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Abstract 

Deep learning is a promising tool that uses nonlinear transformations to extract features from high-

dimensional data. Although deep learning has been used in several genetic studies, it is challenging in 

genome–wide association studies (GWAS) with high-dimensional genomic data. Here we propose a 

novel three-step approach for identification of genetic variants using deep learning to identify 

phenotype-related single nucleotide polymorphisms (SNPs) and develop accurate classification models. 

In the first step, we divided the whole genome into non-overlapping fragments of an optimal size and 

then ran Convolutional Neural Network (CNN) on each fragment to select phenotype-associated 

fragments. In the second step, using an overlapping window approach, we ran CNN on the selected 

fragments to calculate phenotype influence scores (PIS) and identify phenotype-associated SNPs based 

on PIS. In the third step, we ran CNN on all identified SNPs to develop a classification model. We tested 

our approach using genome-wide genotyping data for Alzheimer’s disease (AD) (N=981; cognitively 

normal older adults (CN) =650 and AD=331). Our approach identified the well-known APOE region as the 

most significant genetic locus for AD. Our classification model achieved an area under the curve (AUC) of 

0.82, which outperformed traditional machine learning approaches, Random Forest and XGBoost. By 

using a novel deep learning-based GWAS approach, we were able to identify AD-associated SNPs and 

develop a better classification model for AD. 

 

 Author summary 

Although deep learning has been successfully applied to many scientific fields, deep learning has not 

been used in genome–wide association studies (GWAS) in practice due to the high dimensionality of 

genomic data. To overcome this challenge, we propose a novel three-step approach for identification of 

genetic variants using deep learning to identify disease-associated single nucleotide polymorphisms 

(SNPs) and develop accurate classification models. To accomplish this, we divided the whole genome 

into non-overlapping fragments of an optimal size and ran a deep learning algorithm on each fragment 

to select disease-associated fragments. We calculated phenotype influence scores (PIS) of each SNP 

within selected fragments to identify disease-associated significant SNPs and developed a disease 

classification model by using overlapping window and deep learning algorithms. In the application of our 

method to Alzheimer’s disease (AD), we identified well-known significant genetic loci for AD and 

achieved higher classification accuracies than traditional machine learning methods. This study is the 

first study to our knowledge to develop a deep learning-based identification of genetic variants using 

fragmentation and window approaches as well as deep learning algorithms to identify disease-related 

SNPs and develop accurate classification models.  



Introduction 

Deep learning is a representative machine learning algorithm that enables nonlinear transformations to 

extract features of high-dimensional data 1, unlike traditional machine learning models that predict a 

linear combination of weights by assuming a linear relationship between input features and a 

phenotype of interest. Deep learning has been used to predict disease outputs by handling original high-

dimensional medical imaging data without feature selection procedures 2, 3. In genetic research, deep 

learning frameworks have been used to investigate molecular phenotypes that predict the effects of 

non-coding variants4-10, differential gene expression 11, and potential transcription factor binding sites 12. 

These tools use CHIP-Seq or DNase-Seq data as training data to predict chromatin features such as 

transcription factor binding or DNase hypersensitivity from DNA sequences. More recently, deep 

learning has been employed in the capture of mutations and the analysis of gene regulations, 

demonstrating its potential for furthering our understanding of epigenetic regulation 13. Furthermore, 

deep learning is being used in gene therapy to design CRISPR guide RNAs using deep learning-based 

gene features 14-19. 

Genome-wide association studies (GWAS) use a statistical approach by considering one single nucleotide 

polymorphism (SNP) at a time across the whole genome to identify population-based genetic risk 

variation for human diseases and traits 20, 21. However, deep learning has not yet been used to perform 

GWAS, as it is challenging due to the so-called high-dimension low-sample-size (HDLSS) problem 22, 

which is known to impact phenotype prediction using genetic variation. Feature reduction approaches 

have been commonly used 23-25 to resolve this problem, but feature reduction using high-dimensional 

genomic data is also challenging due to a NP-hard problem26, 27. Therefore, it is necessary to develop a 

deep learning framework to identify genetic variants using whole genome data. 

Here we proposed a novel three-step deep learning-based approach to select informative SNPs and 

develop classification models for a phenotype of interest. In the first step, we divided the whole genome 

into non-overlapping fragments of an optimal size and then used deep learning algorithms to select 

phenotype-associated fragments containing phenotype-related SNPs. Different sized fragments and 

several deep learning algorithms were tested to select the optimal size for fragments and the optimal 

algorithm. In the second step, we ran the optimal deep learning algorithm using an overlapping sliding 

window approach within selected fragments to calculate phenotype influence scores (PIS) using SNPs 

and the phenotype of interest to identify informative SNPs. In the third step, we ran the optimal 

algorithm again on all identified informative SNPs to develop a classification model. 

We tested our approach using only whole genome data for Alzheimer’s disease (AD) (N=981; cognitively 

normal older adults (CN) =650 and AD=331). Our approach identified the known APOE region as the 

most significant genetic locus for AD. Our classification model yielded 75.2% accuracy over traditional 

machine learning methods, being 3.8% and 9.6% higher than XG Boost and Random Forest, respectively. 

Our novel deep learning-based approach can identify informative SNPs and develop a classification 

model for AD by combining nearby SNPs and testing their aggregation.  

 



Materials and Methods 

Study participants 

All individuals used in the analysis were participants of the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) cohort 28, 29. The ADNI initial phase (ADNI-1) was launched in 2003 to test whether serial magnetic 

resonance imaging (MRI), position emission tomography (PET), other biological markers, and clinical and 

neuropsychological assessment could be combined to measure the progression of Mild Cognitive 

Impairment (MCI) and early AD. ADNI-1 has been extended in subsequent phases (ADNI-GO, ADNI-2, 

and ADNI-3) for follow-up of existing participants and additional new enrollments. Demographic 

information, APOE and whole-genome genotyping data, and clinical information are publicly available 

from the ADNI data repository (www.loni.usc.edu/ADNI/). Informed consent was obtained for all 

subjects, and the study was approved by the relevant institutional review board at each data acquisition 

site. 

Genotyping and imputation 

ADNI participants were genotyped using several Illumina genotyping platforms including Illumina 

Human610-Quad BeadChip, Illumina HumanOmni Express BeadChip, and Illumina HumanOmni 2.5M 

BeadChip 30. As ADNI used different genotyping platforms, we performed quality control procedures 

(QC) on each genotyping platform data separately and then imputed un-genotyped single nucleotide 

polymorphisms (SNPs) separately using MACH and the Haplotype Reference Consortium (HRC) data as a 

reference panel 31. Before imputation, we performed QC for samples and SNPs as described previously: 

(1) for SNP, SNP call rate < 95%, Hardy-Weinberg P value < 110-6, and minor allele frequency 

(MAF) < 1%; (2) for sample, sex inconsistencies, and sample call rate < 95% 32. Furthermore, in order to 

prevent spurious association due to population stratification, we selected only non-Hispanic participants 

of European ancestry that clustered with HapMap CEU (Utah residents with Northern and Western 

European ancestry from the CEPH collection) or TSI (Toscani in Italia) populations using 

multidimensional scaling (MDS) analysis and the HapMap genotype data 32, 33. After imputation, we 

performed standard QC on imputed genotype data as described previously 34. Specifically, we imposed 

an r2 value equal to 0.30 as the threshold to accept the imputed genotypes. In the study, imputed 

genome-wide genotyping data from 981 ADNI non-Hispanic participants (650 cognitive normal older 

adults (CN) and 331 AD patients) were used with a total of 5,398,183 SNPs (minor allele frequency 

(MAF) > 5%). 

Genome-wide association study (GWAS) 

Using imputed genotypes, a GWAS for AD was conducted. For the GWAS, logistic regression with age 

and sex as covariates was performed using PLINK35 to determine the association of each SNP with AD. To 

adjust for multiple testing, a conservative threshold for genome-wide significant association (p < 5 × 

10−8) was employed based on a Bonferroni correction. 

Fragmentation of whole genome data 



Whole genome data for 981 participants were divided into non-overlapping fragments of varying sizes 

from 10 SNPs to 200 SNPs to determine the optimal fragmentation size. The sub-data sets consisting of 

fragments of the same size were divided into train-test-validation sets (60:20:20), and Convolutional 

Neural Network (CNN)36, Long short-term memory (LSTM)37, LSTM-CNN38, and Attention39 algorithms 

were applied to each. Early stopping using a validation set was applied to prevent over-fitting, followed 

by the measurement of training time and accuracy (ACC). 

Deep learning on fragments 

Deep learning is the result of continuous development such as perceptron40, 41, which adds the concept 

of weight adjustment to the theory that it can behave like a human brain when neurons with on-off 

functions are connected in a network form42, and Adaline43, which uses gradient descent to update 

weights. These early neural nets were advanced to a multilayer perceptron, which includes hidden 

layers to solve the famous XOR problem44, marking a theoretical turning point with the concept of 

backpropagation to update the weight of the hidden layer45-48. The inherent problem of 

backpropagation, in which vanishing gradients occur when there are many layers49, has been alleviated 

through activation functions, such as sigmoid function and ReLU50, 51, and optimization methods for 

better gradient descent methods, such as Ada-Grad52, RMSprop53, and Adam54. These developments, 

along with the advancement of GPU hardware, have created an era of deep learning as it is now. 

Deep learning has laid the theoretical foundation for backpropagation, the application of activation 

functions, and the development of optimizers for better gradient descent. Common deep learning 

algorithms, such as CNN, LSTM, and Attention, have a hierarchical structure that implements an 

enhanced version of the basic principles of deep learning. The detailed technical description of each 

algorithm is described extensively in the relevant paper, so here we focus on the core of the deep 

learning technology commonly applied to the algorithm used in the experiment. 

We used ReLU as an activation function that underlies the deep learning algorithms used in our 

experiments. 

𝑅𝑒𝐿𝑈(𝑥) = {
𝑥   𝑖𝑓 𝑥 ≥ 0
0   𝑖𝑓 𝑥 < 0

 

ReLU, the most used activation function in the deep learning community, replaces the given value with 

zero if the value is < 0 and uses the given value if it is > 0. Thus, if the given value is greater than zero, 

the derivative becomes one, and the weight can be adjusted without vanishing the gradient to the first 

layer through the hidden layer. We used Adam as the optimization method. Adam, is currently the most 

popular optimization method for deep learning, as it takes advantage of momentum SGD55 and 

RMSprop, which are expressed as follows: Gt is the sum of the square of the modified gradient, and ε is a 

very small constant that prevents the equation from being divided by zero. 

𝑽𝒕 =  𝜸𝑮(𝒕−𝟏) + (𝟏 − 𝜸𝟏)
𝝏𝑬𝒓𝒓𝒐𝒓

𝝏𝑾𝒕
 



𝑮𝒕 =  𝜸𝑮(𝒕−𝟏) + (𝟏 − 𝜸𝟐) (
𝝏𝑬𝒓𝒓𝒐𝒓

𝝏𝑾𝒕
)

𝟐
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Backpropagation is used to calculate the initial error value from a given random weight using the least 

squares method and then to update the weight using a chain rule until the differential value becomes 

zero. Here, the differential value of zero means that the weight does not change when the gradient is 

subtracted from the previous weight. 

𝑾𝒐(𝒕 + 𝟏) = 𝑾𝒐𝒕 −
𝝏𝑬𝒓𝒓𝒐𝒓𝒀𝒐

𝝏𝑾𝒐
 

𝑬𝒓𝒓𝒐𝒓𝒀𝒐 =
𝟏

𝟐
(𝒚𝒕𝟏 − 𝒚𝒐𝟏)𝟐 +

𝟏

𝟐
(𝒚𝒕𝟐 − 𝒚𝒐𝟐)𝟐 

If yo1 and yo2 are the output values of the output layer coming through the hidden layer, and the actual 

values of the given data are yt1 and yt2, the partial derivative of the error ErrorYo to the weight of the 

output layer can be calculated using the chain rule as follows:  

𝝏𝑬𝒓𝒓𝒐𝒓𝒀𝒐

𝝏𝒘𝒐
=

𝝏𝑬𝒓𝒓𝒐𝒓𝒀𝒐

𝝏𝒚𝒐𝟏
∙

𝝏𝒚𝒐𝟏

𝝏𝒏𝒆𝒕𝟑
∙

𝝏𝒏𝒆𝒕𝟑

𝝏𝒘𝒐
 

The partial derivative of the error ErrorYo to the weight of the hidden layer can be calculated as follows: 

𝝏𝑬𝒓𝒓𝒐𝒓𝒀𝒐

𝝏𝒉𝟏
=

𝝏(𝑬𝒓𝒓𝒐𝒓𝒚𝒐𝟏 + 𝑬𝒓𝒓𝒐𝒓𝒚𝒐𝟐)

𝝏𝒚𝒉𝟏
=

𝝏𝑬𝒓𝒓𝒐𝒓𝒚𝒐𝟏

𝝏𝒚𝒉𝟏
+

𝝏𝑬𝒓𝒓𝒐𝒓𝒚𝒐𝟐

𝝏𝒚𝒉𝟏
 

                                                                     (a)                    (b) 

(a) 
𝝏𝑬𝒓𝒓𝒐𝒓𝒚𝒐𝟏

𝝏𝒚𝒉𝟏
=

𝝏𝑬𝒓𝒓𝒐𝒓𝒚𝒐𝟏

𝝏𝒏𝒆𝒕𝟑
∙

𝝏𝒏𝒆𝒕𝟑

𝝏𝒚𝒉𝟏
= (𝒚𝒐𝟏 − 𝒚𝒕𝟏)𝒚𝒐𝟏(𝟏 − 𝒚𝒐𝟏)𝒚𝒐𝟏 

(b)  
𝝏𝑬𝒓𝒓𝒐𝒓𝒚𝒐𝟐

𝝏𝒚𝒉𝟏
=

𝝏𝑬𝒓𝒓𝒐𝒓𝒚𝒐𝟐

𝝏𝒏𝒆𝒕𝟒
∙

𝝏𝒏𝒆𝒕𝟒

𝝏𝒚𝒉𝟏
= (𝒚𝒐𝟐 − 𝒚𝒕𝟐)𝒚𝒐𝟐(𝟏 − 𝒚𝒐𝟐)𝒚𝒐𝟐 

 

Accordingly, the weight wh of the hidden layer is updated as follows: 

𝝏𝑬𝒓𝒓𝒐𝒓𝒀𝒐

𝝏𝒘𝒉
=

𝝏𝑬𝒓𝒓𝒐𝒓𝒀𝒐

𝝏𝒚𝒉𝟏
∙

𝝏𝒚𝒉𝟏

𝝏𝒏𝒆𝒕𝟏𝒚
∙

𝝏𝒏𝒆𝒕𝟏

𝝏𝒘𝒉
 

= (𝜹𝒚𝒐𝟏𝒚𝒐𝟏 − 𝜹𝒚𝒐𝟐𝒚𝒐𝟐)𝒚𝒉𝟏(𝟏 − 𝒚𝒉𝟏)𝒙𝟏 



Calculation of phenotype influence score using deep learning 

Prediction accuracy was calculated from deep learning applied to each fragment and converted to a z-

score. The z-score follows a normal distribution with µ = 1 and σ = 0, under the hypothesis that there is 

no relationship between the variables in the population. Fragments with a z-score higher than the 

median were selected. An overlapping sliding window for the calculation of PIS is applied to these 

fragments (Figure 1). When the length of the fragment is w, the window is positioned w-1 from the first 

SNP of the fragment and moves by one SNP and stops at the last SNP of the fragment. Each region 

within the sliding window is divided into a train-test-validation set (60:20:20), and early stopping using a 

validation set is applied to prevent over-fitting. When the kth SNP is Sk, PIS is calculated as follows. 

∑
𝑠𝑘

𝑘 + 𝑤 − 1

𝑘+𝑤−1

𝑘=𝑘−𝑤+1

 

This sliding window is applied to all selected fragments, resulting in a PIS score for all SNPs. 

 

Phenotype classification using deep learning 

We selected the top 100 to 10,000 SNPs based on the PIS. We used CNN, XG boost and Random Forest 

for the AD-CN classification with 10-fold cross validation. The CNN that we used consisted of convolution 

layer with a kernel size of 5, pooling lay with max-pool size of 2, fully connected layer of 64 nodes, and 

output layer with softmax activation function. XG Boost is a tree-based ensemble algorithm, one of 

popular implementations of gradient boosting. We trained XGboost using a “xgboost” package for 

python (https: //xgboost.readthedocs.io/). Random Forest is another ensemble learning method which 

uses many decision trees as its classifiers56, 57. We trained Random Forest using the scikit-learn package 

for python by setting the number of trees as 10 and the maximum depth of each tree as 3.  

 



 
[Figure1] Framework to calculate phenotype influence scores of SNPs. We divided the whole genome 

into 134,955 fragments, each with 40 SNPs. To calculate a phenotype influence score for each of the 40 

SNPs included in one fragment, we used an overlapping window approach and CNN. w is the number of 

SNPs in the fragment and Sk is the kth SNP in the fragment. 

 

Results 

Our deep learning-based approach consists of three steps to select informative SNPs and develop an 

accurate classification model. In the first step, we divided the whole genome into non-overlapping 

fragments of an optimal size. To choose an optimal fragment size and an optimal deep learning 

algorithm, we calculated the mean accuracy and computation time for classification of AD using various 

fragment sizes containing 10 to 200 SNPs and several deep learning algorithms (CNN, LSTM, LSTM-CNN, 

Attention). In this analysis, we used 10-200 SNPs located within a region surrounding the APOE gene, the 

strongest and most robust AD genetic risk locus. Figure 2 showed the mean accuracy and computation 

time for CNN, LSTM, LSTM-CNN, and Attention as a function of the fragment size. As shown in Fig. 2A, 

the analysis yielded the highest accuracy for classification of AD for a fragment size with 40 SNPs (Fig. 

2A). For the fragment with 40 SNPs within a region surrounding the APOE gene, both CNN and LSTM-

CNN models had the highest accuracy for classification of AD, followed by LSTM. However, the 

computation time of CNN and LSTM models were 5.9 seconds and 40.4 seconds, respectively. The 

computation time of LSTM, LSTM-CNN, and Attention models sharply increased compared to CNN as the 

fragment contains more SNPs (Fig 2B). Thus, we chose the fragment of 40 SNPs and CNN as an optimal 

fragment size and an optimal deep learning algorithm, respectively. The whole genome was divided into 



134,955 fragments, each with 40 SNPs. We ran CNN on each fragment to calculate z-scores based on 

classification accuracy and selected phenotype-associated fragments. We selected 1,802 fragments with 

z-scores higher than a median z-score. 

In the second step, using an overlapping window approach, we ran CNN on the selected fragments to 

calculate the PIS of each SNP in the selected fragments and identify phenotype-associated SNPs based 

on the PIS, as shown in Fig. 1. For each SNP, we calculated a mean accuracy of 40 windows, which is the 

PIS of the SNP. Using PIS values, we calculated the z-scores and one-tailed p-values. Figure 3 showed a 

Manhattan plot that plotted the -log10 p-values on the y-axis against the SNP position in the genome on 

the x-axis. The SNP with the smallest p-value was rs5117 in the APOC1 gene (p-value=1.04E-22) and 

rs429358 in the APOE gene (p-value of 1.41E-16). The genetic region including APOE/APOC1/TOMM40 

genes is known as the strongest genetic risk locus for AD58-61. Next highest genetic loci were located at 

SNX14, SNX16, BICD1, WDR72, and GLT1D1 genes.   

In the third step, we ran CNN on the identified SNPs to develop an AD classification model. Table 1 

shows the classification results of AD vs. CN using subsets containing the top 100 to 10,000 SNPs based 

on PIS. For comparison with traditional machine learning methods, we used two popular algorithms, XG 

Boost and Random Forest, as classifiers. The highest mean accuracy of 10-cross validation in classifying 

AD from CN by CNN was 75.02% (area under the curve (AUC) of 0.8157) for a subset containing 4,000 

SNPs, which had 6.3% higher accuracy than Random Forest for a subset containing 2,000 SNPs and 

1.94% higher accuracy than XG Boost for a subset containing 1,000 SNPs. When we calculated the 

classification accuracy of AD using only the number of APOE ε4 alleles, the classification accuracy was 

66.7%, which was 8.3% lower than our method. Our CNN models outperformed two traditional machine 

learning models, Random Forest and XGBoost, in all cases as shown in Fig. 4. 

Figure 5 showed LocusZoom plots62 for SNPs located at 300 kb upstream and downstream regions from 

the boundary of the APOE gene. The horizontal axis is the location of SNPs, and the vertical axis is -log10 

of the p-values. Each dot represents a SNP and the color represents the squared correlation coefficient 

(r2) with the most significant SNP. Figure 5A shows p-values calculated using PLINK and the most 

significant SNP was rs429358 in APOE. Figure 5B showed p-values calculated using our deep learning 

approach, and the most significant SNP was rs5117 in APOC1. In Fig. 5B, we can see a linear increase on 

the left side of rs5117 and a linear decrease on the right side of rs5117, which was different from PLINK 

results (Fig. 5A), which has no linear patterns. In addition, in Fig. 5B, we can see three strongly 

correlated SNPs (r2>0.8) with rs5117 on the left side of rs5117 but no SNPs on the right side of rs5117. 

 



 

[Figure2] Selection of an optimal fragment size and an optimal deep learning algorithm. In order to 

choose an optimal fragment size and an optimal deep learning algorithm, we calculated the mean 

accuracy and computation time for classification of AD using various fragment sizes containing 10 to 200 

SNPs in the APOE region and several deep learning algorithms (CNN, LSTM, LSTM-CNN, and Attention). 

(A) Mean accuracy as a function of the fragment size. The highest accuracy for classification of AD was 

obtained with a fragment having 40 SNPs in CNN, LSTM-CNN and LSTM models. (B) Computation time as 

a function of the fragment size. The computation time of CNN and LSTM models are 5.9 seconds and 

40.4 seconds, respectively. Especially the computation time of LSTM, LSTM-CNN, and Attention models 

sharply increases compared to CNN as the fragment contains more SNPs.  

 



 

[Figure 3] Manhattan plot of p-values of SNPs by our deep learning based approach in AD. The X-axis 

shows SNP positions in the genome. The Y-axis shows -log10 of p-values. The genetic region including 

APOE, APOC1, and TOMM40 genes is known as the strongest genetic risk locus for Alzheimer’s disease. 

The SNP with the smallest p-value was rs5117 in APOC1 gene (P=1.04E-22). rs429358 in APOE has a p-

value of 1.41E-16. Next identified genetic loci were located at SNX14, SNX16, BICD1, WDR72, and 

GLT1D1 genes.  

 



 

[Figure 4] Results of classification of AD from CN. The X-axis shows the number of top SNPs selected 

based on phenotype influence score for AD classification. The Y-axis shows the accuracy (A) and AUC (B) 

of 10-fold cross-validation. Our CNN-based approach yielded the highest accuracy and AUC of 75.02% 

and 0.8157, respectively, for 4,000 SNPs. In all cases, our CNN models outperformed two traditional 

machine learning models, Random Forest and XG Boost. 

 

Top 
Random Forest XG Boost CNN 

Accuracy STD(±) AUC STD(±) Accuracy STD(±) AUC STD(±) Accuracy STD(±) AUC STD(±) 

100 66.46 7.79 71.37 5.76 70.24 2.80 72.66 2.81 68.29 2.87 72.16 6.03 

200 67.18 3.88 71.75 3.86 67.99 1.52 71.66 2.45 69.52 5.08 71.82 4.94 

300 66.26 3.80 70.98 3.77 68.20 3.32 70.29 2.72 70.64 2.20 72.50 5.85 

400 67.58 4.67 70.74 4.28 69.42 3.43 71.77 2.34 67.99 4.65 71.67 4.12 

500 67.59 7.79 71.11 4.57 71.05 2.56 73.81 3.25 71.56 6.58 74.11 6.14 

1000 68.31 5.22 71.78 4.45 73.08 2.89 74.07 3.72 73.91 3.87 77.41 4.44 

2000 68.70 3.13 73.72 4.24 72.48 2.61 75.09 3.65 73.29 2.77 77.82 4.09 

3000 67.78 3.59 72.82 3.51 69.62 4.27 73.76 3.28 73.80 2.40 78.62 2.82 

4000 68.19 4.69 72.63 4.69 71.15 4.07 74.12 3.68 75.02 3.17 81.57 2.61 

5000 66.25 5.41 71.05 3.99 70.74 3.14 73.30 3.05 73.19 4.72 80.03 5.06 

10000 66.26 5.59 69.19 5.28 69.63 3.27 72.48 2.11 71.05 6.57 70.83 14.24 

 

 [Table 1] Results of classification of AD from CN. The table shows the number of top SNPs selected 

based on phenotype influence score for AD classification and the accuracy and AUC of 10-fold cross-

validation. Our CNN-based approach yielded the highest accuracy and AUC of 75.02% and 0.8157, 

respectively, for 4,000 SNPs. In all cases, our CNN models outperformed two traditional machine 

learning models, Random Forest and XG Boost. 



 

 

[Figure5] LocusZoom plots for SNPs located at the 300 kb upstream and downstream region from the 

boundary APOE gene. The horizontal axis is the location of SNPs and the vertical axis is -log10 of p-

values. Each dot represents a SNP and the color represents the squared correlation coefficient (r2) with 

the most significant SNP. (A) shows p-values calculated using PLINK and the most significant SNP was 

rs429358 in APOE. (B) shows p-values calculated using our deep learning approach and the most 

significant SNP was rs5117 in APOC1. In (B), we can see linear increase on the left side of rs5117 and 

linear decrease on the right side of rs5117, which was different from PLINK results (A), which has no 

linear patterns. In addition, in (B), we can see three strongly correlated SNPs (r2>0.8) with rs5117 on the 

left side of rs5117 but no SNPs on the right side of rs5117. 

 

Discussion 

In this study, we propose a novel deep learning-based approach to select disease-associated SNPs and 

develop an accurate classification model using high dimensional genome data. We tested our approach 

using genome-wide genotyping data for Alzheimer’s disease (AD) (N=981). The proposed method 

successfully identified significant genetic loci for AD that included the well-known AD genetic risk loci. 

The deep learning based approach outperformed traditional machine learning methods for classification 

of AD. 

The deep learning-based approach for identification of genetic variants consists of three steps. In the 

first step, we divided the whole genome into non-overlapping fragments with an optimal size. Although 

deep learning has solved many real-world problems, due to the high dimensionality of the genomic data, 

few deep learning approaches have been used in GWAS to identify genetic variants and disease 

classification 22. To our knowledge, this study is the first to develop a deep learning-based method for 

identifying genetic variants by using a fragmentation and windowing approach.  

(A) 

 

(B) 

 



In the second step, we calculated a PIS of each SNP within the selected fragments by using an 

overlapping window and CNN algorithm. Our method calculates PIS, a novel index which is used to find 

disease-related variants and predict disease. Furthermore, we calculated the z-scores and one-tailed p-

values using PIS, which yielded a Manhattan plot showing the most significant genetic loci in 

APOE/APOC1/TOMM40 genes that are known as the strongest genetic risk factors for AD. Our method 

also identified several novel candidate genetic loci. Sorting nexin (SNX) 14 and SNX16 on chromosomes 6 

and 8, respectively, have not been previously identified to be associated with AD though there may be 

special relevance for neurodegeneration as SNX1263, SNX1764, SNX2765, and SNX3366 are involved in 

neuronal survival. Bicaudal D1 (BICD1) on chromosome 12 is a susceptibility gene in chronic obstructive 

pulmonary disease67 and lissencephaly68, but there are no reports of it being associated with AD.  

In the third step, we selected top SNPs based on PIS to develop classification models for AD. We 

selected sets of highly AD-related SNPs, and classified AD from CN using CNN and two popular 

traditional machine learning algorithms, XGBoost and Random Forest. We found the accuracy of 

classification was changed with the number of the selected SNPs and the classification algorithms. The 

highest mean accuracy of the classification was 75.0% when CNN was used on the top 4,000 SNPs, which 

outperformed two traditional machine learning algorithms. It was also 8.3% higher than the accuracy of 

the classification using only the number of APOE ε4 alleles. Classification is the first step toward 

achieving a better understanding of the genetic architecture of AD. The proposed method will benefit 

from future studies that use deep learning with quantitative phenotypes and baseline values to predict 

future disease trajectories. 

We plotted the SNPs selected by PIS and PLINK for comparison using LocusZoom. We found that there 

were no SNPs with r2 greater than 0.8 in the PLINK results, but three strongly associated SNPs were 

identified using our method. This is because the PLINK method finds statistical significance SNP by SNP, 

while the approach of deep learning uses multiple inputs to adjust weights through the training process. 

Deep learning uses adjacent SNPs to compute gradients at every epoch and uses a loss function to 

adjust the weights in the backpropagation process. Unlike PLINK, our method shows that SNPS related 

to phenotype can be extracted by considering surrounding SNPs, which means that both methods might 

be complementary because they identify different variants though notably in the same region around 

APOE. 

In summary, our novel deep learning-based approach can identify AD-related SNPs by using genome-

wide data and develop a classification model for AD. The heritability of AD is estimated to be up to 80%. 

Accordingly, it is important to identify novel genetic loci related to the disease. Using a modest sample 

size, we found a significant genetic locus and a classification accuracy of 75%. In future work, we plan to 

apply our method to large-scale whole genome sequencing data sets that are expected to become 

available soon to identify novel AD-related SNPs and develop more accurate classification models. We 

also plan to study early stages of disease including mild cognitive impairment and relate variation to 

quantitative endophenotypes that may be more informative than binary classification. 
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