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 1 
Abstract 2 

  3 
Cognitive deficits are known to be related to most forms of psychopathology. Here, we 4 

perform local genetic correlation analysis as a means of identifying independent segments of 5 

the genome that show biologically interpretable pleiotropic associations between cognitive 6 

dimensions and psychopathology. We identified collective segments of the genome, which we 7 

call “meta-loci”, that showed differential pleiotropic patterns for psychopathology relative to 8 

either General Cognitive Ability (GCA) or Non-Cognitive Skills (NCS). We observed that 9 

neurodevelopmental gene sets expressed during the prenatal-early childhood predominated in 10 

GCA-relevant meta-loci, while post-natal synaptic gene sets were more involved in NCS-11 

relevant meta-loci. Notably, we found that GABA-ergic, cholinergic, and glutamatergic genes 12 

drove pleiotropic relationships within dissociable NCS meta-loci. 13 

  14 
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 3 

Cognitive impairment is one of the core features of psychopathology and is associated 1 

with the debilitating nature of many psychiatric disorders1,2 In schizophrenia, for example, 2 

cognitive impairments are predictive of known functional impairments even in the prodromal 3 

stage of the illness3,4. Cognitive deficits are not only confined to adult psychiatric illnesses, but 4 

also extend to childhood disorders like Autism Spectrum Disorders (ASD) and Attention-Deficit 5 

Hyperactivity Disorder (ADHD)5. Individuals who suffer from psychiatric disorders tend to report 6 

sequelae of cognitive problems throughout their lifetime6. In many cases, there is an emergence 7 

of cognitive deficits before a formal diagnosis of mental illness7.  8 

Prior to the era of well-powered GWAS in psychiatry, the idea of using cognitive function 9 

as an endophenotype to understand the biology of psychopathology was proposed8. We 10 

presented the first molecular genetic evidence for overlap between general cognitive ability and 11 

schizophrenia9. Since then, evidence suggesting widespread pleiotropy across 12 

psychopathologic traits has emerged, indicating shared biological mechanisms10,11. Pleiotropy, a 13 

phenomenon where a genetic variant might affect several traits at once, appears to be 14 

ubiquitous in biology; 44% of the loci reported within the GWAS catalog have been shown to be 15 

associated with more than one trait12 (although in some cases this may be a function of linkage 16 

disequilibrium rather than true pleiotropy13). A more recent study indicated that trait associated 17 

loci cover more than half of the genome, among which 90% implicate multiple traits14.  18 

We recently exploited pleiotropy to dissect biology underlying the counterintuitive 19 

positive genetic correlation between educational attainment and schizophrenia, and were able 20 

to parse separate neurodevelopmental and synaptic mechanisms underlying the disorder, 21 

based on association patterns within GWAS significant loci15. Shortly after, Demange and 22 

colleagues16 demonstrated that it was possible to leverage global genetic correlation within a 23 

structural equation modelling framework to derive a latent Non-Cognitive Skills (NCS) factor by 24 

removing variance related to General Cognitive Ability (GCA) from educational attainment 25 

GWAS. The ensuing NCS factor showed positive genetic correlation with schizophrenia, 26 
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 4 

consistent with our earlier findings. These two reports, utilizing somewhat orthogonal but 1 

complementary approaches, leveraged pleiotropic phenomena to study the intersection of 2 

cognition and psychopathology. Nevertheless, these studies are limited by following a global 3 

genetic correlation approach17 on the one hand, and a SNP-by-SNP approach15,16 on the other. 4 

As has been demonstrated18, the assumption that genetic correlations for complex traits are 5 

homogeneously distributed across independent genomic regions may not be true. At the same 6 

time, typical locus-based GWAS comparisons tend to be defined by ”top” SNPs followed by LD 7 

clumping; this invariably results in loss of information from regions of the genome that fall short 8 

of genome-wide significance. Studies using partitioned heritability or gene set analysis have 9 

demonstrated the biological relevance of regions of the genome that do not contain genome-10 

wide significant loci19. In the present study, we develop a novel method, intermediate to global 11 

and SNP-based approaches, that examines the structure of local genetic correlations across the 12 

genome and identifies “meta-loci”, which we define as combined genomic segments sharing 13 

pleiotropic patterns. We then interrogate these meta-loci, using rich annotations and gene set 14 

analysis, to identify and dissociate biological pathways underlying different patterns of cognitive-15 

psychopathologic pleiotropy.  16 

Results 17 

Study Design and Methods Overview 18 

We have recently reported the largest GWAS meta-analysis for GCA (N=373,617) and 19 

utilized this well-powered phenotype for pleiotropic analysis with an expanded list of 20 

psychopathology phenotypes20. Expanding on earlier analytic strategies15,16, we carried out 21 

three broad stages of analyses (Fig-1).  22 

First, as both a data reduction step and a benchmark for subsequent steps, we 23 

examined the global pleiotropic relationships between multiple cognitive and psychopathological 24 

phenotypes via LD score regression21,22. We amalgamated all available summary statistics from 25 
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 5 

recent GWAS of cognitive function (N = 19). These included GCA20, and other reported 1 

derivatives of cognition including NCS16, Executive Function23, and GWAS of individual 2 

cognitive tests administered as part of the UK Biobank. Similarly, traits related to psychiatric 3 

illnesses or psychopathology in the recent studies from the Psychiatric Genomics Consortium, 4 

UK Biobank, Million Veterans Program and elsewhere were curated (N = 17; Table-S1). Data 5 

reduction approaches indicated that it was appropriate to focus on GCA and NCS traits for the 6 

purpose of the current study (Fig-S1). We  re-estimated NCS using the largest GCA GWAS20 to 7 

increase statistical power (Supplementary Information).  8 

 Second, we carried out local genetic correlation analyses between each of the 9 

psychopathology traits and GCA, and separately between each psychopathology trait and NCS. 10 

A series of positive and negative local genetic correlation patterns emerged across these 11 

analyses, which we then classified via the “meta-locus” approach. A meta-locus was defined as 12 

a set of LD-independent regions that showed similar local genetic correlation profiles across 13 

psychopathological traits across the genome. There were 15 distinct meta-loci (Median Length 14 

= 34.24 Mb) identified for GCA and 12 identified for NCS (Median Length = 23.19 Mb).  15 

Third, GCA and NCS GWAS summary statistics were functionally prioritized to identify 16 

genes and biological mechanisms harbored within the meta-loci. A series of Gene-Based 17 

Genome-Wide Association (GBGWA) and Transcriptome-Wide Association (TWA) strategies 18 

were applied to GCA and NCS GWAS summary statistics. We leveraged brain eQTLs from a 19 

range of databases, including GTEx v8 brain tissue expression24, Brain-eQTL-meta25, and 20 

PsychEncode26,27 eQTL databases that indexes brain (Online Methodology and Supplementary 21 

Information). We adopted a broadly inclusive approach to the gene prioritization stage of the 22 

analysis, excluding from consideration only those genes with no supporting evidence from any 23 

of these procedures. Next, we performed a series of gene set analyses28–31 and gene scoring 24 

procedures32, to which we applied strict filtering criteria in order to arrive at a high-confidence 25 

biological characterization of each meta-locus. We evaluated the high-confidence genes 26 
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 6 

emanating from the GBGWA, TWA and gene set analysis approaches for longitudinal gene 1 

expression across lifespan to further differentiate neurodevelopmental vs adult synaptic 2 

mechanisms. Finally, we annotated driver genes with information on the propensity for 3 

psychiatric or nootropic drug re-purposing (Fig-1, Online Methodology).  4 

Stage 1: Global genetic architectures of cognitive and psychopathological traits  5 

 A wrapper function within GenomicSEM11 was used to conduct LD score regression21,22 6 

and create a global 19 x 17 genetic correlation matrix of cognitive and psychopathological traits 7 

(Table-S2). Two-dimension reduction techniques, PCA and partitioned cluster analyses (K-8 

Medoid) dimension reduction techniques were applied to the global genetic correlation matrix to 9 

identify underlying association patterns. The PCA resulted in a “Cognitive Map” (Fig-S1a). The 10 

first principal-component captured the similarity of each cognitive trait to general cognitive ability 11 

(GCA) in context of its relationship to the vector of 19 psychopathological traits (Fig-S1b). The 12 

second principal-component represented the degree to which a cognitive trait is similar to NCS 13 

given its relationship to the vector of 19 psychopathological traits (Fig-S1c). Consequently, for 14 

all subsequent analyses, we focused on GCA and NCS as the primary cognitive phenotypes of 15 

interest; we leave a more detailed exploration of the cognitive phenotypic space to future work. 16 

We re-extracted the NCS latent factor by using GWAS-by-subtraction parameters16, and a 17 

better powered GCA meta-analysis20. We confirmed that our newly calculated GCA and NCS 18 

factors were globally similar to those originally reported by Demange et al.16 (rg=1 using LD 19 

score regression). We utilized the current versions of GCA and NCS in subsequent sections 20 

detailing functional annotation, gene prioritization and gene set analyses. At the global level, we 21 

also observed that psychopathological traits separated into five best fitting clusters (Table-S2c) 22 

that varied according to the degree of the strength of relationship with GCA and NCS (Fig-S1d, 23 

inset). There was much more variation across psychopathological traits than the cognitive traits, 24 

so we decided to analyze each trait separately in the local genetic correlation analyses 25 

described below. However, we utilized the clustering results depicted in Fig-S1d as background 26 
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 7 

information for our interpretations of subsequent results (and as color-coding in subsequent 1 

figures in this report).   2 

Stage 2: Investigating pleiotropic relationships between cognitive dimensions and 3 

psychopathology 4 

 Local genetic correlation analyses were carried out across 2353 LD-independent regions 5 

of the genome using r-HESS18. 4,469,149 SNPs were included for GCA and 4,372,398 SNPs 6 

were included for NCS. Region specific heritability estimates of GCA and NCS were expectedly 7 

small (median h2GCA-Region = 8.36e-5, median h2NCS-Region = 1.18e-4, Table-S3). The sum of 8 

heritability across LD independent regions was consistent with previous reports for these 9 

phenotypes (h2GCA = 0.23, h2NCS = 0.31) (Supplementary Information). 10 

We observed widespread pleiotropy for both GCA and NCS with psychopathology 11 

(Table-S4/S5). In general, global estimates of genetic correlations (via LD-score regression) 12 

were highly comparable to summed local estimates derived from r-HESS, except in the case of 13 

Anorexia Nervosa and OCD, for which r-HESS recovered a greater degree of correlation with 14 

NCS (Fig-S2). Aside from re-capitulating global Rg trends across psychopathology phenotypes, 15 

several noteworthy observations emerge from the local genetic correlations. First, for each 16 

psychopathological trait, local genetic correlations were not in the expected direction, across 17 

LD-independent regions, indicated by global genetic correlations (Fig-S3a/b). Second, the 18 

magnitude of the local genetic correlation signals is markedly stronger for schizophrenia than for 19 

any other trait. Third, schizophrenia is the only trait (potential exception of Anxiety_MVP) that 20 

demonstrates strong, widespread differences in direction between GCA and NCS correlations 21 

(Fig-S2, Table-S6). Fourth, local genetic correlations for GCA were especially strong within the 22 

Major Histocompatibility Complex (MHC) (See Fig-S4). Notably, anorexia nervosa and ADHD 23 

show the opposite pattern of local genetic correlations within the locus relative to other 24 

psychopathological traits.  25 
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 8 

Local genetic correlation profiles were further parsed to better understand pleiotropic 1 

patterns across cognitive function and psychopathology. UMAP dimension reduction, followed 2 

by clustering (using density-based scanning, DBscan) was applied to the matrix of local genetic 3 

correlations (17 psychopathologic traits x 2330 LD-independent regions, excluding the MHC) to 4 

identify clusters of LD-independent regions with distinct pleiotropic patterns for GCA or NCS 5 

across the various psychopathologic traits (see Online Methodology). Resulting clusters of LD-6 

independent regions were termed “Meta-Loci”. We identified 15 meta-loci for GCA and 12 meta-7 

loci for NCS (Fig-2a/b; see Supplementary Information for further details of the DBscan 8 

method). Critically, the extracted meta-loci were not simply a function of highly localized effects 9 

but were distributed across the genome (Fig-2c/d). Each meta-locus encompassed between 7 - 10 

1125 (GCA; median = 28) and 8 - 1926 (NCS, median=16) LD-independent segments of the 11 

genome (total length 6.96 - 1340.79 Mb, median=34.24 Mb for GCA; 8.70 - 2290.00 Mb, 12 

median=23.19 Mb for NCS). For both GCA and NCS, the first meta-locus extracted (GCA-1 and 13 

NCS-1, respectively, indicated in grey in Fig-2), consists of all genomic segments that could not 14 

be further clustered by the DBscan search without being listed as outliers, such that the entire 15 

genome is accounted for. We prioritized meta-loci based on their relative contribution to their 16 

total heritability: 8 meta-loci for GCA explained 95% of the total heritability of GCA (GCA-17 

1,3,4,5,6,7,8,12); similarly, 4 meta-loci for NCS were prioritized (NCS-1,2,3,5) (Fig-S3, Table-18 

S4b/S5b).   19 

The pattern of local genetic correlation for each of the prioritized meta-loci is displayed in 20 

Fig-3 (distribution for all meta-loci displayed in Fig-S5 & point estimates of mean local genetic 21 

correlation Z-scores displayed in Fig-S6). Schizophrenia and bipolar disorder showed similar 22 

local genetic correlation profiles for the prioritized NCS meta-loci but were differentiated on the 23 

GCA meta-loci. As expected, Schizophrenia showed strong trends of negative genetic 24 

correlation in most GCA meta-loci, with positive local genetic correlations observed in only 2 of 25 

the 8 prioritized GCA meta-loci. Notably, attention-deficit/hyperactivity disorder (ADHD) was 26 
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 9 

negatively associated across all GCA and NCS meta-loci, whereas obsessive compulsive 1 

disorder (OCD) was positively associated with both cognitive dimensions across all meta-loci. 2 

Affective and anxiety related traits showed expected broad negative associations with both 3 

cognitive dimensions, but appeared differentiated on specific meta-loci e.g., GCA-3. Autism 4 

spectrum disorder (ASD) demonstrated a relatively unique pattern of relationships, with 5 

relatively modest effects across most meta-loci, except for a positive genetic correlation with 6 

GCA at meta-locus GCA-7, and a negative correlation at NCS-3.  7 

It was important to determine if the pattern of results was driven by socioeconomic 8 

status, given that prior literature33 has indicated that educational attainment exhibits shared 9 

biology with socioeconomic status. We carried out local genetic correlations of GCA and NCS 10 

and the Townsend Social Deprivation Index via ρ-HESS, in a similar manner detailed above. As 11 

displayed in Fig-S7/Table-S7, most meta-loci showed negligible association. 12 

Stage 3: Functional annotation and gene prioritization for characterizing biology 13 

underlying GCA and NCS Meta-Loci 14 

 In order to characterize each meta-locus, we first applied a series of gene-based and 15 

TWAS methods to the GCA and NCS GWAS summary statistics (gene-based results:  Table-16 

S8; TWAS results: Table-S9/S10/S11). As an initial loose filter, genes were ranked based on 17 

multiple complementary transcriptome analyses (Table-S12), applying a 50th percentile cut off 18 

for gene association p-values; any genes with no evidence of transcriptomic association to the 19 

cognitive phenotypes were removed from further consideration. PoPs gene prioritization 20 

scores32 (Table-S13) for each remaining gene within a given meta-locus were then subjected to 21 

gene set analyses, using annotations obtained from the GO Gene Sets (Cellular Component, 22 

Molecular Function and Biological Process) included in the Molecular Signature Database v 23 

7.234. Detailed descriptions of the parameters applied to each of the methods are described in 24 

the Methodology section. Gene set analyses were carried out via three methods [Gene Set 25 

Enrichment Analysis (GSEA29), WebGestalt30, and GENE2FUNC (part of the Functional 26 
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 10 

Mapping and Annotation of Genetic Association – FUMA – pipeline31)];; we conservatively 1 

required agreement (Bonferroni-corrected significance) from all three methods in order to 2 

designate a gene set as significant for a given meta-locus.  3 

The gene set analysis described above identified a total of 62 gene sets underlying 6 4 

GCA meta-loci (GCA-1,3,4,5,6,8) and 35 gene sets underlying 3 NCS meta-loci (NCS-1,2,5) 5 

(Fig-4a, and Table-S14); the remaining meta-loci had no gene sets meeting our strict 6 

significance criteria. In Fig-4, several large neurobiological gene sets which were implicated 7 

across both GCA and NCS meta-loci are colored red (Fig-4a/b) and those that overlapped 8 

multiple GCA meta-loci (but no NCS meta-loci) are colored orange (Fig-4c). The remaining gene 9 

sets, which are specific to individual GCA or NCS meta-loci, are colored gray. 10 

Focusing on gene sets specific to individual meta-loci might allow more targeted parsing 11 

of the biological mechanisms underlying the relationship between psychopathology and 12 

cognition. There were 34 such gene sets across GCA meta-loci, sharing a predominately 13 

neurodevelopmental theme as elaborated in Table 1 (e.g., GCA-1: Neurodevelopment/ 14 

Neuroplasticity; GCA-4: Neural Connectivity/Differentiation). By contrast, the 24 gene sets 15 

specific to individual NCS meta-loci shared a predominant theme relating to synaptic 16 

transmission (e.g., NCS-1: Synaptic Activity/Neurotransmission; NCS-2: Synaptic Transmission 17 

/Potentiation; NCS-5: GABA-ergic Synaptic Transmission) (Table 2). Pathway definitions for 18 

each prioritized meta-locus, as a function of psychopathologic correlations are summarized in 19 

Fig-S8. 20 

There were 906 GCA and 493 NCS “driver” genes identified from the GSEA analysis. 21 

The reduced list of genes was further examined if they were potentially actionable in terms of 22 

having encoding proteins of putative drug targets, using chemoinformatic annotations provided 23 

by Finan et al. 35 (Table-S15). Tier 1 druggable genes (i.e., genes with current evidence of 24 

having existing compounds that are FDA approved and being utilized for various indications), 25 

summarized alongside other meta-locus information, are listed in Table 1 and Table 2. Several 26 
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gene families with known druggable components were identified, including several 1 

glutamatergic and ephrin receptor genes identified within GCA meta-loci. Most notably, the 2 

NCS-5 meta-locus implicates multiple GABA receptor genes across disparate chromosomal 3 

regions, suggesting the possibility that GABA-ergic treatment approaches may enhance NCS 4 

while simultaneously ameliorating the correlated affective and anxiety symptoms that load on 5 

this meta-locus.   6 

The dichotomy between neurodevelopment and synaptic pathways underlying GCA and 7 

NCS, respectively, suggested an additional hypothesis to be tested. If GCA was primarily driven 8 

by neurodevelopmental genes, we would expect to see gene expression profiles that are active 9 

prenatally or early in the lifespan, whereas for NCS, genes responsible for synaptic transmission 10 

are likely to be expressed later in postnatal life. Leveraging the BrainSpan dataset35 which 11 

characterized brain expression profiles at various developmental stages, we tested if GCA and 12 

NCS driver genes might demonstrate differential expression across the lifespan. By fitting a 13 

linear mixed model, with individual as random effect, cognitive phenotypes and time as fixed 14 

effects and sex as a covariate, we found developmental differences between GCA and NCS 15 

driver genes (for further details, see Online Methodology and Supplementary Information). 16 

Setting the null model simply with time as predictor, we observed a significant improvement in 17 

model fit when an indicator of the cognitive phenotype (GCA vs. NCS) for the driver gene was 18 

included in the model (χ2 = 1059.6, df = 2, p = 8.14e-231). A main effect for differences in GCA 19 

and NCS genes was found (t = 10.64, df = 7, p = 1.42e-5), and an interaction between GCA and 20 

NCS genes with time (t = 28.28, df = 7, p = 1.78e-8) was also observed (Fig-5, Fig-S9). As 21 

hypothesized, genes harbored within NCS-meta loci were expressed predominantly in early 22 

adulthood and adulthood, whereas GCA-meta loci genes were expressed pre-natally. 23 

 24 

 25 
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Discussion 1 

 Numerous recent studies have demonstrated shared genetic underpinnings amongst 2 

multiple forms of psychopathology, as well as between psychiatric and cognitive 3 

phenotypes10,11,23,37. The present study was designed to parse this genetic overlap into 4 

separable biological pathways with specific psychiatric and cognitive subcomponents. The 5 

present study extends our previous work, in which we leveraged cognitive pleiotropy to 6 

differentiate early neurodevelopmental mechanisms from synaptic function in the 7 

etiopathogenesis of schizophrenia15. Here, we demonstrated that prenatal neurodevelopmental 8 

mechanisms shape the relationship between general cognitive ability and multiple forms of 9 

psychopathology, while synaptic pathways expressed later in life underlie the paradoxical 10 

association between enhanced non-cognitive skills and greater risk for psychotic disorders. 11 

Prior studies of pleiotropy10,11,14 have implicated neurodevelopmental and synaptic pathways as 12 

shared components underpinning multiple psychiatric disorders, but without the ability to 13 

differentiate these mechanisms (Table-S16). By contrast, gene set analysis of individual trait 14 

GWAS in psychiatry (Table-S16) have either failed to identify one38,39 or both40 of these 15 

pathways, or have implicated these pathways without directionality or subsetting41,42  16 

 Within the broad neurodevelopmental and synaptic themes, we were able to further specify 17 

individual gene sets with distinct patterns of association to psychiatric and cognitive phenotypes. 18 

These discoveries were made possible by our novel construction of “meta-loci”, defined by the 19 

concatenation of LD-independent genomic regions with shared patterns of local genetic 20 

correlations across phenotypes. Within meta-loci, we further identified genes that may serve as 21 

actionable targets, or at least actionable entry points into relevant biological pathways, for 22 

psychiatric and nootropic drug repurposing (Table 1 and Table 2); several notable examples are 23 

described below. 24 
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The GCA-8 meta-locus spans 55 LD-independent regions, covering the genomic length 1 

of 73Mb, and is characterized by “Axon Development” and related gene sets. We found that this 2 

meta-locus shows the strongest pleiotropy with schizophrenia, but also implicates bipolar 3 

disorder and a series of affective phenotypes. Notable driver genes in this meta-locus included 4 

DRD2, NCAM1, DCC, CACNA1D, and SLC4A10, among many known genes that implicate 5 

psychopathology. In their most recent report, the PGC Cross Disorder group reported that the 6 

DCC region was most pleiotropic in psychopathology. The DCC gene was a known master 7 

regulator of early neurodevelopmental biology via interactions with netrin-1 and draxin, and has 8 

been implicated in developmental processes of white matter tracts in the brain43,44. In the report, 9 

the authors suggested that the DCC is likely to affect childhood developmental disorders such 10 

as ADHD and ASD, which they have demonstrated to cluster together. Importantly, our 11 

evidence showed that similar processes are not limited to neurodevelopmental disorders but are 12 

implicated in other psychopathological phenotypes and are linked through a shared effect on 13 

general cognitive ability.  14 

By contrast, the NCS-5 locus showed the strongest trend for adulthood spatial-temporal 15 

gene expression and the driver genes were primarily inhibitory GABA genes, several of which 16 

were previously implicated in major depressive disorder45 and post-traumatic stress disorder46. 17 

Similarly, driver genes at the NCS-2 meta-locus, characterized by “Synaptic Transmission” and 18 

related gene sets, showed predominant postnatal/adulthood expression. This meta-locus shows 19 

strong pleiotropy with psychotic disorders (schizophrenia and bipolar disorder); to lesser extent 20 

positive local genetic correlations were also observed in affective disorders and anxiety. AKAP6, 21 

CADM3, and PDE4B were notable genes implicated in both schizophrenia and bipolar in earlier 22 

reports47–49. At the same time, novel associations were observed to PPARG and HMGCR, both 23 

of which are critical to metabolism and energy utilization, possibly suggesting an unexplored 24 

mechanism of neuronal function. Given the counterintuitive pleiotropy at this locus, with greater 25 
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non-cognitive skills associated with increased risk for psychopathology, such mechanistic leads 1 

may prove fruitful for further experimentation. 2 

The meta-locus approach also extends and refines prior work on the structure of 3 

psychopathology. Recently, both the PGC Cross Disorder Group10 as well as Grotzinger and 4 

colleagues36 utilized global genetic correlations to show converging evidence for several latent 5 

factors underlying current nosological constructs in psychiatry: (i) Psychosis factor 6 

(schizophrenia and bipolar disorder); (ii) Neurodevelopmental factor (alcohol use, ADHD, ASD, 7 

PTSD); (iii) Compulsive factor (anorexia nervosa, OCD, and Tourette’s Syndrome); and (iv) 8 

Internalizing factor (MDD, anxiety disorders). In this report, schizophrenia and bipolar disorder 9 

demonstrated similar patterns of pleiotropy globally, but distinctions were observed at several 10 

meta-loci (e.g., GCA-5 and GCA-7), where schizophrenia more closely resembled major 11 

depression and other affective phenotypes. Overall, schizophrenia harbors LD-independent 12 

segments strongly associated with either GCA or NCS beyond that of other psychopathological 13 

phenotypes. Though the genetic correlation between schizophrenia and cognitive dimensions 14 

appears modest (rg ≈ -0.2) at the global level, this may reflect mutually negating effects at the 15 

regional level across the genome. Broad pleiotropic profiles for GCA/NCS within ADHD, PTSD, 16 

MDD, Anxiety disorder and Tourette’s Syndrome support cross factor loadings observed by 17 

Grotzinger and colleagues36  within “Internalizing” and “Neurodevelopmental factors”. However, 18 

in the present study, ADHD and ASD exhibited quite different local genetic correlation profiles 19 

across most meta-loci – ADHD being negatively correlated across all meta-loci for GCA and 20 

NCS, while ASD demonstrated null or positive correlations with both GCA and NCS. We also 21 

demonstrated that the strong positive genetic correlations reported previously between the 22 

“Compulsive factor” and Education Attainment was likely accounted for by higher-than-expected 23 

genetic correlations between OCD and Non-Cognitive Skills.   24 

 Although the MHC region was excluded from most of the downstream work due to its 25 

complicated LD patterns, it is worth mentioning that it showed stronger GCA-psychopathology 26 
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local genetic correlations than other genome regions. Also noteworthy is that Anorexia Nervosa 1 

and Tourette’s syndrome showed opposite local genetic correlations within the MHC region 2 

relative to all other GCA/NCS - psychopathology trait pairs. Evidence points to the MHC region 3 

as potentially a vital aspect of etiopathogenesis in psychopathology. The MHC region harbors 4 

the strongest genome-wide signal to date for psychotic and affective disorders. It also harbors a 5 

known synaptic pruning mechanism as part of the C4 complex. The strong association with 6 

cognitive ability makes MHC a candidate region for further extensive investigation.  7 

Conclusions 8 

 To conclude, we have leveraged the phenomenon of pleiotropy between cognitive 9 

dimensions and psychopathology to dissect underlying biological mechanisms. We 10 

demonstrated that beyond broad genome-wide relationships, specific regions of the genome are 11 

likely to harbor biological processes that act differentially across psychopathological traits. The 12 

phenomenon is unveiled through the combined local genetic correlation analysis and “meta-13 

locus” strategy adopted within this report. Follow up efforts such as increasing the power of 14 

univariate traits and the accuracy of reference panels may increase the resolution of such 15 

approaches. Also, it seems necessary to devise a way in which latent factors such as Non-16 

Cognitive Skills derived purely from genetic correlations and GWAS summary statistics could be 17 

operationalized and measured tangibly in clinical populations. Finally, it should be noted that the 18 

present study utilizes well-powered, currently available GWAS that are based on common 19 

genetic variation and community sampling; in the future, well-powered family based GWAS may 20 

ultimately provide more accurate estimates of genetic effects, including rare variation50, 21 

independent of “genetic nurture”51. Nonetheless, the results reported currently underscores the 22 

need to rethink how rapidly available multivariate data within cognitive and psychiatric genomics 23 

could be leveraged to uncover more in-depth biological insights beyond simply pointing towards 24 

neuronal mechanisms. 25 

   26 
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Online Methodology 1 

Genome-Wide Summary Statistics Quality Control and Harmonization 2 

 The first stage of the analysis involved the curation of the GWAS summary statistics of 3 

cognitive features and psychopathological traits. We examined the recent literature and selected 4 

GWAS of 19 cognition related traits as well as 17 psychopathological traits previously known to 5 

be with associated with cognitive function (See Figure 1, Supplementary Table 1). All summary 6 

statistics were harmonized based on alleles and frequencies in the 1000 Genomes phase 3 v5 7 

reference52. Variants with allele frequencies less than 0.5% and imputation quality less than 0.3 8 

were excluded from the analysis. We also performed allele alignment to resolve strand and 9 

allele flips. All summary statistics were aligned based on the A1 allele (reference allele) of the 10 

1000G reference panel52. Variants that could not be aligned to the 1000 genomes were 11 

excluded. In addition, we excluded ambiguous variants with an allele frequency difference of 12 

greater than 0.35 from the reference panel and non-ambiguous variants with an allele frequency 13 

difference of 0.15 difference from the reference. Further details are reported in Supplementary 14 

Table 1.  15 

Global Genetic Correlations and Clustering Analysis  16 

We carried out global genetic correlation analysis between the set of 19 cognitive traits 17 

and 17 psychiatric traits via LD score regression21,22  implemented in Genomic SEM11. We 18 

followed standard procedures within Genomic SEM as a wrapper for extracting the global 19 

genetic covariance matrix (https://github.com/GenomicSEM/GenomicSEM/wiki/). GenomicSEM 20 

performs initial data alignment to the HAPMAP3 SNPs and conducts pairwise LD score 21 

regression with each pair of input phenotypes for the estimation of global genetic correlations. 22 

The global genetic correlations between all cognitive and psychopathological traits were 23 

organized into a 19 x 17 matrix and subsequently used as the input for Principal Components 24 

Analysis (PCA) and various clustering analyses reported subsequently. The first two principal 25 
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components were extracted from the 19 x 17 matrix representing the relationship between each 1 

psychopathology trait and the top two cognitive dimensions (Table-S2). The loading of each 2 

cognitive trait on the principal component was estimated by performing bivariate Pearson 3 

correlation between the genetic correlation profile of each cognitive trait and each principal 4 

component (columns U and V in Table-S2). The dissimilarity matrix estimated based on 5 

Euclidean distance from the global genetic correlation matrix was used to generate the 6 

partitioned k-medoid clusters.  The clustering procedures were carried out using fviz_cluster() in 7 

R as part of the “factoextra” package 8 

(https://www.rdocumentation.org/packages/factoextra/versions/1.0.3) 9 

After closely reviewing the global genetic correlation profiles for cognitive features and 10 

psychopathological traits described above, GCA and NCS emerged as two candidate traits that 11 

were fairly well differentiated across clusters of psychopathological traits. Partitioning cluster 12 

analysis (K-medoids and K-means) and hierarchical clustering were employed to examine the 13 

latent genome-wide genetic architecture of psychopathological traits in relation to cognitive 14 

features. The strategy for the clustering analysis was as follows - we started with a 2-cluster 15 

solution, and gradually increased the number of clusters until any of the method reached a 16 

singleton cluster. Across methodologies, a 7-cluster solution resulted in a singleton cluster, 17 

hence we set the maximum number of clusters to 6 and the minimum number of clusters 2. To 18 

select the optimal cluster solution that best represents the data, the procedures detailed in 19 

Akhanli and Hennig53 were used, which compared model fitting statistics across clustering 20 

solutions, using R packges cqcluster.stats() and clusterboot() with default parameters. The best 21 

fitting cluster solution was then selected for visualization.  22 

 23 

 24 

 25 

 26 
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Data Reduction of Cognitive Features 1 

 We applied the GWAS-by-subtraction16 procedures developed recently to the latest and 2 

largest GCA GWAS20 to derive a updated NCS GWAS. We used the Education Attainment 3 

GWAS without 23andMe data (N = 495,552), which was slightly smaller compared to the 4 

Education Attainment GWAS used in Demange et al.16 (N = 565,884). However, our GCA 5 

GWAS (N = 373,617) was much more powerful than the one reported previously16 (N = 6 

257,841). Nonetheless, LD score regression checks indicated that both GCA and NCS GWAS 7 

were highly genetically concordant to previous results (Rg = 1).  8 

 9 

Identify pleiotropy between Cognition and Non-Cognitive Skills and Psychopathological Traits 10 

via Local Genetic Correlations 11 

 Local genetic correlation analysis was conducted via ρ-HESS18. On the advice of the 12 

HESS developers, we used a conservative approached that specified full sample overlap 13 

between all trait pairs to handle potential unknown sample overlaps. Independent LD segments 14 

were estimated using the 1000 genome phase 3 reference panel via LDetect54,55. There were a 15 

total of 2353 independent LD segments where local genetic correlations for GCA and NCS were 16 

carried out vis-a-vis psychopathological traits.  17 

 18 

Identification of Meta-loci via Density-Based Clustering 19 

In order to uncover homogeneous local genetic correlation patterns (between GCA and 20 

psychopathological traits and between NCS and psychopathological traits) across the genome, 21 

we carried out density-based clustering56 in two steps. First, we performed a data reduction step 22 

via UMAP57 for all pairs of the 19 cognitive features and 17 psychopathological traits across 23 

2353 independent LD segments. Thereafter, density-based scanning was carried out on the first 24 

two UMAP components to identify sets of LD independent regions that had homogeneous local 25 

genetic correlation profiles between GCA/NCS and psychopathology; these sets of LD 26 
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independent regions were termed as meta-loci. The density-based scan was carried out by first 1 

setting the minimum number of LD-independent regions per set as 5 and setting the 2 

neighborhood radius to a sufficiently large value such that only one cluster existed. We then 3 

reduced the neighborhood radius in increments of 0.1, until the density-based scan yielded a 4 

cluster solution d with a singleton LD region outlier that could not be clustered. The cluster 5 

solution d – 1 was used (see Supplementary Information for further details).  6 

 7 

Functional Prioritization of Putative Genes within Meta-loci 8 

To obtain biological insights from the meta-loci we identified, we first prioritized genes 9 

within the broad genomic regions based on their possible associations with cognitive 10 

phenotypes. We applied a series of gene-based statistical approaches to the GCA and NCS 11 

summary statistics derived from the Genomic SEM procedure; these included MAGMA28, 12 

PoPs32, S-Predixcan58, SMR/HEIDI59,60, and FOCUS61. As our goal was to identify relevant 13 

genes that may include those below the level of strict genome-wide significance, our initial filter 14 

was loose: any gene that was below the 50th percentile of statistical significance for all of the 15 

above methods was eliminated from further consideration. 16 

For the MAGMA gene-based analysis (v1.0828), gene boundaries definitions and the 17 

1000 genomes phase 3 reference panel were provided with the MAGMA package 18 

(https://ctg.cncr.nl/software/magma). PoPs allows additional weighting of MAGMA gene-based 19 

results, by leveraging the extraction of gene features from comparable genes across all other 20 

chromosomes; we applied default parameters as described in Weeks et al.32. S-PrediXcan 21 

estimates gene-based effects by re-weighting SNP effects with eQTL effects derived from GTEx 22 

v8 brain tissue expression data (with LD information derived from the 1000 Genomes phase 3 23 

reference panel). SMR/HEIDI leverages on Mendelian Randomization approaches for gene 24 

prioritization; each SNP was treated as an instrument variable, with GCA or NCS as an 25 

outcome. Brain expression eQTL data from Brain-eMeta25, and PsychENCODE26,27 reference 26 
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datasets are the intermediate variables. As part of the SMR analysis, HEIDI attempts to 1 

deconvolve the association to establish if the relationship between SNP, gene expression, and 2 

cognitive phenotype are indeed due to modelled causality, or based simply on linkage; SNPs 3 

with significant evidence of linkage effects were eliminated from further consideration. FOCUS 4 

(Fine-Mapping of Causal Variants)61 uses GCA/NCS GWAS summary statistics, expression 5 

prediction weights (as estimated from GTEx v8 brain expression reference panels), and LD 6 

among all SNPs to estimate the probability for any given set of genes to explain transcriptome 7 

association. Two sets of gene ranks emanated from the procedures carried out (i) 8 

MAGMA/PoPs (ii) S-PrediXcan/SMR/HEIDI. To prioritize genes, the 50th percentile rank cutoff 9 

for (i) & (ii) was stipulated. The final set of filtered genes for gene set analysis was the union of 10 

(i) & (ii) and the union of all credible genes identified by FOCUS. 11 

 12 

Elucidating Biological Mechanisms underlying Meta-Loci via Gene Set Analysis 13 

Three separate gene set analysis approaches were then applied to the remaining, 14 

filtered gene list for each meta-locus (i) Broad Institute Gene Set Enrichment Analysis 15 

(GSEA29,62) (ii) WebGestalt30 (iii) FUMA GENE2FUNC31. GO ontologies within the Molecular 16 

Signature Database 7.2 (Biological Processes, Molecular Function and Cellular Component34,63) 17 

were used as gene-set analysis annotations. Default parameters were used for GSEA and 18 

WebGestalt. Both GSEA and WebGestalt require gene scores to be included in the gene set 19 

analysis; we utilized the gene prioritization scores derived from PoPs, with an inverse rank 20 

transformation applied to the POPs data such that the lowest value of the gene prioritization 21 

scores was 0.  22 

Of the three gene set analysis methods, GSEA was arguably the most robust. GSEA 23 

first walks down the ranked list of genes, increasing a running-sum statistic when a gene is in 24 

the gene set and decreasing it when it is not. The enrichment score is the maximum deviation 25 

from zero encountered during that walk. Details of the GSEA methodology has been reported 26 
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elsewhere29. This is followed by WebGestalt64 which runs a modified version of GSEA via a web 1 

portal. Both GSEA and WebGestalt allow permutation testing for the selection of gene sets 2 

which in this case was set to n = 1000 permutations.  GSEA analyses were based on the 3 

“preranked” procedure, where enrichment scores were normalized. Default filter parameters for 4 

minimum ( > 15) and maximum ( < 500 ) gene set size were used. MSigDb version 7.2 gene set 5 

definitions34 for Gene Ontology were used as indicated above. WebGestalt uses a more 6 

specifically curated “noRedundant” set of Gene Ontologies based on the 2017 data freeze of the 7 

MSigDb. In addition, the method relaxes gene set sizes to permit minimum ( > 5 ) and maximum 8 

( < 2000 ). We set significance to the top 50 gene sets to be extracted for WebGestalt. FUMA 9 

GENE2FUNC uses a hypergeometric approach to gene selection which relies only on the 10 

overrepresentation of gene symbols for the identification of gene sets. For FUMA GENE2FUNC 11 

we set a minimum of 3 genes per gene set and FDR < 0.05 for a gene set to be significant. To 12 

select candidate gene sets for each meta-locus, we required a strict “consensus” approach. We 13 

deem a gene set as “candidate” only if all three methods identify the same gene set.  14 

In addition to an enrichment score for the gene set, GSEA also generates a set of genes 15 

that deviates most from the null during the estimation of the gene set enrichment score. These 16 

genes are defined as “driver” genes, because they contribute most to the enrichment of a given 17 

gene set. For the purpose of the current report, the driver genes were thus most interesting, as 18 

they are likely to be the core genes within a biological pathway.   19 

 20 

Follow-up Annotations and Analysis of Driver Genes identified within GCA and NCS Meta-Loci  21 

To further understand how driver genes from each gene set might be expressed over 22 

time, we performed analyses via the BrainSpan database (based on RNA-Seq Gencode v10 23 

normalized expression values summarized to genes in brain tissues from donors of different 24 

ages, ranging from pre-natal to adulthood)35. For our analysis, the time of tissue sampling in the 25 

BrainSpan database was converted to weeks. All post-natal stages were converted to weeks 26 
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using Weeks = Years*52Weeks + 37 Gestational Weeks. We used linear mixed effects models 1 

to investigate if there were significant differences in the gene expression profiles over time 2 

between GCA vs. NCS driver genes. The null model included Individual subjects as random 3 

effects, and Time (Weeks) as a fixed effect predictor; sex was modeled as a covariate. The 4 

alternative model additionally included the Time (Weeks) x Trait (GCA vs. NCS) interaction 5 

terms as fixed effect predictors.  6 

Lastly, we examined the potential druggability of the driver genes identified by earlier 7 

functional prioritization and gene sets. We extracted data for gene druggability (2047 genes) 8 

from Finan et al. 35 which included Tier 1, 2, 3A and 3B druggability as well as small molecule 9 

druggability, druggability by enzymes or mono-clonal antibodies and drug absorption 10 

characteristics. The druggability information was merged with the information available for driver 11 

genes identified in the current study. We then further filtered the final list of genes by Tier 1 12 

druggability for display and reporting.  13 

  14 
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Figures 1 
 2 
Figure 1. Study Procedures and Analytic Workflow 3 
Note: The flow chart is divided in three columns. The first column from the left describes the analytic objectives 4 
across study stages. The middle column lists the method/software used for the analysis. And the right column points 5 
the reader to the Table, Figure, Supplementary Table or Supplementary Figure that reports the results of the 6 
analysis.  7 
 8 
Figure 2. UMAP and Karyogram Plots for Meta-Locus Definitions 9 
Note: Panel (a), (b). UMAP plot showing 15 meta-loci and 12 meta-loci identified by Density-based scan procedures 10 
across genome-wide LD independent regions for General Cognitive Ability and Non-Cognitive Skills respectively. 11 
Panel (c), (d). Karyogram plots for General Cognitive Ability and Non-Cognitive Skills respectively. Color scheme in 12 
each of the Karyogram plots matches those reflected in Panels (a) and (b).  13 
 14 
Figure 3. Violin plots for Z-score distributions of Local Genetic Correlations within each 15 
prioritized meta-locus 16 
Note: GlobalRgClusters: Phenotype clusters derived from partitioned clustering of global genetic correlation. Panel 17 
(a). Prioritized meta-loci for General Cognitive Ability. Panel (b). Prioritized meta-loci for Non-Cognitive Skills. Panel 18 
(a), (b). Bipolar: Bipolar Disorder, Anorexia: Anorexia Nervosa, Tourette’s: Tourette’s Syndrome, MDD: Major 19 
Depressive Disorder (Howard et al., 2019), Dep-Aff: Depressive Affect, MDD_MVP: Major Depressive Disorder 20 
(Million Veteran Project), Anxiety_mvp: Anxiety Disorder (Million Veteran Project), PTSD_mvp/pcl: Post-Traumatic 21 
Stress Disorder (Million Veteran Project; Total PCL: Total PCL symptom scores) 22 

 23 
Figure 4. Converging gene sets identified within each General Cognitive Ability and Non-24 
Cognitive Skills Meta-Locus 25 
Note: GCA: General Cognitive Ability, NCS: Non-Cognitive Skills. Panel (a), (b), Top half of circular plots are gene 26 
sets, bottom half are the meta-loci. Panel (c). Overlapping gene set expanded for easy reference.  27 
 28 
Figure 5. BrainSpan gene expression profiles for General Cognitive Ability and Non-29 
Cognitive Skills 30 
Note: GCA: General Cognitive Ability, NCS: Non-Cognitive Skills. Panel (a) scatterplot for GCA (b) scatterplot for 31 
NCS. Y-axis: Normalized gene expression x-axis: Time in weeks.  32 
  33 
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Table 1. General Cognitive Ability – Prioritized Meta-Loci, Gene Sets and Tier 1 Druggable Genes 
GCA-1 GCA-4 GCA-3 GCA-5 GCA-8* 

h2 = 0.104 (45.8%) h2 = 0.045 (19.8%) h2 = 0.032 (13.9%) h2 = 0.009 (3.9%) h2 = 0.010 (4.6%) 
N LD regions = 1125 N LD regions = 430 N LD regions = 377 N LD regions = 83 N LD regions = 55 

Length = 1340.79 (mb) Length = 514.32 (mb) Length =  439.17 (mb) Length = 101.61 (mb) Length = 73.7 (mb) 
Neurodevelopment/ 

Neuroplasticity 
Neural Connectivity 

 
Synaptic Structure/ 
Neurodegeneration 

Neuronal Structure Axonal Guidance 

§ Histone Binding 
§ Response to Nerve Growth Factor 
§ Beta Catenin Binding 
§ Beta Catenin TCF Complex 

Assembly 
§ Ephrin Receptor Signaling 

Pathway 
§ Modification Dependent Protein 

Binding 
§ Protein Kinase A Binding 
§ Brain Morphogenesis 
§ Calmodulin Binding 

§ Coated Vesicle 
§ Double Stranded RNA Binding 
§ Activating Transcription Factor 

Binding 
§ Histone Deacetylase Binding 
§ ATPase Complex 
§ Nuclear Periphery 
§ Protein Serine Threonine Kinase 

Activity 
§ PML Body 
§ Histone Deacetylase Complex 
§ Regulation of Neuron Projection 

Development 
§ Receptor Complex 
§ Hindbrain development 

§ Neuron Migration 
§ Regulation of Synapse Structure 

or Activity 
§ Presynapse 
§ Neurotransmitter Transport 
§ Tubulin Binding 
§ Hormone Receptor Binding 
§ Protein Tyrosine Kinase Activity 
§ Phosphatase Binding 

§ Cell Leading Edge 
§ Peptidyl Lysine Modification 
§ Nuclear Speck 
§ Chromosomal Region 

§ Axon Development  
§ Neuron Projection Guidance 
§ Synapse Organization 
§ Regulation of Trans Synaptic 

Signaling 

Calcium/calmodulin dependent 
protein kinase: CAMK1D, 
CAMK2A, CAMK2G, CAMKK1, 
Ephrin Receptor: EPHA10, 
EPHA3, EPHA6, EPHA7, EPHB1^, 
Glutamate Receptor: GRIN1, 
GRIN2B, 
Protein Kinase: PRKCB, 
PRKACA, 
Others: ADCY1, APH1A, 
CACNA1C^, CDH2, EEF2, GSK3A, 
HDAC1, KMT2A, LRRK2, MAPT, 
MKNK2, NTRK3^, PDPK1, PHKG2, 
PKN1, PPP3CA, PSEN1, RARA, 
ROCK1, SIRT1  
 
Total: 33 genes 

Casein Kinase: CSNK1D, 
CSNK2A1, 
Ephrin Receptor: EPHA5, EPHA8, 
EPHB2^, 
Glutamatergic Receptor: GRIK2^, 
GRIN2A^, 
Histone Deacetylase: HDAC11, 
HDAC3, 
Mitogen Activated Protein: 
MAP2K5, MAP3K10, MAP3K12, 
MAP3K2, MAP4K4, MAP4K5, 
Serine/Threonine Kinase 
STK11, STK35, 
Other: ABL1, ACVR1B, AKT2, 
APP, BRSK2, CDK13, CNR1, 
DNMT3A, DYRK1B, HIPK1, 
HSP90AB1, IGF1R, MARK1, 
NCOR2, NTRK2, PAK1, PKN2, 
PRKCG, RAF1, ROCK2, 
RPS6KB1, SHH, SLC6A4, SRPK2, 
TAOK3, TLK2, TNIK, VEGFA 
 
Total: 45 genes 

CDC-like Kinase: CLK2, CLK4, 
Ephrin Receptor: EPHA4, 
EPHB2^, EPHB6  
Glutamatergic Receptor: GRIA1, 
GRIK2^, GRIN2A^, 
Solute Carrier family: SLC6A1, 
SLC9A1, 
Others: AKT1, CAMK2B, CDK5, 
CSK, ERBB4^, ESR1, FGFR3, 
FKBP4, HTT, JAK2, MAPK14, 
MET^, NTRK3^, RXRA, SRC, 
TP53 
 
Total: 26 genes 

EPOR 
 
Total: 1 gene 

PTK2, GRIK3, PIK3CA, NISCH, 
EPHA10, NCAM1, VAMP2, DRD2, 
CACNA1D 
 
Total: 9 genes 
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Table 2. Non-Cognitive Skills – Prioritized Meta-Loci, Gene Sets and Tier 1 Druggable Genes 
NCS-1 NCS-2 NCS-5 

h2 = 0.244 (78.3%) h2 = 0.024 (7.6%) h2 = 0.020 (6.3%) 
N LD regions = 1926 N LD regions = 162 N LD regions = 89 

Length = 2290.00 (mb) Length = 191.66 (mb) Length = 116.4 (mb) 
Synaptic Activity/ 

Neurotransmission 
Synaptic Transmission/ 

Action Potentiation 
GABA-ergic Synaptic  

Transmission 
• Neurotransmitter Receptor Activity 
• Disordered Domain Specific Binding 
• Schaffer Collateral CA1 Synapse 
• Repressing Transcription Factor Binding 
• Excitatory Synapse 
• Protein Localization to Synapse 
• Gaba-ergic Synapse 
• Neural Nucleus Development 
• Histone Acetyltransferase Binding 
• Synaptic Transmission Cholinergic 
• Glutamate Receptor Activity 

• Metal Ion Transmembrane Transporter Activity 
• Monovalent Inorganic Cation Transmembrane 

Transporter Activity 
• Muscle Tissue Development 
• Early Endosome 
• Late Endosome 
• Outer Membrane 
• Side of Membrane 
• Cell Adhesion Molecule Binding 
• Nuclear Envelope 
• Transcription Coactivator Activity 
• Gliogenesis 

• Anion Transmembrane Transporter Activity 
• Passive Transmembrane Transporter Activity 

Cyclin Dependent Kinase: CDK5, CDK5R1, 
Cholinergic Receptor: CHRM1, CHRM2, CHRNA1, 
CHRNA2, CHRNA3, CHRNA4, CHRNA7, CHRNB1, 
CHRNB2, CHRNB4, CHRNE, CHRNG, 
Dopamine Receptor: DRD1, DRD5, 
GABAergic Receptor: GABRA5, GABRB2^, GABRB3, 
GABRG3, 
Glutamatergic Receptor: GRIA1, GRIA2, GRIA4, 
GRIK2, GRIN1, GRIN2C, GRIN2D, GRM5, 
Histone Deacetylase: HDAC1, HDAC2, HDAC4, 
HDAC5, HDAC7, HDAC9^, 
Heat Shock Protein: HSP90AA1, HSP90AB1, 
5-hydroxytryptamine receptor: HTR1B, HTR1F, 
Solute Carrier Family: SLC6A1, SLC6A9, 
Others: ADORA1, BCL2^, BCR, CNR1, EPHA7, 
ERBB4^, FYN, HIF1A, HRAS, MAPT, MDM2, NQO1, 
PDE4B^, PPP3CA, PTK2B, SV2A, TP53 
Total: 57 genes 

Apoptosis regulator: BCL2^, BCL2L1, 
Ephrin receptor:  EPHA2, EPHA4, EPHB1, 
Intercellular Adhesion Molecule: ICAM1, ICAM3, 
Other: ATP1A2, GHR^, HMGCR, IL11RA, ITGAL, 
KCNK3, MAPK3, PAK6, PPARG, PTPRC, RAF1, 
SIGMAR1 
 
Total: 19 genes 

GABAergic Receptor: GABRA1, GABRA2, GABRA4, 
GABRA6, GABRB1, GABRB2^, GABRG1, GABRG2, 
GRIN2B,  
Other: KCNB2, P2RX4, SLC12A5, SNAP25 
 
Total: 13 genes 

 
 


