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ABSTRACT 18 
 19 
Missing or incomplete phenotypic information can severely deteriorate the statistical power in 20 

epidemiological studies. High-throughput quantification of small-molecules in bio-samples, 21 

i.e. ‘metabolomics’, is steadily gaining popularity, as it is highly informative for various 22 

phenotypical characteristics. Here we aim to leverage metabolomics to impute missing data in 23 

clinical variables routinely assessed in large epidemiological and clinical studies. To this end, 24 

we have employed ~25,000 1H-NMR metabolomics samples from 28 Dutch cohorts collected 25 

within the BBMRI-NL consortium, to create 19 metabolomics-based predictors for clinical 26 

variables, including diabetes status (AUC5-Fold CV = 0.94) and lipid medication usage (AUC5-27 

Fold CV = 0.90). Subsequent application in independent cohorts confirmed that our 28 

metabolomics-based predictors can indeed be used to impute a wide array of missing clinical 29 

variables from a single metabolomics data resource. In addition, application highlighted the 30 

potential use of our predictors to explore the effects of totally unobserved confounders in omics 31 

association studies. Finally, we show that our predictors can be used to explore risk factor 32 

profiles contributing to mortality in older participants. To conclude, we provide 1H-NMR 33 

metabolomics-based models to impute clinical variables routinely assessed in epidemiological 34 

studies and illustrate their merit in scenarios when phenotypic variables are partially 35 

incomplete or totally unobserved.  36 
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INTRODUCTION 37 

A major goal in biomedical research is to find faithful biomarkers of health, defined as 38 

accurate and reproducible assays that provide objective indications on the health of an 39 

individual and his/her risk of developing a disease over predefined time trajectory [1]. Over 40 

the years, many types of putative biomarkers have been proposed, ranging from environmental 41 

factors to biochemical assays, that may aid the diagnosis and prognostication of disease, 42 

including cardiovascular disease, cancer and immunological disorders. Many of these clinical 43 

variables, however, are costly or cumbersome to obtain, especially for more critical and frail 44 

participants, such as older individuals [2], [3]. Consequently, missing data frequently occurs in 45 

large epidemiological or clinical studies, potentially leading to a significant loss of statistical 46 

power, thus impeding biomarker research in studies of older individuals [4]. 47 

Missing phenotypic data can be handled in various ways. Often, analyses are either 48 

restricted to individuals or variables with complete data, which both may introduce potential 49 

biases [5]. Alternatively, missing data can be imputed using complete phenotypic variables [4], 50 

[6]–[8], yet these approaches work only satisfactory if the complete phenotypic variables are 51 

informative for the ones with missing observations. A third solution basically extents the 52 

second approach by leveraging informative omics data to impute missing phenotypic data. 53 

Particularly useful in this context are metabolite quantifications in minimally invasive 54 

biomaterials, such as urine, saliva or blood plasma, obtained with proton Nuclear Magnetic 55 

Resonance (1H-NMR) assays [9]. Although this technique only captures a modest number of 56 

analytes, 1H-NMR metabolomics data is frequently acquired in large-scale epidemiological 57 

studies, as it is a cost-efficient and reproducible data resource. The underlying motivation is 58 

that metabolite concentrations in blood seem to be direct readouts of various biological 59 

processes, incorporating cues of the environment as well as the host’s genetic background, and 60 

hence may be regarded as intermediate phenotypes. Indeed, metabolomics has been shown to 61 
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capture information on the effect of drug treatments [10], disease status [11]–[14], functional 62 

and cognitive decline [15], and aging [16], [17]. In addition, several studies used the blood 63 

metabolome to predict single anthropometric measures, i.e. BMI [18], or other physiological 64 

characteristics, i.e. sex [19] or age [16]. However, it remains unclear whether the blood 65 

metabolome captured by 1H-NMR could represent phenotypic information over a wider set of 66 

conventional clinical variables.  67 

We hypothesize that a single set of blood metabolic markers combined in multiple 68 

algorithms may represent a range of conventional clinical variables. As a proof of concept, we 69 

generated metabolic surrogates for 20 variables of general clinical and epidemiological interest 70 

available in at least 6 of the cohorts collaborating in BBMRI-NL. Here we will designate these 71 

as conventional clinical variables and they comprehend physiological measures (sex, age, 72 

blood pressure, etc.), environmental exposures (current smoking, etc.), body composition 73 

measures (BMI, etc.), inflammatory factors (hsCRP), medication usage (lipids medication, 74 

etc.), blood composition (white cell counts, etc.) lipids metabolism (LDL-cholesterol, etc.) and 75 

cardiometabolic clinical endpoints (diabetes and metabolic syndrome). Acquiring data for all 76 

these variables is costly and requires sufficient biomaterial, meaning that not every study has 77 

collected the same set of data. We further explored these methods to establish metabolic 78 

surrogate values in the Leiden Longevity Study, which we used to showcase possible 79 

applications in epidemiological research. We showed the validity of the surrogates in an 80 

external cohort comparing them to the original values, we examined their association to further 81 

clinically valuable cardiometabolic health markers, and explored whether the metabolic 82 

surrogates associate, separately or combined, to all-cause mortality.    83 
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[A] 

 
[B] 

  
 84 
Figure 1: Study design. [A] Upper panel: Training of 1H-NMR metabolomics-based predictors for routinely assessed phenotypic variables 85 
available in BBMRI.nl. This data set was created as a collaboration of 28 community and hospital-based cohorts that collected nuclear 86 
magnetic resonance (1H-NMR) metabolomics data (Nightingale) for ~31,000 individuals. Upper panel left: Metabolomics-based predictors 87 
were trained using an inner loop of 5-fold Cross Validation (CV) (with 5 repetitions) for hyperparameter optimization and were evaluated in 88 
unseen data employing an outer loop of 5-fold CV or Leave-One-Biobank-Out-Validation (LOBOV). Upper panel right: using our models 19 89 
different surrogate values can be derived from a single metabolomics data measurement to impute or complement a broad set of conventional 90 
clinical variables routinely assessed in epidemiological and clinical studies. Lower panel: Trained metabolomics-predictors were evaluated in 91 
two application scenarios using a held-out study, the Leiden Longevity Study [20]. This study is a two-generation family-based cohort 92 
consisting of highly aged parents (LLS-SIBS, N = 817, median age = 92 years) and their middle-aged offspring and the partners thereof (LLS-93 
PAROFF, N = 2,280, median age = 59 years), for which we had access to additional detailed phenotypic information. Trained predictors were 94 
evaluated for their ability to reconstruct missing datapoints in an independent dataset (Application 1, lower left), to be used as confounder in 95 
Metabolome Wide Association Studies (Application 2, lower central), and to investigate and to explore determinants of health in older 96 
individuals (Application 3, lower right). [B] Groupings of phenotypic variables routinely assessed in epidemiological and clinical studies for 97 
which data was available in BBMRI-NL. Continuous variables are dichotomized at levels generally accepted to confer an increased risk for 98 
cardio-metabolic endpoints. As various cutoffs on chronological age are in use, in part reflecting the highly non-linear relation between 99 
chronological age and disease risk, we choose to split chronological age in three categories (I ‘young’: < 45 years [TRUE/FALSE]; II ‘middle-100 
aged’:  ≥ 45 years [TRUE/FALSE]] and III ‘old’: < 65 years [TRUE/FALSE]]; ≥ 65 years).  We integrated Body Mass Index, waist 101 
circumference and sex into one sex-specific measure of ‘obesity’. Similarly, we integrated diastolic blood pressure (DBP) and systolic blood 102 
pressure to arrive at one variable ‘high pressure’. Overall, we obtain data for 20 dichotomous phenotypic variables. Colors indicate groupings. 103 
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Through the paper, we indicated some of the clinical variables with the following abbreviation: BMI=Body Mass Index, med=medication, 104 
e.g.: lipid or blood pressure lowering medication, hsCRP=high-sensitivity C-Reactive Protein, eGFR=estimated Glomerular Filtration Rate, 105 
chol=cholesterol, hgb=haemoglobin, wbc=white blood cells.  106 
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RESULTS 107 

1H-NMR metabolomics can be used to successfully predict 19 out of 20 clinical variables 108 

routinely measured in epidemiological and clinical studies 109 

Missing or incomplete phenotypic information can severely deteriorate the statistical power 110 

in epidemiological studies. Here we evaluate the ability of Nuclear Magnetic Resonance (1H-111 

NMR) metabolomics (Nightingale Health©, Helsinki, Finland) to reconstruct conventional 112 

clinical variables. For this purpose, we trained and evaluated prediction models (Figure 1A) 113 

for 20 conventional clinical variables (Figure 1B) using data of ~31,000 individuals collected 114 

within the Dutch Biobanking and BioMolecular resources and Research Infrastructure 115 

(BBMRI-NL: https://www.bbmri.nl/). Out of 220 metabolomic variables measured on the 116 

platform, we employed 56 metabolic markers, selected to be the most uncorrelated [21], [22] 117 

and most successfully measured in the BBMRI studies (Methods and Supplementary 118 

Materials). Conventional clinical variables were transformed or constructed with the emphasis 119 

to be able to capture clinically relevant aspects of disease risk. For instance, we dichotomized 120 

continuous variables according to generally accepted clinical thresholds, thus obtaining for 121 

each of these clinical variables an ‘at risk’ [TRUE/FALSE] variable. For the same purpose, 122 

some variables were either merged or split. For instance, a sex-specific ‘obesity’ 123 

[TRUE/FALSE] variable was defined using body mass index, waist circumference and sex, 124 

whereas chronological age was split into three categories (Figure 1B). Overall, we were able 125 

to construct and evaluate 20 variables mainly representing risk factors of cardio-metabolic 126 

health that are routinely assessed in epidemiological and clinical studies. 127 

Logistic Elastic-NET regression models were trained for each of the 20 dichotomous 128 

variables, measured in at least 6 of the BBMRI studies, in both healthy and diseased 129 

individuals. Model development was performed in two loops to prevent overtraining. An inner 130 

loop of 5-Fold Cross Validation with 5 repetitions was used to tune the hyperparameters of the 131 
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model. Model performances where then evaluated in an outer loop of held out data, using again 132 

a 5-Fold CV or a Leave-One-Biobank-Out-Validation (LOBOV) (Figure 1A, Methods). We 133 

assessed model performances using the mean Area Under the Curve (AUC) of the receiver-134 

operator curve obtained in the outer 5-Fold CV (Table 1) and considered a model’s 135 

performance to be sufficiently accurate at AUC > 0.7. Overall, 19 out of 20 models passed this 136 

criterium, with only a single phenotypic variable, ‘high-pressure’, that could not be accurately 137 

captured by 1H-NMR (AUC5-Fold CV = 0.68). Strikingly, 9 out of 20 models achieved an AUC5-138 

Fold CV > 0.9. While some of these high performances are expected as they directly relate to 139 

metabolic markers assessed on the platform (‘Low eGFR’, ‘high triglycerides’, ‘high LDL 140 

cholesterol’, ‘high total cholesterol’, and ‘low LDL cholesterol’), this is not the case for four 141 

other high performing models: ‘diabetes’ (AUC5-Fold CV = 0.94), ‘metabolic syndrome’ (AUC5-142 

Fold CV = 0.93), ‘sex’ (AUC5-FoldCV = 0.92), ‘lipid medication’ (AUC5-Fold CV = 0.90). Also, other 143 

important cardio-metabolic health statuses, including ‘obesity’, ‘high CRP’ and ‘blood 144 

pressure lowering medication’ were predicted at a more than satisfactory accuracy (AUC5-Fold 145 

CV > 0.8), indicating that overall, the 1H-NMR metabolome can be used to impute a broad 146 

spectrum of common clinical variables.  147 

As the performances of our models may vary per biobank due to study-specific 148 

characteristics, e.g. varying study inclusion criteria or protocols for sample storage, we also 149 

evaluated the variation of our model performances across biobanks. First, using a Leave-One-150 

Biobank-Out-Validation (LOBOV), we evaluate how our models would perform when applied 151 

to data of a new unseen biobank. As expected, mean model accuracies of the LOBOV, 152 

weighted based on the size of the testing biobank, show more variation across folds (Figure 153 

S2A-B) and are generally slightly lower than the overall results of the 5-Fold CV (Table 1). In 154 

particular, some of the smaller studies containing diseased patients showed relatively poor 155 

accuracies (Figure S2B). Indeed, surrogate values do show cohort specific effects, but 156 
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interestingly, this does not necessarily affect its predictive performance within cohorts (Figure 157 

S2C). Overall, 14 out of the 20 models performed on average satisfactorily (AUCLOBOV > 0.7) 158 

across all studies in the LOBOV setting.  159 

Table 1 | Performances of the 20 metabolic predictors 

Binary Outcomes 
(threshold) # samples 

 
# True 

positives 

Results (AUC) 
# 

cohorts 
5-Fold CV 

(mean) 
LOBOV 

(weighted mean) 

Low eGFR 
(eGFR	≤ 60 ml/min [23]) 21,439 23 1,196 (5.6%) 0.99 [0.98-0.99] 0.97 [0.91-0.99] 
High triglycerides 
(trig	≥ 2.3 mmol/L [24]) 13,401 11 1,645 (12.3%) 0.97 [0.97-0.98] 0.95 [0.84-0.99] 
High LDL cholesterol 
(LDL ≥ 4.1 mmol/L [24]) 13,261 11 2,051 (15.5%) 0.96 [0.96-0.97] 0.97 [0.86-0.98] 
High total cholesterol 
(totchol ≥ 6.2 mmol/L [24]) 16,586 11 3,206 (19.3%) 0.96 [0.96-0.96] 0.96 [0.83-0.99] 
Low HDL cholesterol 
(HDL ≤ 1.3 mmol/L [24]) 16,506 11 7,414 (44.9%) 0.95 [0.95-0.96] 0.95 [0.85-0.96] 
Diabetes 
(TRUE/FALSE) 18,841 16 4,034 (21.4%) 0.94 [0.93-0.9] 0.86 [0.72-0.98] 
Metabolic syndrome 
(TRUE/FALSE) 7,811 6 3,452 (44.2%) 0.93 [0.92-0.94] 0.86 [0.71-0.93] 
Sex (male) 
(TRUE/FALSE) 21,610 23 10,281 (47.6%) 0.92 [0.92-0.93] 0.91 [0.73-0.99] 
Lipid medication 
(TRUE/FALSE) 17,707 14 5,783 (32.7%) 0.91 [0.90-0.91] 0.85 [0.77-0.94] 
Low age 
(age < 45 y.o.) 21,519 23 3,353 (15.6%) 0.89 [0.88-0.90] 0.80 [0.55-0.85] 
High hsCRP 
(hsCRP > 3mg/L [25]) 5,180 8 1,548 (29.9%) 0.86 [0.84-0.86] 0.81 [0.7-0.86] 
Blood pressure lowering medication 
(TRUE/FALSE) 15,832 13 7,234 (45.7%) 0.82 [0.81-0.83] 0.71 [0.51-0.84] 
High age 
(age	≥	65 y.o.) 21,519 23 8,273 (38.4%) 0.82 [0.80-0.83] 0.73 [0.64-0.86] 
Obesity status 
(BMI	≥30 kg/𝑚! and w.c. ≥ 102 cm [M]  
BMI	≥30 kg/𝑚! and w.c. ≥ 93 cm [F]  [26]) 19,322 18 3,135 (16.2%) 0.78 [0.75-0.80] 0.76 [0.69-0.81] 
Low hemoglobin 
(hgb ≤ 6.67 mmol/L [M]; 
hgb ≤ 7.62 mmol/L [F] [27]) 10,508 6 1,299 (12.4%) 0.76 [0.73-0.78] 0.72 [0.63-0.75] 
Low white blood cells 
(wbc	≤ 4.5x10" L [27]) 9,496 6 818 (8.6%) 0.73 [0.69-0.76] 0.61 [0.5-0.71] 
Current smoking 
(TRUE/FALSE) 21,662 23 8,276 (38.2%) 0.71 [0.70-0.72] 0.63 [0.48-0.78] 
Alcohol consumption 
(TRUE/FALSE) 16,430 13 11,763 (71.6%) 0.71 [0.70-0.73] 0.60 [0.48-0.70] 
Middle age 
(45 y.o. ≥Age < 65 y.o.) 21,519 23 9,893 (46.0%) 0.71 [0.70-0.72] 0.58 [0.50-0.69] 
High pressure 
(systolic ≥ 140 mmHg and  
diastolic ≥ 90 mmHg [24]) 17,509 12 7,765 (44.3%) 0.68 [0.66-0.69] 0.60 [0.52-0.76] 
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# samples: number of participants; # cohorts: number of cohorts that we could use for training the models and for the evaluation using 5-Fold Cross 
Validation (5-Fold CV); # TRUE POSITIVES: the number of samples with original variable equal to TRUE; Results (AUC): 5-Fold CV= the mean 
AUCs of the 5-Fold CV) and LOBOV= the mean AUCs of the Leave One Biobank Out Validation weighted based on the size of the testing biobank. 
[M]: male, or [F]: female specific criteria, eGFR=estimated glomerular filtration rate, w.c=waist circumference, hgb=haemoglobin, wbc=white blood 
cells. 
 

 160 
Metabolic surrogates show dependencies mimicking the conventional clinical variables  161 

Given that all models are trained on a relatively limited set of metabolic markers, we 162 

investigated to what extent the produced models and predictions show mutual dependencies. 163 

For this purpose, we first visualized the coefficients (betas) of the logistic Elastic-NETs 164 

(Figure 2) to show the relative importance of the metabolites within each of the prediction 165 

models. While the selection of variables for the models shows a distinct pattern, we also note 166 

some similarities, as quantified by the correlations between the model coefficients (Figure S3). 167 

Overall, we note a clear preference for the models to include metabolites of the classes 168 

“Lipoproteins” and “Lipids and related measures” over “Amino Acids”. In addition, we note 169 

that the models of related phenotypes also display some resemblances in the employed features, 170 

for instance ‘lipid medication’ and ‘blood_pressure_lowering_medication’ share some model 171 

characteristics. 172 

We next evaluated correlations between the outputs of our models, from here on referred 173 

to as the ‘metabolic surrogates’ (Figure 3) and compared these to correlations between the 174 

original clinical variables (Figure S1B) in the BBMRI.nl data set. Overall, we observe that the 175 

model outputs show correlation patterns and groupings that largely mimic that of the original 176 

variables. For instance, model outputs trained on variables related to weight problems, i.e. 177 

‘obesity’, ‘diabetes’, ‘metabolic syndrome’, show high mutual correlations, and moreover are 178 

grouped with model outputs trained on medication usage, i.e. ‘lipid medication’ and ‘blood 179 

pressure lowering medication’. Although we observe some correlations between the outputs 180 

of our different age predictors i.e. ‘low age’, ‘middle age’, ’high age’, we observe that ‘high 181 

age’ is grouped with the models for ‘high hscrp’, ‘lipid medication’ and ‘blood pressure 182 

lowering medication’, while ‘middle age’ is grouped with ‘current smoking’ and ‘alcohol use’ 183 
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and ‘low age’ with ‘low white blood cell count’. This suggests that at different ages, different 184 

conventional clinical variables play a role in physiology; an aspect well-known from literature 185 

[28]–[30]. Overall, this indicates that our models show mutual dependencies similar as we 186 

observe for the original clinical variables. 187 

 188 
Figure 2: ElasticNETs metabolites relative importance. The heatmap reports the relative importance of the metabolites 189 
(columns) in each of the trained models (rows). Prior to visualization, metabolite coefficients were scaled per model by 190 
dividing them by the coefficients’ sum in each model to create the relative importance per model. Top: Metabolites were 191 
then ordered based on the sum of their importance across all models. In addition, the models are clustered on the similarity 192 
between relative importance. Bottom: Categorized metabolic measures: “Amino acids”, “energy metabolism”, 193 
“inflammation”, “lipoproteins” and “lipids and related measures”. Right: Mean AUCs of the 5-FoldCV in a scale of 194 
purple. 195 

 196 
Figure 3: Heatmap of pairwise correlations of the metabolic based surrogate markers calculated in BBMRI-NL. 197 
The heatmap of correlations of the metabolic surrogate values of the 19 successful models, clustered based on the 198 
correlation levels, between the imputed metabolic surrogate levels within BBMRI-NL. 199 

 200 
Projection in an independent study demonstrates model accuracy  201 

We performed a more extensive evaluation of the surrogate values by employing 202 

Nightingale 1H-NMR metabolomics and phenotypic data of the Leiden Longevity Study, a 203 

ElasticNETs: scaled coefficients
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cohort excluded from the training and testing sets [20]. The Leiden Longevity Study is a two-204 

generation family-based cohort consisting of highly aged parents (LLS-SIBS, 851 individuals, 205 

age median = 92 years old) their middle-aged offspring and their partners (LLS-PAROFF, 206 

2,307 individuals, age median = 59 years old). Using our models to project metabolic 207 

surrogates in the LLS-PAROFF gave an independent confirmation that conventional clinical 208 

variables can be readily captured by 1H-NMR metabolomics. Splitting the surrogate values by 209 

the actual labels of the corresponding binary phenotypes generally showed a good separation 210 

for important cardio-metabolic variables like ‘sex’, ‘diabetes status’, ‘lipid medication’, 211 

‘blood_pressure_lowering_medication’ and ‘high LDL cholesterol’ (Figure 4A and S4), 212 

emphasizing the suitability of our models for quality control purposes or to impute missing 213 

data. For instance, model results for ‘sex’ could be applied to verify absence of sample mix-214 

ups (𝑡. 𝑠𝑡𝑎𝑡 = 44.58, 𝑝 = 1.4𝑥10!"#"). In addition, surrogate values seem informative on the 215 

nature of the missingness of phenotypic data. For instance, participants with a missing diabetes 216 

status typically had metabolic surrogate values similar to those of participants without diabetes 217 

(diabetes: 𝜇$ = 	0.05, 𝜇% = 	0.41, 𝜇&' = 	0.08), suggesting that a missing diabetes status 218 

generally implies ‘non-diabetics’ in this cohort. Similar observations were made for medication 219 

status (lipidmed: 𝜇$ = 	0.22, 𝜇% = 	0.45, 𝜇&' = 	0.21 and blood_pressure_lowering_med: 220 

𝜇$ = 	0.44, 𝜇% = 	0.55, 𝜇&' = 	0.46): participants with missing statuses were more similar to 221 

non-medication users than medication users. In contrast, participants with missing values in 222 

LDL cholesterol had surrogate values indicating “at risk” levels of LDL cholesterol 223 

(high_ldl_chol: 𝜇$ = 	0.07, 𝜇% = 	0.66, 𝜇&' = 	0.14). Lastly, our surrogates also allow for 224 

explorative analyses of totally unrecorded variables. For instance, the ‘metabolic syndrome’ 225 

surrogate indicates participants who are more likely to have metabolic syndrome, a status 226 

which was not assessed in the LLS-PAROFF cohort (Figure 4A). 227 

 228 
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Projection in the Leiden Longevity Study shows associations with additional cardio-229 

metabolic phenotypes 230 

Within the LLS-PAROFF we had access to several additional variables pertaining to one’s 231 

cardio-metabolic risk namely hormone levels of insulin, leptin, and adiponectin, as well as the 232 

levels of the inflammatory marker interleukin 6 (IL6) (Figure 4B). As expected, insulin levels 233 

correlated positively with most surrogate cardio-metabolic risk factors and endpoints, 234 

including ‘diabetes’ [31] (𝑟 = 0.28, 𝑝 = 7.6𝑥10!()) and even more so with ‘metabolic 235 

syndrome’ (𝑟 = 0.52, 𝑝 = 1.4𝑥10!#*)) [32]. Conversely, both ‘low wbc’ and ‘low age’ were 236 

inversely correlated with insulin, both reflecting the associations with decreased insulin 237 

sensitivity in those with high white blood cell counts [33] or in old age [34]. A similar analysis 238 

for the satiety hormone leptin showed the strongest positive correlations with ‘obesity’ [35] 239 

(𝑟 = 0.3, 𝑝 = 5.6𝑥10!(+), but also with ‘high hscrp’[36]	(𝑟 = 0.29, 𝑝 = 4.2𝑥10!(,). A 240 

significant correlation with leptin was also found for ‘metabolic syndrome’ [37] 241 

(𝑟 = 0.15, 𝑝 = 3.9𝑥10!#"), yet not ‘diabetes’ [38] (𝑟 = 0.02, 𝑝 = 0.33). In line with 242 

previous studies, higher levels of the adiponectin hormone generally correlated with lower 243 

values of the surrogates, most prominently with ‘low hdlchol’ (	𝑟 = −0.47, 𝑝 = 8.6𝑥10!#)") 244 

and ‘high triglycerides’ (𝑟 = 0.3, 𝑝 = 1.1𝑥10!(-) [39].  Higher adiponectin levels were 245 

positively correlated with ‘low wbc’(𝑟 = 0.35, 𝑝 = 6.1𝑥10!,-), reproducing the previously 246 

reported association by Matsubara et al [40]. Levels of the inflammatory marker IL6 were most 247 

prominently positively correlated with the surrogates ‘high hscrp’ [41] (𝑟 = 0.31, 𝑝 =248 

8.7𝑥10!*#), ‘current smoking’ [42] (𝑟 = 0.2, 𝑝 = 3.9𝑥10!#"), and inversely correlated with 249 

‘low wbc’ [43] (𝑟 = −0.19, 𝑝 = 3.9𝑥10!#"). When comparing these correlation patterns 250 

obtained with the surrogate values (Figure 4B) with those you would get when using the 251 

original values (Figure S7A), we generally notice highly similar trends (𝑟	~	0.83, Figure 252 

S7F), as exemplified for leptin (Figure 4C). Overall, these findings indicate that our metabolic 253 
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surrogates faithfully reproduce the original clinical variables in their association with insulin, 254 

leptin, adiponectin and IL6. 255 

 256 
Figure 4: Metabolic surrogates applied to LLS-PAROFF: [A] Paired boxplots show surrogate values split between 257 

the TRUE/FALSE (0/1) in the original values of the clinical variables (*** p value ≤ 0.001). For metabolic syndrome the 258 
original variables are entirely missing, so no p-value is reported. [B] Heatmap of the correlations between the metabolomic 259 
surrogates (columns) and four additional cardio-metabolic biomarkers (rows) available in LLS-PAROFF. Values of insulin, 260 
leptin, adiponectin and IL6 were transformed with a natural logarithm. [C] Paired bar plots comparing the correlations 261 
computed between leptin and the metabolic surrogates (blue) and those computed between leptin and the values of the original 262 
clinical variables (red) the surrogates are trained to predict. 263 

 Metabolic surrogates to explore confounders in Metabolome Wide Association Studies 264 

We next explored the use of 1H-NMR metabolic surrogates to complement missing 265 

phenotypic data in metabolome-wide association studies (MetaboWAS). As an example, we 266 

evaluated the association of metabolic markers with Type 2 Diabetes status (T2D) in absence 267 

of information on a known potential confounder: BMI. We designed a controlled experiment 268 

to evaluate to what extent surrogate ‘obesity’ can replace BMI, using data of 1,697 individuals 269 

of LLS-PAROFF with complete metabolomic, BMI and diabetes status, of which 79 are 270 

diagnosed with type 2 diabetes. 271 

First, we ascertained that BMI was indeed a confounder, also within the LLS-PAROFF, by 272 

showing that BMI associated with the outcome (Type 2 Diabetes status, t-test= -7.83, p = 273 

8.25x10!#* Figure S8A), as well as many of the determinants (147 significant metabolites 274 

*** *** *** *** ***
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after correction, see Methods) of the MetaboWAS. Concomitantly, further adjustment of the 275 

MetaboWAS on T2D for BMI drastically reduced the number of significant metabolites. To 276 

compare, when adjusting for age and sex we identified 136 metabolites significantly associated 277 

with diabetes status, whereas further adjustment for BMI identified 80 significant metabolites 278 

(Figure S9B Comparison 1). Next, we performed the same association analyses using the 279 

‘obesity’ surrogate as confounder. Similar to BMI, also the ‘obesity’ surrogate is significantly 280 

higher in diabetics as compared to non-diabetics (t-test = -11.2, p = 2.48x10!)- Figure S8B) 281 

and was associated with many of the metabolites (176 significant associations). Further 282 

adjusting the MetaboWAS on T2D for ‘obesity’ reduced the number of significant metabolites 283 

to 66 (Figure S9B Comparison 2). 284 

We then investigated to what extent adjusting for BMI or adjusting for the ‘obesity’ 285 

surrogate yields similar metabolite markers to T2D associations, by comparing the obtained 286 

estimates from both models (Figure 5). Overall, highly similar (𝑟) = 0.902) associations 287 

between metabolic markers and T2D are found for both models, with glucose being the most 288 

significantly associated marker in both (𝑝 = 9.43𝑥10!)- when correcting for BMI and 𝑝 =289 

1.6𝑥10!), correcting for ‘obesity’). While most metabolites reported to be significantly 290 

associated with T2D overlap between the two models (62 out of 227; in purple), some 291 

discrepancies were observed, particularly at the significance threshold. When correcting for 292 

BMI, 18 significant metabolic markers were identified, that were not identified when correcting 293 

for ‘obesity’ (red dots, false negative rate ~ 0.11). Conversely, 7 metabolites were deemed 294 

significantly associated with diabetes status when adjusting for ‘obesity’, but not when 295 

adjusting for BMI (blue dots, false positive rate ~ 0.027). Nevertheless, overall, the differences 296 

in estimated effects remain small, indicating that metabolic surrogates may prove useful to 297 

account for missing data in epidemiological studies. 298 
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 299 
Figure 5: Comparison between the estimated coefficients of metaboWAS on T2D adjusted for BMI or for surrogate 300 
‘obesity’. On the x-axis the metaboWAS for diabetes adjusting for BMI and on the y-axis the metaboWAS for diabetes adjusted 301 
for surrogate obesity. The data set composed of 1,697 individuals, 79 of which are diabetics. Estimated coefficients for each 302 
metabolite (points) are colored based on their significance in the two models: purple: significant in both; red: significant when 303 
adjusted for BMI only; blue: significant when adjusted for surrogate obesity only; black never significant. Lower right corner: 304 
a contingency table with the number of significant and non-significant metabolites identified using the two models. 305 

Metabolic surrogates associate with incident all-cause mortality in older individuals 306 

Next, we evaluated whether metabolic surrogates are indicative of health at old age, by 307 

associating these with all-cause mortality in a nonagenarian subsample of the Leiden Longevity 308 

Study (LLS_SIBS; 844 individuals, median age at baseline: 92 years old) (Figure 6A). Using 309 

a Cox proportional hazards model adjusted for sex and age at inclusion for each of the 19 310 

metabolic surrogates (Materials and Methods), we observed that 13 out of the 19 surrogates 311 

associated significantly with all-cause mortality (Figure 6, ‘all’). In line with previous reports, 312 

we observed the largest effect sizes with the surrogate levels of ‘high age’, ‘medications 313 

usage’, ‘diabetes status’, ‘high hscrp’ and ‘hemoglobin’. As previous studies have reported 314 

sex-specific associations for these clinical variables with all-cause mortality, we conducted a 315 

stratified analysis [44]–[50]. Although, the direction of association with all-cause mortality 316 

remains generally the same between men and women, the strengths and their significance are 317 

in some cases different. For instance, the surrogate ‘diabetes’ is associated with a higher risk 318 
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on mortality in men (HR = 1.23, p = 6.42x10!(), than for women (HR = 1.11, p = 3.1x10!"), 319 

the same goes for ‘blood pressure lowering medication’ (men: HR = 1.3, p = 1.13x10!*, 320 

women: HR = 1.1, p = 6.39x10!"). In contrast, ‘low hemoglobin’ is associated with a higher 321 

risk in women (HR = 1.5, p = 1.95x10!#"), than men (HR = 1.37, FDR = 2.42x10!-).  322 

To identify the minimal set of metabolic surrogates independently associating with all-323 

cause mortality, we performed a stepwise (forward/backward) cox regression, adjusted for age 324 

at sampling, in the LLS-SIBS dataset (Figure 7A-B), stratified for sex. The surrogates ‘high 325 

hsCRP’ and ‘high triglycerides’ emerged as independent predictive features in both male and 326 

female models, associated with an increased and decreased risk respectively. While eight 327 

surrogates contributed to the male model, including ‘lipid medication’, ‘high age’, ‘high 328 

hsCRP’ and ‘low hdlchol’, only three surrogates contributed to the mortality prediction in 329 

females: ‘high hsCRP’, ‘high triglycerides’ and ‘low hemoglobin’. These findings are in line 330 

with previous reports that different risk factors seem to predict survival up to the highest ages 331 

for the different sexes [51]–[53]. 332 

 333 
Figure 6: Associations of the surrogate metabolic measures with incident all-cause mortality. Associations of the 334 
metabolic surrogates with time to all-cause mortality in LLS-SIBS, in groups comprising the entire set (“All”, N = 844 with 335 
838 reported deaths), males (N = 326 with 325 reported deaths) or females (N = 518 with 513 reported deaths). 336 
 337 
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Figure 7: Composite metabolomics predictors of incident all-cause mortality: Predictors of time to death for males [A] 338 
and females [B], in LLS-SIBS, composed using the surrogate metabolic measures, sex and age. “(cluster)” refers to the variable 339 
controlling for family relationships (methods). Cox regression models were made using a step forward/backward selection.  340 
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Discussion 341 

Missing phenotypic data is common in large epidemiological studies and in particular 342 

impedes biomarker research in older individuals. We employed 1H-NMR metabolomics data 343 

as a single source of information to successfully impute 19 out of 20 conventional clinical 344 

variables that mainly relate to cardio-metabolic health. We highlighted the potential of our 345 

imputation models for conventional clinical variables with three application scenarios. First, 346 

we applied our models to an independent study, the Leiden Longevity Study, demonstrating 347 

that we can reconstruct conventional clinical variables at high accuracy. Secondly, we showed 348 

the value of metabolic surrogates in omics studies when data on potential confounders is 349 

missing. Finally, we exemplified how metabolic surrogates can be used to explore risk factors 350 

of health in older individuals by showing that multiple metabolic surrogates are independently 351 

predictive of all-cause mortality. 352 

Using logistic ElasticNET regression models we were able to reconstruct a broad range of 353 

conventional clinical variables assessed in BBMRI-NL pertaining to physiological measures, 354 

body composition measures, environmental exposures, inflammatory factors, medication usage 355 

blood cell composition, lipids metabolism, and also clinical endpoints. For this purpose, we 356 

constructed composite variables that may better capture particular aspects of health, for 357 

instance, our ‘obesity’ variable integrates body mass index, waist circumference and sex to 358 

create a sex-specific measure for overweight. In addition, we chose to construct binary 359 

representations of the continuous clinical variables for several reasons. First, we binarized 360 

continuous variables for a practical reason – to be able to judge all models on the same criteria. 361 

Secondly, predicting continuous variables using linear ElasticNET regression models 362 

emphasizes the prediction of the extremes of a phenotypic distribution, i.e. the model will fit 363 

the most atypical participants, whereas the current approach emphasizes to predict the 364 

commonly populated phenotypic range in which participants become at risk. Thirdly, our 365 
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models output a posterior probability that indicates the likelihood (a continuous score) of a 366 

sample belonging to one of two labels, e.g. obese/non-obese. In effect, these posteriors 367 

reconstitute part of the information lost when dichotomizing continues variables, as 368 

exemplified by the observed correlation patterns between surrogates that mimic the correlation 369 

patterns between the original variables.  370 

Our pre-trained models for conventional clinical variables allow for the imputation of 371 

missing datapoints in partially incomplete phenotypic variables, and moreover they offer the 372 

opportunity to explore associations with completely unobserved phenotypic variables. The 373 

latter is very much in line with the current use of PolyGenic Scores (PGSs) [54]–[56]. A PGS 374 

captures the genetic propensity of the realization of a particular polygenic phenotype. Nearly a 375 

thousand PGSs have been collected [57], which can be used to systematically explore 376 

correlations between a measured variable of interest and a wide array of phenotypes-by-proxy 377 

in genetic studies. We propose a similar use for metabolic surrogates in large metabolomics 378 

studies, yet with two noteworthy distinctions. Whereas PGSs can arguably be used to tease out 379 

causality in so-called Mendelian Randomization studies [58], metabolomic surrogates cannot. 380 

In contrast, while PGSs often only explain a very modest part of their respective phenotypes, 381 

metabolic surrogates explain a much larger part, thus enabling different types of applications. 382 

We illustrated this in our second application scenario where we showcased the use of surrogates 383 

to explore potential confounding by non-assessed phenotypic variables in omics studies. While 384 

use of actual phenotypic variables will always be preferred over metabolic surrogates, the 385 

availability of these metabolic surrogates can thus be used to direct replication efforts or to 386 

inform the design of new or follow-up studies. 387 

Besides anthropometric measures and other physiological characteristics, the blood 1H-388 

NMR metabolome was previously also shown to capture aspects directly pertaining to health 389 

outcomes. In particular, we and others have previously reported 1H-NMR metabolomics-based 390 
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risk estimators of cardiometabolic disease [59], [60], pneumonia and COVID infection [61], 391 

and all-cause mortality [17]. While this clearly illustrates the vast potential of the blood 1H-392 

NMR metabolome as a universal readout for health outcomes, it also raises the question what 393 

factors give rise to metabolomic profiles associated with adverse outcomes. Given that the find 394 

variation in the 1H-NMR metabolome is the result of a complex interplay of both environmental 395 

and genetic factors, we evaluated whether our surrogates might give us a first indication. To 396 

do so, we tested which of our surrogates might be indicative of all-cause mortality in an elderly 397 

subset of the LLS-study. Intriguingly, by employing our pre-computed models as well as when 398 

we built multi-variate cox-regression models for time-to-death, we find metabolic surrogates 399 

that relate to conventional clinical risk factors known to associate with mortality risk at old 400 

age. Moreover, sex-stratified analyses recapitulate some of the known differences in mortality 401 

associations observed at old age, with for instance many more risk factors independently 402 

associated for mortality in males, as compared to females. These results illustrate that 403 

metabolic surrogates can aid in the interpretation of metabolomics-based risk estimators. 404 

This study has several limitations. LOBOV analyses revealed that the trained surrogates 405 

may show study-specific effects that may relate to employed procedures of data collection or 406 

sample storage of the cohorts under investigation. While these artifacts may be addressed using 407 

batch-correction algorithms [62], or employing deep learning models for the prediction tasks, 408 

we note that differences between studies may also be due to valid biological reasons, such as 409 

differences in inclusion criteria. Secondly, the number of biomarkers captured by the targeted 410 

NMR platform is small compared to the whole human metabolome (over 19,000 according to 411 

the Human Metabolome Database [63]). Therefore, more elaborate, though typically more 412 

costly, high-throughput platforms might reach even higher accuracy levels. However, 413 

employing more biomarkers also has the danger of overfitting to the aforementioned study-414 

related artifacts.  415 
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In conclusion, we have shown that the blood metabolome assayed by 1H-NMR 416 

metabolomics can successfully capture a broad set of conventional clinical variables opening 417 

various possibilities to exploit surrogates of these clinical variables in in large epidemiological 418 

and clinical studies.  419 
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MATERIALS and METHODS 420 
 421 

1. Study populations 422 

The samples used for the current study are part of the BBMRI-NL Consortium (Dutch 423 

Biobanking and BioMolecular resources and Research Infrastructure, https://www.bbmri.nl/), 424 

which includes the following 28 Dutch biobanks: ALPHAOMEGA, BIOMARCS, CHARM, 425 

CHECK, CODAM, CSF, DMS, DZS_WF, ERF, FUNCTGENOMICS, GARP, HELIUS, 426 

HOF, LIFELINES, LLS_PARTOFFS, LLS_SIBS, MRS, NESDA, PROSPER, RAAK, RS, 427 

STABILITEIT, STEMI_GIPS-III, TACTICS, TOMAAT, UCORBIO, VUMC_ADC, 428 

VUNTR. A description of the cohorts included is provided in the Supplementary Materials. 429 

Ethics committees approved the protocols for these studies in all the involved institutes, and 430 

all participants provided informed consent. The whole data set contains samples of ~31,000 431 

individuals. 432 

 433 
2. Metabolomic measurements 434 

 The present study included metabolite concentrations measured in EDTA plasma 435 

samples using the high-throughput proton Nuclear Magnetic Resonance (1H-NMR) 436 

metabolomics (Brainshake Ltd./Nightingale Health©, Helsinki, Finland). This device provides 437 

the quantification of routine lipids, lipoprotein subclasses, fatty acid composition and various 438 

low-molecular weight metabolites including amino acids, ketone bodies and glycolysis-related 439 

metabolites in molar concentration units. Details about the methods and applications of the 440 

NMR platform have been provided previously [22], [64]. The total amount of metabolic 441 

variables reported is 226 for EDTA plasma samples, including the ratios and derived 442 

measurements, but only 63 of these were considered for the current study, to prevent overfitting 443 

[21], [59]. The list comprises the total lipid concentrations, fatty acids composition and low-444 

molecular-weight metabolites including ketone bodies, glycolysis-related metabolites, amino-445 
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acids and metabolites related to immunity and fluid balance (See the Supplementary Materials 446 

for a full list). 447 

 448 
3. Data Pre-processing 449 

a. Pre-processing of metabolomics data 450 

We included in our analyses all the cohorts reporting on all the 63 metabolic biomarkers, 451 

therefore we omitted CODAM (N = 254) and VUNTR (N = 3,896), which are missing 452 

acetoacetate and glutamine, respectively. We also decided to not consider the metabolites with 453 

low detection rates in more than one cohort (3-hydroxybutyrate) or which frequently failed to 454 

reach the minimum detection threshold (XL_VLDL_L, XXL_VLDL_L, L_VLDL_L, 455 

XL_HDL_L, L_HDL_L). We removed outlier samples with 1 or more missing metabolic 456 

measure (232 removed samples), 1 or more zeroes per sample (74 removed samples) and 457 

samples with any metabolite concentration level more than 5 standard deviations away from 458 

the overall mean per metabolomic variable (604 removed samples). The remaining 551 missing 459 

values in the dataset were imputed using the function nipals of the R package pcaMethods, and 460 

we z-scaled the metabolic measures across all samples to have comparable concentration levels 461 

between metabolites. The final data matrix comprised 26,107 samples across 56 metabolic 462 

variables. For more details, see Supplementary Materials. The number of samples used to train 463 

a predictor for a clinical variable depended on the number of samples missing this phenotypic 464 

information (Table 1). More information about the range of each phenotype within each 465 

biobank can be found in the Supplementary Materials. 466 

 467 
b. Binarization of the clinical variables 468 

To emphasize the relevant clinical conditions, we used clinical thresholds to obtain 469 

dichotomous variables out of the set of the available continuous risk factors, separating 470 
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between “normal” and “at risk” levels for each risk factor (in Table1 and in the Supplementary 471 

Document 3).  472 

c. Composed clinical variables 473 

We chose to include some composed clinical variables: 1) LDL cholesterol, which was 474 

calculated using the Friedewald equation [65] with the measured hdl cholesterol, triglycerides 475 

levels and total cholesterol; 2) eGFR (estimated Glomerular Filtration Rate), which is a 476 

measure for the kidney filtration rate of an individual, was calculated using the creatinine-based 477 

CKD-EPI equation [66]; 3) obesity, which is a binary variable describing if a person is 478 

clinically obese or not variable that uses BMI, waist circumference and sex based on the fniding 479 

of Flint et al. [26]; 4) high pressure, a binary variables which defines high blood pressure by 480 

using systolic and diastolic blood pressure [24]; 5) low_hgb (low hemoglobin), which is a 481 

binary variables describing ‘at risk’ levels of hemoglobin by using hemoglobin and sex [27]. 482 

 483 
4. Estimation of the metabolic surrogates 484 

a. Method selection 485 

The models considered for each Risk Factor are logistic regression models: 486 

 487 

�̂�. 	~	𝛽/ +>𝛽0𝑚0

*,

01#

𝛽# + 𝜀. 	488 

 489 
in which 𝑐. represent one of clinical variables of interest, 𝑚0 one of the 56 measured 490 

metabolites, 𝛽0 the regression coefficient, and 𝜀. the normal distributed reconstruction error. 491 

The regression coefficients are found by minimizing the ordinary least squares error, with the 492 

addition of an elastic net regularization term for the coefficients: 493 

 494 
𝜷(𝛼, 𝜆) = 𝑎𝑟𝑔𝑚𝑖𝑛2(	(𝑐. − �̂�.)) + 𝜆[𝛼‖𝜷‖# + (1 − 𝛼)‖𝜷‖)]) 495 

 496 
in which 𝜆 (∈ (0,∞)) represents the “shrinkage parameter” and 𝛼 (∈ (0,1)) is the mixing 497 

parameter balancing the L1 and L2 norm regularizations. We fixed the mixing parameter 𝛼 at 498 
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0.5 for the predictive models, like previously done by other authors and optimized the 499 

shrinkage parameter using an inner-fold cross-validation scheme. 500 

 501 

b. Training and validation procedure 502 

We employed two training-evaluation procedures to get an unbiased estimate of the 503 

models’ possible performances (Figure 1). As a first scenario, we used a Double 5-Fold-Cross-504 

Validation (5-Fold CV) with 5 repetitions. This procedure consists of two loops of 5FCV, one 505 

internal and one external, in which we first split the dataset in testing (20%) and training (80%) 506 

sets and then on the latter set we have another 5FCV repeated for 5 different times, which is 507 

done for an unbiased tuning of the model (setting the correct 𝜆 parameter) that is finally trained 508 

on the complete training dataset and tested on the left-out test data. Both 5-FoldCVs were done 509 

such that the original distribution of each clinical variable is maintained as much as possible 510 

(using the function createFolds from the R package caret). In the second training-testing 511 

procedure, we applied a Leave-One-Biobank-Out-Validation (LOBOV), which consists of 512 

holding out one of the biobanks with the considered variable available, which is then used as a 513 

test set, while training on the remaining biobanks [16]. Also, in this setting, we applied a 5FCV 514 

with 5 repetitions to tune the best model for each training set. 515 

 516 

5. Metabolome wide association studies 517 

We conducted Metabolome Wide Association Studies (MetaboWAS) using the middle-518 

aged cohort of the Leiden Longevity Study (LLS-PARTOFFs, 2,307 individuals, median age 519 

at baseline = 59 years old).  As metabolites distributions are often skewed, we first transformed 520 

all metabolite measurements using a rank inverse normalization (RIN). Applying a PCA on the 521 

LLS-PARTOFFs dataset revealed that the first 40 principal components explain 99% of the 522 

variance in the metabolites (Figure S9A). Hence, the p-value of the MetaboWASes were 523 
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Bonferroni corrected using 40 tests, i.e. a p-value designated significant when smaller than 524 

0.00125 (0.05/40) [60]. We performed 5 different MetaboWASs. 525 

 526 

6. Associations of the metabolic surrogates to all-cause mortality 527 

We used Cox proportional hazards models with follow-up time as the time scale, to test for 528 

associations between the metabolic surrogate measures and incident endpoints, i.e.  all-cause-529 

mortality in LLS-SIBS. We checked for associations adjusting for age and sex. To avoid bias 530 

due to familial correlations from pedigrees, we used robust standard errors (calculated with the 531 

Huber sandwich estimator) implemented in R coxph function. Considering that the population 532 

in LLS-SIBS has a different inclusion criterium for men (age > 89 years old) and women (age 533 

> 91 years old), we also evaluated associations separately in men and women. P-values were 534 

corrected using Benjamini Hochberg separately for each selection (all individuals, men and 535 

women) and considered significant the FDR < 0.05. To select potentially interesting metabolic 536 

surrogate, we used a stepwise procedure for the Cox regression models, corrected for sex and 537 

age. Starting from a model containing the full set of available variables, we removed or added 538 

an unselected metabolic surrogate at each round based on the improvement on the model 539 

calculated from the Akaike Information Criterion and considering the p-value of each variable 540 

included in the model. 541 
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