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Abstract

Understanding the conditionally-dependent clinical variables that drive cardiovascular

health outcomes is a major challenge for precision medicine. Here, we deploy a

recently developed massively scalable comorbidity discovery method called Poisson

Binomial based Comorbidity discovery (PBC), to analyze Electronic Health Records

(EHRs) from the University of Utah and Primary Children’s Hospital (over 1.6 million

patients and 77 million visits) for comorbid diagnoses, procedures, and medications.

Using explainable Artificial Intelligence (AI) methodologies, we then tease apart the

intertwined, conditionally-dependent impacts of comorbid conditions and demography

upon cardiovascular health, focusing on the key areas of heart transplant, sinoatrial

node dysfunction and various forms of congenital heart disease. The resulting

multimorbidity networks make possible wide-ranging explorations of the comorbid and

demographic landscapes surrounding these cardiovascular outcomes, and can be

distributed as web-based tools for further community-based outcomes research. The

ability to transform enormous collections of EHRs into compact, portable tools devoid of

Protected Health Information solves many of the legal, technological, and data-scientific

challenges associated with large-scale EHR analyzes.

Introduction

The application of data-science methods to electronic health record (EHR) databases

promises a new, global perspective on human health, with widespread applications for

outcomes research and precision medicine initiatives. However, unmet technological

challenges still exist1–3. One is the need for improved means for ab initio discovery of
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comorbid clinical variables in the context of confounding demographic variables at

scale. Moreover, how best to tease apart the intertwined impacts of multiple

comorbidities and demographic variables on patient health remains a daunting

challenge1,2,4–9.

We used a massively-scalable comorbidity discovery method called Poisson Binomial

based Comorbidity (PBC) discovery10 to search Electronic Health Records (EHRs) from

the University of Utah and Primary Children’s Hospital (over 1.6 million patients and 77

million visits) for comorbid diagnoses, procedures, and medications. In this context, we

refer to co-occurring medical diagnoses, procedures and medications using the single

blanket term, comorbidity. PBC can also discover temporal relationships and quantify

transition rates between various comorbidities. The result is a disease network, devoid

of Protected Health Information (PHI), that is well-suited for powering downstream

outcomes research.

Although comorbidity discovery is a necessary first step towards enabling outcomes

research, it is not an end in itself. Comorbidities do not exist as isolated pairs, rather

they combine to create a complex web of influence on any given outcome. While PBC is

powered to discover that web, harnessing it for outcomes research requires a separate

computational machinery, one capable of calculating the joint contributions of multiple,

conditionally dependent variables on an outcome, so called multimorbidity

calculations2,11–13. Moreover, because researchers seek not merely to predict outcomes,

but also to measure the contributions of factors driving them, ‘explainable’ solutions14–22,
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rather than black box approaches are required. We have adapted Probabilistic

Graphical Models (PGMs)3,22–27 to address these needs.

PGMs are well suited for outcomes research. Contrary to other methods, like e.g.

generalized linear models (with or without mixed effects), PGMs are capable of: (1)

discovering and modelling any number of multilevel dependencies between variables,

(2) capturing non-additive or non-multiplicative interactions, and (3) their application

does not require excluding nor imputing missing data28. Moreover, PGMs model the full

joint probability function governing relations in the data, and thus do not necessitate a

dichotomy between response and input variables. Rather, PGMs are capable of

answering a prediction query for any variables conditioned on any set of inputs included

in the model.

Using these computational technologies, we mined the EHRs of over 1.6 million

University of Utah and Primary Children’s Hospital patients, including over 500,000

mother-child pairs, for comorbid diagnoses, procedures, medications, and lab tests

driving diverse cardiovascular health outcomes, focusing on three areas: heart

transplant, sinoatrial node dysfunction, and congenital heart disease. Our results

illuminate the comorbid and demographic landscapes surrounding these key

cardiovascular outcomes in the US intermountain west, and demonstrate how our

approach can inform health care disparities with precise, quantitative results in the

context of a specific health care system.
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Results

PBC is well powered for discovery of cardiovascular comorbidities.

Table 1 demonstrates the utility of the PBC approach for discovery, by comparing the

power of PBC versus a standard stratification approach (followed by χ2 to detect the)

well documented comorbid relationship between atrial fibrillation (AF) and acute

cerebrovascular disease (stroke)29,30. Table 1 provides a power analysis as a function of

corpus size and number of demographic variables. The effects of stratifying the data for

χ2 analysis, versus adding them to the PBC calculation, can be observed as one

proceeds down the table columns. Results for three different starting cohort sizes are

shown. Note how stratification lowers the strength of p-values as a function of the size

of the stratum. This effect is exacerbated when more than a few potentially confounding

variables are controlled for, and stratification quickly results in cohorts that are too small

for discovery activities, as the comorbidities fail to achieve statistical significance. For

example, using a starting corpus of 9,525 records, stratification followed by χ2 analysis

fails to detect the well-known comorbid relationship between AF and Stroke for female

patients aged 50-59 when Caucasian ancestry is included in the stratum description. By

contrast, the PBC approach maintains power across all comparisons. For more on

these points, see10.

Comorbidities of heart transplant

We evaluated every pairwise combination of diagnoses, procedures, and medications

mentioned in our EHR corpus for comorbid associations, using PBC10 to adjust on a

patient-by-patient basis for the potentially confounding demographic variables shown in
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Figure 1. Figure 2A summarizes the results of this computation as a patient disease

network. The network provides a visual overview of the entire EHR corpus, wherein

every node (state) is a diagnosis, procedure, or medication, and edges denote

Bonferroni significant comorbid relations between terms.

Given a node of interest, heart transplant, for example, its comorbid diagnoses and

associated procedures and medications can be recovered by following edges to that

node back to their terms.

The transition probabilities associated with each edge provide means to calculate the

pairwise contributions of each term to the outcome’s observed (marginal) frequency in

the EHR corpus. This provides a way to intuit an outcome’s comorbidity landscape, and

calculate the expected flux of patients through that region of the network. These patient

‘trajectories’ provide a framework for cost prediction and service allocation activities. For

example, the trajectory for adult heart transplant (Figure 2B) tracks the time course of

diagnoses, procedures and medication use preceding and following heart

transplantation. Thus, one can follow the trajectory of ischemic heart disease, flowing

through the diagnosis of heart failure, cardiogenic shock, administration of the

vasoactive medication milrinone, and culminating in heart transplantation with

subsequent downstream complications. Crucially, this methodology provides precise

measures of patient flux between these nodes.

Multimorbidity network for heart transplant supports conditional outcome risk
calculations

Although trajectories provide intuitive and useful overviews of the comorbidity

landscape, effective outcomes research requires calculating the joint contributions of
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conditionally dependent multimorbid terms on an outcome. We leverage Probabilistic

Graphical Models as an explainable AI solution for this computationally intensive task.

Figure 3A illustrates a multimorbidity network derived from a temporalized Probabilistic

Graphical Model for the predisposing comorbidities of adult heart transplant presented

in Figure 2B. Because the edges in a multimorbidity network denote conditional

dependencies between terms, rather than transition probabilities, the multimorbidity

network’s topology is necessarily different from the trajectory topology shown in Figure

2B. The PGM provides easy means to calculate outcomes risk for any combination of

variables in it. For example, a prior diagnosis of cardiomyopathy (non-ischemic)

increases the risk of heart transplantation 86±35 fold, whereas a diagnosis of viral

myocarditis confers a 59±21 fold increase in risk. The strongest single variable for heart

transplant risk is the use of the vasoactive medication milrinone, which increases risk

175±30 fold. Note that we are not suggesting milrinone causes heart transplant - rather

that the prescription of milrinone in a patient’s medical record is a powerful predictor of

future heart transplant.

The utility of PGMs for outcomes research is best illustrated by their application to

problems of complex multimorbid outcomes analyses, where conditional dependencies

of these variables interact to further modulate risk for the outcome under study. For

example, we can explore the role of heart disease etiology on transplant risk in the

context of milrinone infusion. Thus, a cardiomyopathy patient requiring milrinone has a

407±101 fold increased risk for heart transplant. Likewise, a patient with viral

myocarditis requiring milrinone therapy has a 346±93 fold increased risk for heart

transplant; while milrinone use in a patient with ischemic heart disease confers a

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.21.21260474doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.21.21260474
http://creativecommons.org/licenses/by-nc-nd/4.0/


205±28 fold increased risk of heart transplant. Moreover, while both cardiomyopathy

and ischemic heart disease have similar increased risks for heart transplant in isolation

(86±35 fold and 64±14 fold, respectively), cardiomyopathy patients who require

milrinone therapy are at far greater risk for heart transplant than patients with ischemic

heart disease requiring milrinone. Additional conditional queries conducted with the

PGM are presented in Fig 3A. This list is by no means exhaustive - the PGM is capable

of answering an astonishing number of queries - 325 to be precise. We encourage the

reader to explore these by following the link to the corresponding web application

https://pbc.genetics.utah.edu/lemmon2021/bayes/bayes. In this context, the explainable

nature of PGMs lays the foundation for massively parallel testing of novel hypotheses

between multiple, complex clinical variables of interest.

The comorbidity landscape for pediatric heart transplant is dramatically different from

that of adults, as it includes a large contribution from congenital heart defects (CHD)

and palliative surgical procedures. Figure 3B presents a multimorbidity network for 13

common CHD terms defined by echocardiogram and identified by PBC as comorbid

with pediatric heart transplant. A prior diagnosis of dilated cardiomyopathy (DCM),

defined as genetic/idiopathic DCM, increases a child’s risk for heart transplant

102.2±33.6-fold, over the marginal probability of transplant. Among single ventricle

forms of CHD, patients with hypoplastic left heart syndrome (HLHS) are at the greatest

risk for heart transplant (56.8±17.8-fold), as compared to tricuspid atresia

(17.1±11.8-fold) or laterality defects (25.8-fold ± 8.5). Again, the utility of PGMs for

complex multimorbid analyses is highlighted by the ability to calculate the additional risk
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for heart transplant in a child with a laterality defect, if that child also requires the

Norwood surgery (51.3±10.5-fold).

Multimorbidity network for sinoatrial node dysfunction supports multimorbidity
risk calculations for a range of clinical and demographic health predictors

Figure 4A extends the investigations to include the impacts of these same pediatric

heart surgeries in the context of various CHD phenotypes on a different clinical

outcome, sinoatrial node dysfunction (SND). The Fontan surgery dominates the

landscape of pediatric SND, increasing the risk 19.6±6.4-fold over the marginal

probability of SND. Moreover, Fontan surgery is the only clinical variable with a direct

connection to SND; the other clinical variables connect indirectly to SND via the Fontan

node. Thus, the relative risk of SND for specific forms of single ventricle CHD (HLHS,

tricuspid atresia, unbalanced AVSD) following the Fontan surgery are similar (Figure 4

Table), indicating that the Fontan surgery itself is the primary indicator of future SND,

rather than the underlying form of CHD that required the procedure. Collectively, the

preceding analyses demonstrate how multiple nets can be used in tandem to address

complex multimorbidity outcomes questions.

Multimorbidity networks also provide powerful means to investigate the impacts of

various demographic factors upon outcomes. The net in Figure 4B models the

multimorbid landscape surrounding SND in adult patients. As SND and AF are both risk

factors for each other31, we temporalized the network (see Methods) to analyze clinical

variables that precede SND. The ancestry and ethnicity nodes enable explorations of

demographic impacts upon SND and its comorbidities. Thus, in the University of Utah

Hospital system, a Hispanic patient with AF has a 61±6 fold increased risk of SND,
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compared to 30±1 fold risk for Caucasians and 40±7 fold risk for African Americans.

These results underscore the potential of our approach to inform ethnic/racial health

care disparities with precise, quantitative results, and in the context of a specific health

care system. Moreover, these findings illustrate how our approach can empower these

discussions despite demographic skews in the underlying EHR corpus (see

Supplementary Tables 2 and 3); an important finding for the Utah health system.

Multimorbidities of congenital malformations augmented by maternal health data

The impact of maternal health on health outcomes in the child is an area of intense

investigation. The Multimorbidity network shown in Figure 5A places a child’s risk for

congenital malformations in the context of a maternal diagnosis of pregnancy-induced

hypertension (HTN-PREG) during that pregnancy, leveraging outcomes data for over

130,000 births at the University of Utah Hospital system over the last 15 years.

HTN-PREG elevates the risk of cardiac and circulatory congenital anomalies

1.83±0.03-fold, an effect not due to maternal age differences (Supplemental Figure 1).

The multimorbidity network also illuminates the strong dependencies between clinical

variables and allows for quantitative assessments of risk. For example, a diagnosis of

Down Syndrome is associated with a 25.9±0.8-fold increased risk for a congenital

cardiac anomaly (Supplemental Table 4A). Moreover, a child with a congenital cardiac

anomaly is a priori 9.2±0.9-fold more likely to have a nervous system anomaly than

baseline (Supplemental Table 4B). The impact of maternal health on a child’s risk of

CHD is further explored in Figure 5B. Our ability to seamlessly combine and compute

upon maternal/child EHR data highlights the extensibility of our approach to study
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health outcomes across generations in order to define the impacts of maternal health on

childhood outcomes.

Web-based outcomes calculators

We repackaged the multimorbidity networks as stand-alone web-based outcomes

calculators. This allows users to interact with a multimorbidity network as an ‘app’,

whereby they can use slider buttons to toggle values of its states and to select an

outcome of interest. These web-apps are available here:

https://pbc.genetics.utah.edu/lemmon2021/bayes/bayes

Discussion

The ability to model dependencies among multiple risk factors is crucial for meaningful

outcomes research. Unfortunately, traditional techniques, such as logistic regression,

have limited ability to capture so-called ‘conditional dependencies’ between variables,

which are the heart and soul of multimorbid analyses. Although mixture and generalized

linear models with mixed effects can (in principle) overcome this weakness, these

techniques are limited because a new model must be designed for every question.

Neural nets provide one possible alternative. But although they can account for

non-linear interactions in the data and are scalable7, Neural nets are often referred to

as ‘black boxes’ (i.e., lacking explainability)14,15,20,21,32–35 due to the difficulties in

determining precisely how and why different input variables were used to produce the

outputs. Because we sought not merely to predict outcomes, but also to understand the

relationships between multiple clinical variables and outcomes, we selected an

‘explainable’ AI solution, rather than a black box approach. Probabilistic Graphical
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Model-based23–25 multimorbidity networks offer best-practice solutions to this problem.

Moreover, they effectively model data without recourse to a fixed decision protocol (i.e.

decision trees), and are resilient to missing/unknown data. Crucially, the contributions of

different combinations of variables to an outcome can be precisely and easily

determined. This explainability comes at a cost, however. Unlike Neural nets, which are

incredibly scalable, multimorbidity networks can model a maximum of only 30 or so

variables at once28,36,37. It is therefore necessary to pre-identify high impact variables

when modeling an outcome, a need fulfilled by PBC10. We argue that the ability to

rigorously investigate interrelations among 30 or so primary determinants represents a

giant step forward towards understanding cardiovascular disease outcomes.

Our results illustrate how multimorbidity networks provide explainable solutions for

understanding the joint impacts of diagnoses, medications, and medical procedures on

cardiovascular health outcomes. We emphasize that the necessarily brief results

reported here hardly exhaust the contents of these machineries. Consider that a

multimorbidity network with n nodes supports ~3n possible queries. The net shown in

Figure 4B, for example, supports ~314 different queries—a number that gives some

indication both of the complexity of the data being extracted from the EHR corpus by

our approach, and the value of these multimorbidity networks to further outcomes

research. The analyses presented here provide a first step toward a global description

of heart disease and associated comorbidities across the USA intermountain west.

However, the map we seek resides not so much in the results reported here, as it does

in the products of our analyses: the PGMs multimorbidity networks. As we have

explained, these networks support multitudes of queries, and when used in
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combination, support both wide-ranging and focused explorations of a disease

landscape. A major strength of our approach is that these outcomes machineries can be

redistributed as web-based tools. Indeed, the multimorbidity Networks described here

have been made available online [pbc.genetics.utah.edu/lemmon2021/bayes/bayes],

with the hope that the wider scientific community will find them useful for their own

outcomes research. The ability to transform enormous collections of EHR data into

compact, portable machines for outcomes research, with no exchange of PHI, solves

many of the legal, technological, and data-scientific challenges associated with

large-scale EHR analyses.

Methods

Ethics Statement

Human subjects approval for this study was obtained following review by the University

of Utah Institutional Review Board, IRB_00095807. All authors completed Human

Subjects research requirements.

Utah Data Resource

The University of Utah maintains an Enterprise Data Warehouse (EDW) – a central

storage and search facility for all clinical data collected from all affiliated University

hospitals and clinics across the Intermountain West. SQL queries were used to

aggregate data from various tables and collect the following information: (1) gender,

ancestry, ethnicity, and age for each patient; (2) list of patient visits, along with visit

dates, and medical terms associated with each visit, including diagnostic codes,

procedure codes, and medications ordered. ICD9 and ICD10 diagnosis codes consist of
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18,000 and 142,000 codes respectively, while procedural codes (CPT) include around

10,000 codes. In all, we collected records for 1.6 million patients, 21 million visits and

166 million diagnosis (DX), procedure (PX) and medication (RX) codes. See

Supplemental Tables 1 and 2 for additional details.

We combined these data with the Primary Children’s Hospital’s database of

echocardiographic variables (diagnoses, ventricular function, valve gradients,

chamber/vessel sizes, etc.) dating back to 2006 for 65,618 probands, 44,254 of which

also appear longitudinally in the University’s EDW. These data contain

529,317 mother-child pairs with EHR data, 14,155 of which include a child with echo

data, allowing us to study maternal contributions to congenital heart disease (CHD).

Collectively, these data comprise the Utah Data Resource (UDR). For the purposes of

computation, custom encryption is applied to the UDR to produce data free of protected

health information (PHI) and unintelligible without its cyphers. We can then generate

statistics on this PHI free data in a variety of compute environments, decrypting the

results on PHI approved machines.

In this analysis, a patient’s diagnoses are inferred via billing codes. Thus, the

investigations and risk calculations presented herein reflect medical practice within the

University of Utah Hospital network and Primary Children's Healthcare. How closely

they approximate underlying universal (‘true’) risks is still unknown. Moving forward, we

note that the methods described below provide powerful means for large-scale cross

institutional comparisons aimed at discovering differences in medical practice and billing

trends.
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Patient Disease Network

We used PBC to find significant connections among every possible combination of ICD

diagnoses, procedures, and RxNorm38 medication terms in our EHR corpus, thereby

creating a patient disease network. Patient disease network is a term borrowed from

Capobianco et. al1 and comprises all significant connections among diagnoses,

procedures and medications (Bonferroni p-value cutoff 10E-9.48). We only consider

terms appearing in at least 15 patients. This filter reduces the number of unique terms

to 39,055 ICD10 diagnosis codes, 5,716 CPT procedure codes, and 1,764 RxNorm

medication codes. We used Minimum Description Length clustering39 to visualize the

data, so that nodes with similar combinations of edges would lay near one another in

the network. We also determined the patient flux between every pair of nodes. The

result is shown in Figure 2A, which provides a visual representation of our patient

disease network for the entire EHR corpus.

In keeping with previous work13,40–43 on patient disease networks, we refer to a

sub-portion of the network, focused on a single outcome as a trajectory, or term

trajectory. Figure 2B shows a trajectory for adult heart transplant. Trajectories provide

means to display additional features of the network, such as transition probabilities

(which correspond to patient flux between nodes), and the marginal frequencies of

outcomes and comorbid terms within the EHR corpus. Collectively, this information

allows for better intuition of the disease landscape surrounding an outcome. The

trajectory is also a useful starting point for cost and service allocation calculations.
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Multimorbidity Networks

While trajectories describe transition probabilities between two comorbid terms, they

provide no means to determine the combined effects of multiple comorbid diagnoses,

and associated clinical procedures and medications upon an outcome. We have

employed Probabilistic Graphical Models to overcome this limitation. We have learned

the structures of the Probabilistic Graphical Models using the python3 package

“pomegranate”28, which provides a Bayesian Information Criterion (BIC)-based DP-A*

exact structure search algorithm36,37. The exact search algorithm explores the entire

applicable space of conditional dependencies in order to discover the optimal network

structure for the data. Parameter learning for this optimal network is accomplished using

the loopy belief propagation algorithm44. We use the same package for our inference

and multimorbidity risk calculations. The visual interpretation was designed using the

graph_tool45 Python3 package and D3.js Java library.

For each Probabilistic Graphical Model, a maximum of 25 comorbid features were

selected and validated by an expert in the medical field. The underlying Probabilistic

Graphical Model was learned and trained on the patient data with the retrieved features.

The patient’s features were described in a categorical data format, (e.g. indicating the

ancestry, ethnicity, or insurance type) or “present/absent” binary variables in case of

medical diagnoses and procedures. Additionally, any continuous feature (e.g. age, BMI,

blood pressure), can be also incorporated in the PGM upon discretization based on

establish clinical practice. Because the PGMs only present the facts about the data,

PGMs themselves cannot discover or infer the temporal order of the events (unless

specified in as a Dynamic PGM - results not presented). To overcome this issue, for our
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temporized PGMs we have imposed the order (discovered using PBC) on the EHR

extraction process prior to learning the Probabilistic Graphical Model structure. When

trained on temporalized data, PGMs are forced to learn temporal conditional

probabilities. Missing data are handled inherently by the Probabilistic Graphical Model

structure learning process. That is, no patients were excluded due to missing data and

no missing data was imputed. The resulting temporalized structures we call

multimorbidity networks.

Probabilistic Graphical Models represent conditional dependencies in the dataset as a

directed acyclic graph (DAG); however, it is important not to confuse directionality with

causality or temporal ordering. In keeping with best practice, the multimorbidity

networks are visualized in their undirected, moralized form, in which every node is

connected to its Markov blanket. A single constructed multimorbidity Network provides

an inference engine capable of answering O(3n ) personalized conditional risk queries,

where n denotes the number of features describing a patient's condition, and the base

of the exponent is 3, because in case of binary health records data there are three

states for each node that can be specified: present, absent, or status unknown.

Confidence values

Risk estimates derived from Probabilistic Graphical Models are maximum likelihood

estimates given the optimal structure under the BIC and an assumed uniform prior

probability of any distinct EHR. To obtain standard deviation values for these estimates,

we created 100 nets in parallel46 from bootstrap replicates of the same data used to

create Figures 3, 4 and 5. We then queried the resulting replicate nets, and calculated

standard deviations of risks of outcomes of interest.
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Display items

Atrial Fibrillation and Acute Cerebrovascular Disease

Features

PBC p-value 𝜒2 p-value

N=1,538,05
9 N=95,407 N=9,525 N=1,538,05 N=95,407 N=9,525

no features 1e-31020 1e-1715 1e-203 1e-31020 1e-1715 1e-203

+sex 1e-31017 1e-1955 1e-215 1e-16657 1e-1125 1e-147

+age 1e-25448 1e-1589 1e-200 1e-1304 1e-88.3 1e-13.1

+ancestry 1e-14381 1e-628 1e-73.1 1e-15.72 1 1

+ethnicity 1e-11357 1e-806 1e-110 1e-12.25 1 1

+insurance 1e-11533 1e-771 1e-83 1e-2.68 1 1

+span 1e-11325 1e-698 1e-84.1 1e-1.75 1 1

Table 1. PBC is well powered for comorbidity discovery on demographically

complex datasets, unlike stratification. Progressively smaller random samples were

drawn from the Utah EHR corpus, such that each cohort is a subset of this larger

precursor. N=the number of subjects in each cohort under consideration. Cells in the

table contain p-values for the association between Atrial Fibrillation and Acute

Cerebrovascular Disease (stroke), as calculated by PBC or 𝜒2 (for stratification).

P-values less than the Bonferroni corrected alpha (1e-9.5) are shown in light blue, while

cells that do not pass the significance threshold are red. Stratum filters apply to the

features' column, row by row as follows: no filters, female, 50-59 years of age,

Caucasian, non-Hispanic, commercial insurance, minimum of 2 years of medical history.
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Figure 1. Percent of medical terms influenced by various demographic features.

Demographic variables used in the comorbidity discovery process are displayed on the

y-axis. The percent of all diagnoses, procedures, and medications influenced by a given

demographic feature is displayed on the x-axis. For example, sex influences 42.2%

percent of diagnoses, procedures, and medications in the Utah EHR corpus; ancestry

influences 27.4% and EHR exposure 100%. EHR exposure includes subject age, length

of medical record history, number of visits. See article10 for details. Features were

selected using L1 regularization.
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Figure 2. Patient Disease Network for the Utah Data Resource. Panel A. Graphical

representation of the Patient Disease Network. 39,055 ICD 10 diagnosis codes, 5,716

CPT procedure codes, and 1,764 RxNorm medication codes comprising 50 million

comorbidities are represented by the map. To render the patient disease network more

readily interpretable, we utilized Minimum Description Length clustering, so that nodes

with similar comorbidity patterns lay near to one another in the network. The

comorbidities of Heart Transplant are labeled red for reference purposes. See methods

for details. Panel B. Term trajectory for Adult Heart Transplant. Nodes represent

diagnosis (black), procedures (red), and medications (blue). Edges are temporally

ordered comorbidities (Bonferroni alpha = 10E-9.5), arrows denote direction. Edges are

labeled with transition probabilities (e.g. patient flux). For example, an adult patient with

viral myocarditis has a 17% chance of developing a heart failure diagnosis, and a 4.9%

chance of undergoing heart transplantation. See Methods for additional details and

Supplemental Table 5 for code references for the highlighted terms.
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Figure 3. Multimorbidity Landscape of Heart Transplant. Panel A. PGM for Adult

Transplant. N = 1.6 million individuals. The clinical variables were chosen based on

Bonferroni-corrected ICD10 and RXnorm billing codes significantly associated (preceding) with

heart transplant. Each node represents a diagnosis, procedure, or medication code and each

edge represents a conditional dependence between nodes. For detailed description of the

clinical variables, please refer to supplemental table 5. Panel B. PGM for Pediatric Transplant.

N = 26,458 individuals. Clinical variable terms represent terms in the Primary Children’s Hospital

echocardiographic database or CCS billing codes when available. For detailed description of the

clinical variables, please refer to the supplemental table 5. DCM: Dilated cardiomyopathy;

Norwood: Norwood surgery; HLHS: hypoplastic left heart syndrome; Glenn: Glenn surgery;

Fontan: Fontan surgery; AVSD: atrioventricular septal defect; ASD: Atrial septal defect; BAV:

Bicuspid aortic valve; Coarctation: Coarctation of the aorta; VSD: Ventricular septal defect.

Heart Transplant is highlighted in orange. For A and B, the target node (heart transplant) is

colored red and nodes with direct connections to the target (ie, within the Markov blanket) are

circled red. Values in Tables represent mean ± STD.
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Figure 4. Multimorbidity Landscape of Sinoatrial Node Dysfunction (SND). Each node

represents a diagnosis or procedure, each edge represents a conditional dependence between

nodes. For detailed description of the clinical variables, please refer to supplemental table 5.

Panel A. Pediatric SND. N = 26,458 individuals. Clinical variable terms represent terms in the

Primary Children’s Hospital echocardiographic database or CCS billing codes when available.

Fontan: Fontan surgery; HLHS: hypoplastic left heart syndrome; Norwood: Norwood surgery;

dTGA: d-transposition of the great arteries; RV fxn: right ventricular function; TR: >=moderate

tricuspid regurgitation; BAV: bicuspid aortic valve. Panel B. Adult SND. N = 1.6 million

individuals. Clinical variable terms represent CCS billing codes. Ancestry: Western European,

African American, or Other; Ethnicity: Hispanic, or non-Hispanic. DCM: Dilated cardiomyopathy;

AS: Aortic stenosis; Coarctation: Coarctation of the aorta. SND is highlighted in red in both

panels. The target node (SND) is colored red and nodes with direct connections to the target (ie,

within the Markov blanket) are circled red. Values in Tables represent mean ± STD.
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Figure 5. Impact of maternal health on congenital anomalies in the child. Panel A.

Multimorbidity landscape for child’s risk for congenital malformations in the context of

pregnancy-induced hypertension. N = 125,014 mothers. Clinical variable terms represent CCS

billing codes present in the EHR database. Maternal diagnosis is highlighted in orange;

HTN-Preg: Maternal diagnosis of hypertension complicating pregnancy (aka,

pregnancy-induced hypertension); Diaphragm: Diaphragmatic congenital abnormalities;

Genito-Urinary: Genito-Urinary congenital abnormalities; Cardiac: Cardiac and Circulatory

congenital abnormalities; Skeletal: Skeletal congenital abnormalities; Down: Trisomy 21;

Digestive: Congenital abnormalities of the gastrointestinal tract; Nervous: Nervous system

congenital abnormalities; Eye: Congenital abnormalities of the Eye; CleftLip: Cleft lip. Panel B.

Multimorbidity landscape for child’s risk of congenital heart defects in the context of

pregnancy-induced hypertension. N = 125,014 mothers. ASD, atrial septal defect; VSD,

ventricular septal defect, HLHS, hypoplastic left heart syndrome; Coarctation, coarctation of the

aorta; TOF, tetralogy of fallot; BAV, bicuspid aortic valve. For detailed description of the clinical

variables, please refer to supplemental table 5. The target node (HTN-PREG) is colored red and

nodes with direct connections to the target (ie, within the Markov blanket) are circled red. Values

in Tables represent mean ± standard deviation.
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