected people by region and infection rate						
202	were associated with treatment interruption. This suggests that it would be informative						
203	to report the incidence rate based on the infection status in each region, which reflects						
204	the population of that region. However, Japanese news reports tend to emphasize the						
205	number of infected people rather than the infection rate by region, the latter of which						
206	may contribute to changing the behavior of more people. A previous study reported that						
207	Japanese people have greater trust in local information [22], suggesting that reporting						
208	the number of infections by region will have a strong influence on individual's						
209	behavioral changes and risk perception.						
210	Increased treatment interruption in areas with high levels of infection may cause						
211	further strain on future health care resources. Delaying and avoiding treatment can						
212	result in poorer management of chronic diseases, fewer regular checkups, and missed or						
213	delayed start of therapy for deteriorating health conditions. It can also lead to increased						
214	complications and poor prognosis. These factors in turn can increase future health care						
215	needs in the region. The strain on local health care resources due to the COVID-19						
216	pandemic is a serious challenge, and treatment interruption may be an indirect burden						
217	on health care resources due to COVID-19. Thus, reducing treatment interruption for						
218	manageable diseases may alleviate downstream consequences on the health care system.						
219	The findings of this study indicate that controlling the level of infection in a						
220	community has important implications for treatment interruption. With the COVID-19						
221	pandemic expected to continue for some time, sustained control of community-level						
222	spread will protect populations from the indirect effects of COVID-19, which include						
223	treatment interruption. In addition, strategies are needed to prevent treatment						
224	interruption. For example, telemedicine has and will continue to play a major role in the						

provision of health care during the COVID-19 pandemic [23-26]. Furthermore,

educating patients to avoid treatment interruption and widespread use of long-term

227 prescriptions to prevent patients from running out of regular medications will help

reduce medical problems caused by treatment interruption.

A major strength of this study was the relatively large sample size, which

allowed us to show, for the first time, an association between community infection level

and treatment interruption.

However, this study also had several limitations. First, because we conducted a

233 cross-sectional study, causality could not be determined. However, since it is

theoretically unlikely that treatment interruption experienced by an individual will

increase the COVID-19 infection rate in a region, we think it is likely that high regional

236 infection rates cause treatment interruption. Second, we did not identify workers'

237 reasons for discontinuing treatment in this study. As discussed above, there are various

238 possible causes of treatment interruption, which may vary by region. Third, we did not

239 inquire about the diseases being treated. Treatment interruption may vary depending on

the presence or absence of symptoms and the potential disadvantages of discontinuing

treatment for a particular disease.

243 Conclusion

244	We found that higher regional infection levels were linked to more workers
245	experiencing treatment interruption during the third wave of COVID-19 infection in
246	Japan. Our findings suggest that in addition to individual factors such as socioeconomic
247	status and health status, high regional infection levels may contribute to behavioral
248	changes in the local population, leading to treatment interruption. Preventing
249	community spread of COVID-19 may thus be useful for avoiding treatment interruption
250	for chronic diseases, an emerging medical problem brought about by COVID-19.

252 Funding

253	This study was supported and partly funded by the University of Occupational
254	and Environmental Health, Japan; General Incorporated Foundation (Anshin Zaidan);
255	The Development of Educational Materials on Mental Health Measures for Managers at
256	Small-sized Enterprises; Health, Labour and Welfare Sciences Research Grants;
257	Comprehensive Research for Women's Healthcare (H30-josei-ippan-002); Research for
258	the Establishment of an Occupational Health System in Times of Disaster
259	(H30-roudou-ippan-007), scholarship donations from Chugai Pharmaceutical Co., Ltd.,
260	the Collabo-Health Study Group, and Hitachi Systems, Ltd.

262 Data statement

263 Data not available due to ethical restrictions.

265 Conflict of interest:

266 The authors declare no conflicts of interest associated with this manuscript.

268 Acknowledgements

269 The current members of the CORoNaWork Project, in alpha	nabetical order, are as
---	-------------------------

- 270 follows: Dr. Yoshihisa Fujino (present chairperson of the study group), Dr. Akira
- 271 Ogami, Dr. Arisa Harada, Dr. Ayako Hino, Dr. Hajime Ando, Dr. Hisashi Eguchi, Dr.
- 272 Kazunori Ikegami, Dr. Kei Tokutsu, Dr. Keiji Muramatsu, Dr. Koji Mori, Dr. Kosuke
- 273 Mafune, Dr. Kyoko Kitagawa, Dr. Masako Nagata, Dr. Mayumi Tsuji, Ms. Ning Liu,
- 274 Dr. Rie Tanaka, Dr. Ryutaro Matsugaki, Dr. Seiichiro Tateishi, Dr. Shinya Matsuda, Dr.
- 275 Tomohiro Ishimaru, and Dr. Tomohisa Nagata. All members are affiliated with the
- 276 University of Occupational and Environmental Health, Japan.

278 References

279	1.	Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical
280		Characteristics of Coronavirus Disease 2019 in China. N Engl J Med.
281		2020;382(18):1708-20.
282	2.	Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First
283		Case of 2019 Novel Coronavirus in the United States. N Engl J Med.
284		2020;382(10):929-36.
285	3.	Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ, et al.
286		Importation and Human-to-Human Transmission of a Novel Coronavirus in
287		Vietnam. N Engl J Med. 2020;382(9):872-4.
288	4.	Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al.
289		Transmission of 2019-nCoV Infection from an Asymptomatic Contact in
290		Germany. N Engl J Med. 2020;382(10):970-1.
291	5.	Birkmeyer JD, Barnato A, Birkmeyer N, Bessler R, Skinner J. The Impact
292		Of The COVID-19 Pandemic On Hospital Admissions In The United States.
293		Health Aff. 2020;39(11):2010–2017.
294	6.	Czeisler M, Marynak K, Clarke KEN, Salah Z, Shakya I, Thierry JM, et al.
295		Delay or Avoidance of Medical Care Because of COVID-19-Related Concerns -
296		United States, June 2020. MMWR Morb Mortal Wkly Rep.
297		2020;69(36):1250-7.
298	7.	Fujimoto K, Ishimaru T, Tateishi S, Nagata T, Tsuji M, Eguchi H, et al. A
299		cross-sectional study of socioeconomic status and treatment interruption among
300		Japanese workers during the COVID-19 pandemic. medRxiv.
301		2021:2021.02.22.21252190.

302	8.	LoPresti M, Seo T, Sato N. Pandemics and Access to Care: Use of
303		Real-World DATA to Examine the IMPACT of COVID-19 on Pharmacy Visits
304		in JAPAN. Value Health. 2020;23:S685.
305	9.	Takakubo T, Odagiri Y, Machida M, Takamiya T, Fukushima N, Kikuchi H, et
306		al. Changes in the medical treatment status of Japanese outpatients during the
307		coronavirus disease 2019 pandemic. Journal of General and Family Medicine.
308		2021;00:1–16.
309	10.	Erol MK, Kayıkçıoğlu M, Kılıçkap M, Güler A, Yıldırım A, Kahraman F, et al.
310		Treatment delays and in-hospital outcomes in acute myocardial infarction during
311		the COVID-19 pandemic: A nationwide study. Anatol J Cardiol.
312		2020;24(5):334-42.
313	11.	Czeisler M, Marynak K, Clarke KEN, Salah Z, Shakya I, Thierry JM, et al.
314		Delay or Avoidance of Medical Care Because of COVID-19-Related Concerns -
315		United States, June 2020. MMWR Morb Mortal Wkly Rep.
316		2020;69(36):1250-7.
317	12.	Chudasama YV, Gillies CL, Zaccardi F, Coles B, Davies MJ, Seidu S, et al.
318		Impact of COVID-19 on routine care for chronic diseases: A global survey of
319		views from healthcare professionals. Diabetes Metab Syndr. 2020;14(5):965-7.
320	13.	Chopra V, Toner E, Waldhorn R, Washer L. How Should U.S. Hospitals Prepare
321		for Coronavirus Disease 2019 (COVID-19)? Ann Intern Med.
322		2020;172(9):621-2.
323	14.	Khullar D, Bond AM, Schpero WL. COVID-19 and the Financial Health of
324		US Hospitals. JAMA. 2020;323(21):2127-2128.

325	15. Feinstein JS.	The relationship	between socioecon	nomic status a	and health: a

- 326 review of the literature. Milbank Q. 1993;71(2):279-322.
- 327 16. Swain GR. How does economic and social disadvantage affect health. Focus.
- **328** 2016;33(1):1-6.
- 329 17. Ministry of Health, Labour and Welfare. Current status of the novel co-
- ronavirus infection and the response of the MHLW. 31 December 2020.
- 331 Available at: https://www.mhlw.go.jp/stf/newpage_15828.html. Accessed June
 332 27, 2021.
- 18. Furuse Y, Ko YK, Saito M, Shobugawa Y, Jindai K, Saito T, et al.
- 334 Epidemiology of COVID-19 Outbreak in Japan, from January-March 2020. Jpn
 335 J Infect Dis. 2020;73(5):391-3.
- 336 19. Emanuel EJ, Persad G, Upshur R, Thome B, Parker M, Glickman A, et al. Fair
- Allocation of Scarce Medical Resources in the Time of Covid-19. N Engl J Med.
 2020;382(21):2049-55.
- 20. Watanabe M. The COVID-19 Pandemic in Japan. Surg Today.
- 340 2020;50(8):787-93.
- 341 21. Fujino Y, Ishimaru T, Eguchi H, et al. Protocol for a nationwide
- 342 Internet-based health survey in workers during the COVID-19 pandemic in 2020.

343 medRxiv. Published online February 5, 2021:2021.02.02.21249309.

- 344 22. Muto K, Yamamoto I, Nagasu M, Tanaka M, Wada K. Japanese citizens'
- 345 behavioral changes and preparedness against COVID-19: An online survey
- during the early phase of the pandemic. PLoS One. 2020;15(6):e0234292.

347	23. Grabowski DC, O'Malley AJ. Use of telemedicine can reduce hospitalizations of
348	nursing home residents and generate savings for medicare. Health Aff
349	(Millwood). 2014;33(2):244-50.
350	24. Bokolo Anthony J. Use of Telemedicine and Virtual Care for Remote Treatment
351	in Response to COVID-19 Pandemic. J Med Syst. 2020;44(7):132.
352	25. Neubeck L, Hansen T, Jaarsma T, Klompstra L, Gallagher R. Delivering
353	healthcare remotely to cardiovascular patients during COVID-19: A rapid
354	review of the evidence. Eur J Cardiovasc Nurs. 2020;19(6):486-94.
355	26. Elson EC, Oermann C, Duehlmeyer S, Bledsoe S. Use of telemedicine to
356	provide clinical pharmacy services during the SARS-CoV-2 pandemic. Am J
357	Health Syst Pharm. 2020;77(13):1005-6.
358	

	Residential area according to the number of infected people for the entire period						
	74-492	507-1496	1673-11982	12381-52382			
Number of subjects	2130	2579	2422	2379			
Age, median (IQR)	51 (42, 57)	51 (43, 57)	52 (44, 58)	53 (46, 58)			
Sex, male	1181 (55.4%)	1440 (55.8%)	1403 (57.9%)	1368 (57.5%)			
Marital status, married	1252 (58.8%)	1496 (58.0%)	1370 (56.6%)	1284 (54.0%)			
Annual equivalent house hold income (JPY)							
500000-2650000	773 (36.3%)	875 (33.9%)	816 (33.7%)	717 (30.1%)			
2650000-4500000	690 (32.4%)	824 (32.0%)	733 (30.3%)	648 (27.2%)			
>4500000	667 (31.3%)	880 (34.1%) 873 (36.0%)		1014 (42.6%)			
Education							
Junior high school	26 (1.2%)	32 (1.2%)	30 (1.2%)	36 (1.5%)			
High School	703 (33.0%)	750 (29.1%)	619 (25.6%)	500 (21.0%)			
Vocational school/college, university, graduate school	1401 (65.8%)	1797 (69.7%)	1773 (73.2%)	1843 (77.5%)			
Jobtype							
Mainly desk work	1144 (53.7%)	1293 (50.1%)	1222 (50.5%)	1264 (53.1%)			
Jobs mainly involving interpersonal communication	480 (22.5%)	590 (22.9%)	622 (25.7%)	614 (25.8%)			
Mainly labor	506 (23.8%)	696 (27.0%)	578 (23.9%)	501 (21.1%)			
Self-rated health							
Very good	742 (34.8%)	895 (34.7%)	895 (37.0%)	885 (37.2%)			
Neither	919 (43.1%)	1104 (42.8%)	991 (40.9%)	986 (41.4%)			
Not good	469 (22.0%)	580 (22.5%)	536 (22.1%)	508 (21.4%)			
Do you feel anxious about being infected with COVID-19?							
Yes	1684 (79.1%)	2083 (80.8%)	1904 (78.6%)	1850 (77.8%)			
The incidence rate for the entire period (per 1000 of the population), median (IQR)	.28 (.22, .34)	.55 (.51, .59)	1.26 (.79, 1.51)	3.12 (1.91, 3.76)			
The number of infected people for the entire period, median (IQR)	379 (330, 445)	1053 (671, 1124)	2455 (2168, 8438)	27500 (14427, 52382)			
The incidence rate for one month (per 1000 of the population), median (IQR)	.09 (.058, .14)	.23 (.16, .32)	.47 (.33, .59)	1.06 (.74, 1.06)			
The number of infected people for one month, median (IQR)	124 (39, 171)	440 (282, 501)	1705 (916, 2936)	9851 (5596, 14690)			

Table 1. Basic characteristics of the study subjects

	Age-sex adjusted				Multivariate*			
	OR 95%CI		р	OR	95%CI		р	
The incidence rate for the entire period (per1000)								
.1044	reference	e			reference	e		
.4968	1.00	0.83	1.21	0.999	1.00	0.83	1.21	0.993
.76 - 1.63	1.06	0.88	1.28	0.555	1.07	0.88	1.30	0.505
1.89 - 3.76	1.25	1.04	1.50	0.019	1.32	1.09	1.59	0.005
				0.013†				0.003†
The number of infected people for the entire period								
74 - 492	reference	e			reference	e		
507 - 1496	1.07	0.89	1.29	0.473	1.06	0.87	1.29	0.545
1673 - 11982	1.14	0.94	1.38	0.180	1.15	0.94	1.40	0.168
12381 - 52382	1.28	1.06	1.55	0.011	1.34	1.10	1.63	0.003
				0.008†				0.002†
The incidence rate for one month (per1000)								
.01815	reference			reference				
.1632	1.07	0.89	1.29	0.487	1.07	0.89	1.30	0.470
.3361	1.05	0.87	1.27	0.641	1.06	0.87	1.29	0.576
.66 - 1.12	1.21	1.02	1.45	0.032	1.28	1.06	1.54	0.009
				0.044†				0.013†
The number of infected people for one month								
13 - 203	reference	e			reference	e		
204 - 626	1.11	0.92	1.34	0.284	1.12	0.93	1.36	0.241
704 - 4373	1.16	0.96	1.40	0.127	1.18	0.97	1.43	0.093
5218 - 14690	1.30	1.08	1.57	0.006	1.38	1.14	1.67	0.001
				0.006†				0.001†

Table 2. Association between regional COVID-19 infection levels and treatment interruption

* The multivariate model was adjutesd for age, sex, marital status, equivalent household income, educational level, jobtype, self-rated health and anxiety about infection

† p for trend