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ABSTRACT

We derive a novel model escorted by large scale compartments, based on a set of coupled delay differential equations
with extensive delays, in order to estimate the incubation, recovery and decease periods of COVID-19, and more
generally any infectious disease. This is possible thanks to machine learning algorithms applied to publicly available
database of confirmed corona cases, recovered cases and death toll. In this purpose, we separate i) the total cases
into 14 groups corresponding to 14 incubation periods, ii) the recovered cases into 406 groups corresponding to a
combination of incubation and recovery periods, and iii) the death toll into 406 groups corresponding to a combination
of incubation and decease periods. In this paper, we focus on recovery and decease periods and their correlation with
the incubation period. The estimated mean recovery period we obtain is 22.14 days (95% Confidence Interval(CI):
22.00 to 22.27), and the 90th percentile is 28.91 days (95% CI: 28.71 to 29.13), which is in agreement with statistical
supported studies. The bimodal gamma distribution reveals that there are two groups of recovered individuals with a
short recovery period, mean 21.02 days (95% CI: 20.92 to 21.12), and a long recovery period, mean 38.88 days (95% CI
38.61 to 39.15). Our study shows that the characteristic of the decease period and the recovery period are alike. From
the bivariate analysis, we observe a high probability domain for recovered individuals with respect to incubation and
recovery periods. A similar domain is obtained for deaths analyzing bivariate distribution of incubation and decease
periods.

Main

The outbreak of coronavirus disease 2019 (COVID-19), reported early in Wuhan (China)1 and spread around the world, is
creating dramatic and daily changes with profound impacts worldwide. As a consequence the outbreak was declared a pandemic
by the World Health Organization (WHO) in March 20202, and by the end of 2020, COVID-19 has infected about 79.2 millions
of people in the world, with an approximate cumulative global mortality of 3.2%2. To limit the impact of this deadly virus,
a rapid and widespread vaccination of the population is now in place. However, it is established that vaccine are not 100%
effective to stop the transmission or infection of COVID-19. In addition, huge numbers of global SARS-CoV-2 infections
have led to the emergence of variants, notably Alpha (B.1.1.7 UK), Beta (B.1.351 S. Africa), Gamma (P.1 Brazil), Epsilon
(B.1.429 California), Iota (B.1.526 New York), Delta and Kappa (B.1.617.2 and B.1.617.1 India) which make the situation more
challenging. In this circumstance to get a complete feature of COVID-19, it is essential to fully understand the key (incubation,
recovery and decease) periods.

We already successfully estimated the incubation period of COVID-19 in Canada3. In the present context, we focus on the
recovery and decease periods and their correlation with the incubation period. In the current framework, we define the recovery
period as the time from the contraction of the coronavirus to recovery, i.e., the incubation period plus the onset time from the
symptom to recovery; the latter is the same as the viral shedding of SARS-CoV-2. We describe the decease period in the same
way as the recovery period. Understanding the recovery period of disease is very useful information in the struggle against the
disease. If the incidence of a disease is remarkably high and the recovery period of the disease is also high then the prevalence
of the disease in the country is likely to increase which in turn puts extra health, economic and social burden on this country.
Understanding the recovery period of the disease will help governments to plan proper strategies to counter the disease and to
organize the requirements such as hospitals, doctors, medical staffs, medical equipment’s, etc. It will also help to implement
different social and economic policies which will be essential to fight the disease.

There are several statistical studies4–11, based on various samples of patients such as severe, non-severe, ICU, non-ICU,
large size, small size, meta-analysis, estimated the recovery time of the current pandemic. In addition to those statistical
approaches, there are numerous analytical and computational studies based on mathematical models, involving Ordinary
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Differential Equations (ODE)12–20 as well as Delay Differential Equations (DDE)21–26, to calculate the basic reproduction
number R0 and understand the underlying dynamics of the epidemic. Researchers usually consider single-delay models,
occasionally two delays.

To the best of our knowledge, we demonstrate for the first time a substantial compartment based model, with a total 830
partitions, in order to estimate the key (incubation, recovery, decease periods) periods of COVID-19 as well as the bivariate
distribution of incubation and recovery periods, and the bivariate distribution of incubation and decease periods. This will be
achieved using publicly available database27 of the total number of corona-positive cases, recovery and death toll. Using the
novel model, demonstrated here, we divide the publicly available database into thousands of groups, and these separated classes
are the key source for estimating all the key periods. This approach is free from any special type of samples in order to produce
the distributions of those periods; it only involves large scale computations for estimating about thousand model parameters.
After a single calculation of this method, we can generate the current distributions as well as previous distributions of those
periods. In the statistical based approaches, it is usually difficult to consider large incubation, recovery and decease periods if
the sample size is small. However, in our approach, we can go well beyond 14 days, the maximum incubation period that we
have set in this paper, and beyond the interval 2 weeks to 6 weeks, the range of recovery as well as decease periods that we
have considered in the current computations. As of May 23, 2021, the World Health Organization (WHO) had confirmed a total
of 1,359,180 cases of COVID-19 in Canada, including 25,231 deaths2. As of May 23, 2021 there are five provinces in Canada
with death toll more than 1000 (Fig.1(a)), and the recovery and death rates are respectively 96.1% and 0.7% (Fig.1(c)). During
the first wave of COVID-19 in Canada, January 22, 2020 to July 16, 2020, the recovery and death rates were respectively
66.5% and 8.1% (Fig. 1(b)). Here, we assume that the recovery and decease periods of COVID-19 remain unchanged i.e.,
these periods during the first wave and the present time are almost identical, and under this assumption we merely consider the
database of first wave for the calculation.

There are various studies on recovery period, and no result is reported (to the best of our knowledge) on bivariate distributions
as mentioned above. The key periods may depend on age28 (median-age / country), hard immunity, public health system,
corona testing capacities, daily corona cases, etc. For a better estimation of the key periods for a particular region, we need to
study local patients. Data collection is a bottleneck in studying those key periods for COVID-19 or other infectious diseases
using clinical survey, and we need a sample of large size for bivariate analysis. However, key periods can easily be estimated
using the approach we propose here, the publicly available database along with machine learning algorithms.

Results
The proposed model assists us to generate new refined recovery and death toll database, Rik and Dik, by dividing the total
recovered individuals and the total number of deaths as of July 16, 2020 into myriad of groups. The new database is the key
source for studying all kinds of distributions, reported in the article.

Validation of the proposed model
After estimating the model parameters with sufficiently small values of error functions, we obtain a good agreement (Figs.1(e),
1(f) and 1(g)) between the calculated values of the model variables such as total corona-positive cases, number of recovered
individuals, etc. and the available data27. The population of the infected group gradually increased until end of April 2020, and
thereafter slowed down (Fig. 1(d)).

Univariate distributions
The groups of recovered individuals Rik, i = 1,2, · · · ,14 and k = 1,2, · · · ,29, corresponding to the incubation period (in days)
τi, 1≤ τi ≤ 14, and recovery period (in days) ζk, 14≤ ζk ≤ 42 can be represented in a matrix form (Fig. 2(a)). We use the data
set ∑

14
i=1 Rik for ζk = 14,15, · · · ,42 to obtain the frequency distribution for recovery period and the corresponding fitted gamma

distributions, unimodal (Fig.2(b)) Γ(ζ ,Kr,θr) and bimodal (Fig.2(c)) 0.9365Γ(ζ ,Kr1,θr1)+0.0635Γ(ζ ,Kr2,θr2). Here, the
variable ζ indicates the recovery period and the parameters Kr = 18.62067, θr = 1.18892, Kr1 = 34.55447, θr1 = 0.60847,
Kr2 = 226.40545 and θr2 = 0.17171 with statistical p value less than 0.01. The mean recovery period we obtain using an
unimodal gamma distribution is 22.14 days (95% CI 22.00 to 22.27); the median of the recovery period is 21.74 days (95% CI
21.61 to 21.87); the 90th percentile is 28.91 days (95% CI 28.71 to 29.13); the 95th percentile is 31.20 days (95% CI 30.95 to
31.45). For a better estimation, we use a bimodal distribution, a linear combination of Γ(ζ ,Kr1,θr1) and Γ(ζ ,Kr2,θr2). The
mean of Γ(ζ ,Kr1,θr1) and Γ(ζ ,Kr2,θr2) are 21.02 days (95% CI 20.92 to 21.12 ) and 38.88 days (95% CI 38.61 to 39.15),
respectively. The percentile curves of unimodal and bimodal gamma distributions show (Fig.2(d)) that the median of unimodal
and bimodal are the same, although there are slight differences other than the median.

The groups death toll groups Dik, i = 1,2, · · · ,14 and k = 1,2, · · · ,29, and corresponding incubation period (in days)τi,
1 ≤ τi ≤ 14, and decease period (in days) ηk, 14 ≤ ηk ≤ 42 can be represented as a matrix (Fig. 2(e)). We use the data
set ∑

14
i=1 Dik for ηk = 14,15, · · · ,42 to obtain the frequency distribution for decease period and corresponding fitted gamma
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Figure 1. COVID-19 pandemic in Canada: (a) As of May 23, 2021 Canadian out break at-a-glance; the green, black and red
digits are represented the number of recovered individuals, death toll and active cases, respectively. (b) Percentage of recovered
(green), deaths (black) and active cases (red) in Canada during the first wave, January 22, 2020 to July 16, 2020. (c) Percentage
of recovered (green), deaths (black) and active cases (red) in Canada as of May 23, 2021. Model calculation for Canada
during the first wave, January 22, 2020 to July 16, 2020: (d) Estimation of the number of infected individuals. (e)
Estimation of the total number of coronavirus cases compared to the available data27. (f) Estimation of the total number of
recovered compared to the available data27. (g) Estimation of the total number of deaths compared to the available data27.
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Table 1. Comparison of several studies (including the present work) for infectious period along with sample size,
mean/median and ranges. Here SD and IQR stand for standard deviation and interquartile range, respectively.

Author Location Data size Parameter Reported Variation Comment
(days) (days)

Present work Canada 72,680 15.40 Mean 95% CI 14.87 to 15.92 Onset time from symptom
to recovery (OTSR)

14.28 95% CI 13.79 to 14.77 Short OTSR
32.14 95% CI 31.48 to 32.80 Long OTSR

Voinsky et. al.4 Israeli 5,769 Mean 13.24 to 14.81 Days from first positive to
first negative COVID test

Barman et. al.5 India 221 21 Mean 95% CI 12.82 to 29.32 Days of hospitalization
Age < 60 yrs.

25 95% CI 17.22 to 32.78 Days of hospitalization
Age > 60 yrs.

Cai et. al.6 China 298 14 Median 9 to 19 (IQR) Days of treatment within
hospital setting

Fang et. al.7 China 24 15.7 Mean 6.7(SD) Days of hospitalization,
non-ICU

Wu et. al.8 China 74 16.1 Mean 6.7(SD) Days of hospitalization,
severe and non-severe

Bi et. al.9 China 391 21 95% CI 20 to 22 Median time to recovery

Alinaghi et. al.10 Iran 478 13.5 IQR: 9 Median time to recovery
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Figure 2. Distribution of the recovery and decease periods: Results based on the total recovered cases of the first 177 days
during the pandemic in Canada starting from January 22, 2020 i.e., cumulative data as of July 16,2020. (a) Splitting values of
recovered individuals as a function of incubation and recovery periods. (b) Probability density function of the gamma
distribution Γ(ζ ,K,θ) with K = 18.62067 and θ = 1.18892. The blue bars indicate the densities obtained from the model
calculation. (c) Probability density function of the bimodal gamma distribution 0.9365Γ(ζ ,K1,θ1)+0.0635Γ(ζ ,K2,θ2) with
K1 = 34.55447, θ1 = 0.60847, K2 = 226.40545 and θ2 = 0.17171. The blue bars indicate the densities obtained from the
model calculation. (d) Percentile curves for unimodal and bimodal gamma distributions. (e) Splitting values of the deaths as a
function of incubation and decease periods. (f) Probability density function of the gamma distribution Γ(η ,K,θ) with
K = 21.33660 and θ = 1.03174. The blue bars indicate the densities obtained from the model calculation. (g) Probability
density function of the bimodal gamma distribution 0.9508Γ(η ,K1,θ1)+0.0492Γ(η ,K2,θ2) with K1 = 35.00855,
θ1 = 0.60511, K2 = 186.11379 and θ2 = 0.20636. The blue bars indicate the densities obtained from the model calculation.
(h) Percentile curves for unimodal and bimodal gamma distributions.
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Figure 3. Bivariate distribution of the incubation and recovery periods: (a) Histogram of the estimated data Rik for
i = 1,2, · · · ,14 and k = 1,2, · · · ,29 using the model. (b) Fitted bivariate normal distribution. (c) Two-dimensional display of
(b); the red region is the highly probable domain for recovery, and x (6.43, 21.91) denotes the center of the region. (d) Fitted
nonparametric density estimate with wide 33%; two peaks show that there are two distinguishable high probable regions. (e)
Two-dimensional display of (d); two x represent the centers of two high probable regions (3.49, 20.52) and (8.38, 20.35).
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Figure 4. Bivariate distribution of the incubation and decease periods: (a) Histogram of the estimated data Dik for
i = 1,2, · · · ,14 and k = 1,2, · · · ,29 using the model. (b) Fitted bivariate normal distribution. (c) Two-dimensional display of
(b); the red region is the highly probable domain for decease, and x (6.56, 21.64) denotes the center of the region. (d) Fitted
nonparametric density estimate with wide 40%; two peaks show that there are two distinguishable high probable regions. (e)
Two-dimensional display of (d); the x represent the centers of the high probable red region (8.17, 21.86).
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distributions, unimodal (Fig.2(f)) Γ(η ,Kd ,θd) and bimodal (Fig.2(g)) 0.9508Γ(η ,Kd1,θd1)+0.0492Γ(η ,Kd2,θd2). Here, the
variable η indicates the decease period and the parameters Kd = 21.33660, θd = 1.03174, Kd1 = 35.00855, θd1 = 0.60511,
Kd2 = 186.11379 and θd2 = 0.20636 with statistical p value less than 0.01 for Γ(η ,Kd ,θd), Γ(η ,Kd1,θd1) and equal to 0.18
for Γ(η ,Kd2,θd2) . The mean decease period we obtain using an unimodal gamma distribution is 22.01 days (95% CI 21.64 to
22.39); the median of the decease period is 21.67 days (95% CI 21.31 to 22.04); the 90th percentile is 28.30 days (95% CI
27.72 to 28.89); the 95th percentile is 30.39 days (95% CI 29.71 to 31.10). For better estimation, we use a bimodal distribution,
a linear combination of Γ(η ,Kd1,θd1) and Γ(η ,Kd2,θd2). The mean of Γ(η ,Kd1,θd1) and Γ(η ,Kd2,θd2) are 21.18 days (95%
CI 20.90 to 21.47) and 38.41 days (95% CI 37.41 to 39.40), respectively. The percentile curves show (Fig.2(h)) that the
percentiles of unimodal and bimodal distributions are almost the same.

Bivariate distributions
To analyze the bivariate distribution, we use the software Statgraphics29, based on the statistical package R. Using the
elements Rik for i = 1,2, · · · ,14 and k = 1,2, · · · ,29, we obtain a bivariate histogram (Fig.3(a)) for the incubation and recovery
periods. There are two peaks at the points (3, 19), i.e., for τi = 3 and ζk = 19, and (8, 20), i.e., for τi = 8 and ζk = 20,
corresponding to the high densities of recovered individuals. We estimate the histogram using a bivariate normal distribution
N (m(r)

τ ,mζ ,σ
(r)
τ ,σζ ,ρτζ ) (Fig.3(b)) where the variables τ and ζ represent the incubation and recovery periods, respectively.

The mean m(r)
τ and standard deviation σ

(r)
τ of the incubation period are 6.43 (95% CI 6.27 to 6.59) and 3.06 (95% CI 2.96 to

3.18), respectively; the mean mζ and standard deviation σζ of the recovery period are 21.91 (95% CI 21.63 to 22.18) and 5.33
(95% CI 5.14 to 5.53), respectively; the correlation between incubation and recovery periods ρτζ is -0.11. The two dimensional
representation of the bivariate normal distribution (Fig.3(c))shows that the highly probable recovery region (red in the figure) is a
nested domain of τ = 6.43 and ζ = 21.91. To precisely analyze the highly probable region, we estimate the histogram (Fig.3(a))
using a nonparametric density function with a width of 33%, low and high percentage give a more local and global estimation,
respectively, and we obtain a distribution with two peaks (Fig.3(d)). Two distinguishable peaks indicate that there are two
separate highly probable regions surrounding the points τ = 3.49, ζ = 20.52 and τ = 8.38, ζ = 20.35 (Fig.3(e)). The bivariate
mixture distribution analysis shows that we can estimate the histogram of Rik for i = 1,2, · · · ,14 and k = 1,2, · · · ,29 using a
combination of two bivariate normal distributions, 0.94N (m(r1)

τ ,m(1)
ζ
,σ

(r1)
τ ,σ

(1)
ζ

,ρ
(1)
τζ

)+0.06N (m(r2)
τ ,m(2)

ζ
,σ

(r2)
τ ,σ

(2)
ζ

,ρ
(2)
τζ

)

where the superscript 1 (resp. 2) represents the parameters for the first (resp. second) component, respectively. The parameters of
the first component are m(r1)

τ = 6.43,m(1)
ζ

= 20.83,σ (r1)
τ = 3.05,σ (1)

ζ
= 3.36,ρ(1)

τζ
=−0.16, and those of the second component

are m(r2)
τ = 6.42,m(2)

ζ
= 37.83,σ (r2)

τ = 3.25,σ (2)
ζ

= 3.45,ρ(2)
τζ

=−0.47.
Using the elements Dik for i = 1,2, · · · ,14 and k = 1,2, · · · ,29, we obtain a bivariate histogram (Fig.4(a)) for the incubation

and decease periods. There are two peaks at the points (3, 22), i.e., for τi = 3 and ηk = 22, and (9, 23), i.e., for τi = 9
and ηk = 23, corresponding to the high densities of deaths. We estimate the histogram using a bivariate normal distribution
N (m(d)

τ ,mη ,σ
(d)
τ ,ση ,ρτη ) (Fig.4(b)) where the variables τ and η represent the incubation and decease periods, respectively.

The mean m(d)
τ and standard deviation σ

(d)
τ of the incubation period are 6.56 (95% CI 6.36 to 6.76) and 3.00 (95% CI 2.86

to 3.15), respectively; the mean mη and standard deviation ση of the decease period are 21.64 (95% CI 21.33 to 21.94)
and 4.43 (95% CI 4.23 to 4.65), respectively; the correlation between incubation and decease periods ρτη is -0.008. The
two dimensional representation of the bivariate normal distribution (Fig.4(c)) shows that the highly probable decease region
(red in the figure) is a nested domain of τ = 6.56 and η = 21.64. To precisely analyze the highly probable regions, we
estimate the histogram (Fig.4(a)) using a nonparametric density function with a width of 40%, low and high percentage
give a more local and global estimation, respectively, and obtain a distribution with two peaks (Fig.4(d)), one in the high
probability region (red in figure) and another one in the second high probability region (yellow in figure). The highly
probable region is surrounding the point τ = 8.17, η = 21.86 (Fig.4(e)). The bivariate mixture distribution analysis shows
that we can estimate the histogram of Dik for i = 1,2, · · · ,14 and k = 1,2, · · · ,29 using a combination of two bivariate normal
distributions, 0.97N (m(d1)

τ ,m(1)
η ,σ

(d1)
τ ,σ

(1)
η ,ρ

(1)
τη )+ 0.03N (m(d2)

τ ,m(2)
η ,σ

(d2)
τ ,σ

(2)
η ,ρ

(2)
τη ) where the superscript 1 (resp. 2)

represents the parameters for first (resp. second) component. The parameters of the first component are m(d1)
τ = 6.58,m(1)

η =

21.19,σ (d1)
τ = 2.98,σ (1)

η = 3.49,ρ(1)
τη = 0.03, and those of the second component are m(d2)

τ = 5.81,m(2)
η = 38.61,σ (d2)

τ =

3.33,σ (2)
η = 2.15,ρ(2)

τη =−0.29.

Onset time from symptom to recovery
Using the fact that τ +θ = ζ and the property of expectation E(T +Θ) = E(T )+E(Θ), we calculate the mean Onset Time
from Symptom to Recovery (OTSR) E(Θ) (Table1), where θ is the variable corresponding to θik for i = 1,2, · · · ,14 and
k = 1,2, · · · ,29; T and Θ are the random variables corresponding the incubation period and OTSR, respectively. There is a
good agreement between the calculated values, mean of OTSR, short OTSR and long OTSR, with the reported works (Table1)
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of earlier studies. However, these calculated values do not show excellent concordance with some other studies, because we
consider all recovery cases, mild to moderate, severe, hospitalized (ICU, non-ICU), non hospitalized, in Canada. For example,
Voinsky et. al.4 reported a study with a sample of 5769 patients, not including severe COVID-19 cases. In fact, they mentioned
that severe cases were reported to be discharged from the hospital on average 8 days longer than mild to moderate patients
requiring hospitalization.

Discussion
In the present context, we estimate the recovery as well as decease periods using a novel compartment based model and publicly
available database. Here, we consider a maximum length of the incubation period of 14 days, and the ranges of the recovery
and decease periods are from 2 to 6 weeks. However, in our method, we can go well beyond all those ranges; the longer ranges
simply require a long computational time. Notice that our method could apply the proposed model to estimate key periods for
any infectious disease, as along as similar data are available.

The multi-group database Rik, i = 1,2, · · · ,14 and k = 1,2, · · · ,29, generated from the model, is the key source to compute
all types of distribution of the recovery period, univariate, bimodal and bivariate. The bimodal gamma distribution of the
recovery period, 0.9365Γ(ζ ,Kr1,θr1)+ 0.0635Γ(ζ ,Kr2,θr2), demonstrates that the recovery period of 93.65% recovered
individuals obeys the distribution Γ(ζ ,Kr1,θr1), and that of 6.35% recovered individuals obeys the distribution Γ(ζ ,Kr2,θr2).
Thus, there are two groups of recovered individuals with short recovery period, 21.02 days (on average), and long recovery
period, 38.88 days (on average). The characteristics of those two groups may depend on age, underlying health condition,
immunity, etc. The database of numerous groups Dik, i = 1,2, · · · ,14 and k = 1,2, · · · ,29, generated from the model, is
the key source to compute all types of distribution of the decease period, univariate, bimodal and bivariate. The bimodal
gamma distribution of the decease period, 0.9508Γ(ζ ,Kd1,θd1)+0.0492Γ(ζ ,Kd2,θd2), demonstrates that the decease period
of 95.08% deaths obeys the distribution Γ(ζ ,Kd1,θd1), and that of 4.92% deaths obeys the distribution Γ(ζ ,Kd2,θd2). Thus,
there are two groups of deaths with short decease period, 21.18 days (on average), and long decease period, 38.41 days
(on average). The characteristics of those two groups may depend on age, underlying health condition, immunity, etc. The
calculated results employing the proposed model show that the recovery and decease periods are the same. It seems that the
survival period of the coronavirus is the same as that of human, in the form of immunity.

The bivariate normal distribution of incubation and recovery periods indicates a recovery window of 4.82≤ τ ≤ 8.49 and
19.27≤ ζ ≤ 25.72 as the highly probable domain for recovery. The bivariate normal distribution of incubation and decease
periods indicates a decease window of 4.55≤ τ ≤ 8.45 and 19.35≤ η ≤ 24.85 as the highly probable domain of deaths. The
study shows that the recovery and decease windows almost coincide within these key periods. To determine precisely the
recovery as well as the decease windows, we use nonparametric distributions. Under the nonparametric analysis we identify two
recovery windows, 2.27≤ τ ≤ 4.38, 18.41≤ ζ ≤ 22.79 and 6.42≤ τ ≤ 9.63, 17.81≤ ζ ≤ 23.93 , and one decease window,
6.34≤ τ ≤ 9.41, 20.17≤ η ≤ 23.69. Nonparametric analysis provides some discrepancy between the recovery and decease
windows.

The bivariate mixed distribution, 0.94N (m(r1)
τ ,m(1)

ζ
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. The bivariate mixed distribution, 0.97N (m(d1)
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τη ), of the incubation and decease periods demonstrates that 97% deaths obey the bivariate

normal distribution N (m(d1)
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τ +σ
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τ +σ
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η −σ
(2)
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η +σ
(2)
η .

In summary, we have developed a novel compartment based model to divide the publicly available database of total
confirmed cases, recovered cases, and number of deaths into numerous subgroups to obtain univariate and bivariate distributions.
The model itself and the procedure to solve it, are the core of this work, and it can be applied to any infectious disease in any
region provided that similar data are available. In conclusion, we obtain the distributions of the key periods from the population,
considering all types of cases (non-hospitalized, non-ICU, ICU) of recovered individuals and deaths, which is naturally better
than any sample-dependent result. In this approach, we do not need any clinical survey; the publicly available data on confirmed
cases, recovery and death toll, are sufficient to analyze univariate and bivariate distributions. The current model can be extended
to study age-based key periods, and for this purpose we need an age dependent database. The monotonic iteration scheme,
introduced for better estimation, can be applied to machine learning as well as numerical analysis problems.
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Methods
In this section, we introduce a compartment based infectious disease model including a large number of partitions, Lockdown,
Susceptible, Removed, Infected, fourteen compartments of Confirmed cases, hundreds compartments of Recovered and Deaths.
The model is constructed as a set of coupled delay differential equations involving few thousands of variables and parameters,
and will be used, not as a prediction tool, but i) for constructing the myriad groups of recovered individuals and death tools and
ii) estimating accurately the recovery and decease periods. This model will however have to be parameterized and validated
using existing data, in order to justify its accuracy and its application in the proposed methodology.

The Model
Modeling the spread of epidemic is an essential tool for projecting its outcome. By estimating important epidemiological
parameters using the available database and machine learning techniques, we can make predictions of different intervention
scenarios. Compartment based model, where the population of a region is distributed into several population groups, such as
susceptible, infected, total cases, etc., is a simple but useful tool to demonstrate the panorama of an epidemic.

The proposed model is an extension of our previous work3, including a very large number of compartments of recovered and
deaths individuals; the schematic diagram of the model is presented in Fig. 5(a). The following are the underlying principles of
the present model.

• The total population is constant (neglecting the migrations, births and unrelated deaths) and initially every individual is
assumed susceptible to contract the disease.

• The disease is spread through the direct (face-to-face meeting) or indirect (through air current, common used or delivery
items like door handles, grocery products) contact of susceptible individuals with the infected individuals.

• The quarantined area or the compartment for corona cases contains only members of the infected population who are
tested corona-positive.

• The virus kills a part of the people it infects; the survivors represent the recovered group.

• There is a non-pharmaceutical policy (stay at home), commonly known as lockdown, to stop the spread of the disease.

• The group of asymptomatic patients is a part of infected individuals, and the never-tested recovered asymptomatic
patients can be removed from the infected group. If an asymptomatic patient dies, it is counted after investigation.

Based on the above principles, we consider the following compartments:

• Lockdown (insusceptible) (L): the group of persons who are keeping themselves safe.

• Susceptible (S): the group of individuals who can be infected.

• Infected (I): the group of people who are spreading the contiguous disease.

• Removed (V ): the group of recovered asymptomatic patients without testing.

• Confirmed cases (C): the group of individuals who tested corona-positive.

• Recovered (R): the group of recovered individuals who tested corona-positive.

• Deaths (D): the group of deaths individuals who tested corona-positive.

In the present context, we assume that there is no overlap between these two compartments, infected (I) and confirmed cases (C).
In other words, tested corona-positive individuals are assumed to be unable to substantially spread the disease due to isolation
and are immune to re-infection after recovery30. The aim of the present work is to estimate the distribution of the recovery and
decease periods of COVID-19. In this goal, we split the compartment C into J subcomponents C1, · · · ,CJ , the compartment
R into J×M subcomponents Rik for i = 1, · · · ,J and k = 1, · · · ,M and the compartment D into J×M subcomponents Dik for
i = 1, · · · ,J and k = 1, · · · ,M where

C(t) =
J

∑
i=1

Ci(t) or C(m) =
J

∑
i=1

C(m)
i , (1)
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R(t) =
J

∑
i=1

M

∑
k=1

Rik(t) or R(m) =
J

∑
i=1

M

∑
k=1

R(m)
ik , (2)

D(t) =
J

∑
i=1

M

∑
k=1

Dik(t) or D(m) =
J

∑
i=1

M

∑
k=1

D(m)
ik . (3)

In (1), (2) and (3) m represents the time index, and C(m)
i , R(m)

ik and D(m)
ik represents the total corona-positive cases corresponding

the incubation period τi, recovered individuals corresponding the incubation period τi and onset time θik i.e., recovery period
ζk = τi + θik and death toll corresponding the incubation period τi and onset time µik i.e., decease period ηk = τi + µik,
respectively, presented in Fig.5(a).

The time-dependent model is the following set of coupled delay differential equations, for i = 1, · · · ,J:



dS
dt

= −β
SI
N
−αS+νL

dI
dt

= β
SI
N
− γI−β ∑

J
i=1 δi

S(t− τi)I(t− τi)

N
dV
dt

= γI

dCi

dt
= δiβ

S(t− τi)I(t− τi)

N
−β ∑

M
k=1 λikδi

S(t− τi−θik)I(t− τi−θik)

N

−β ∑
M
k=1 κikδi

S(t− τi−µik)I(t− τi−µik)

N
dRik

dt
= λikδiβ

S(t− τi−θik)I(t− τi−θik)

N
dDik

dt
= κikδiβ

S(t− τi−µik)I(t− τi−µik)

N
dL
dt

= αS−νL

(4)

where the real positive modeling parameters α , β , γ δi, λik, κik and ν are the rate of lockdown, the rate of infection, the
rate of recovery from the asymptomatic group, the rate of tested corona-positive corresponding the incubation period τi,
the rate of recovery corresponding the recovery period ζk, the rate of decease corresponding the decease period ηk and the
rate of transit from lockdown compartment to susceptible compartment, respectively. The variables S(t− τi) and I(t− τi)
denote the cumulative data of (t − τi) days, i.e., total number of suspected and infected individuals of (t − τi) days. The
factors δiβS(t− τi)I(t− τi)/N, λikδiβS(t− τi−θik)I(t− τi−θik)/N, κikδiβS(t− τi−µik)I(t− τi−µik)/N convey the rate of
individuals who were infected τi days ago, the rate of individuals who were infected τi +θik days ago and recovered, the rate of
individuals who were infected τi +µik days ago and died, respectively. It follows from (4), that for any t

L(t)+S(t)+ I(t)+V (t)+C(t)+R(t)+D(t) = N , (5)

where N (constant) is the total population size. We can define a group of new variable Ti for i = 1, · · · ,J such that

Ti =Ci +
M

∑
k=1

Rik +
M

∑
k=1

Dik, (6)

and

T (t) =
J

∑
i=1

Ti(t) or T (m) =
J

∑
i=1

T (m)
i , (7)

where, T , total confirmed cases, is the group of individuals who tested corona positive (active cases + recovered + deaths).
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From Eq.(4) we can generate three different sets of coupled delay differential equations for i = 1, · · · ,J and k = 1, · · · ,M

dS
dt

= −β
SI
N
−αS+νL

dI
dt

= β
SI
N
− γI−β ∑

J
i=1 δi

S(t− τi)I(t− τi)

N
dTi

dt
= δiβ

S(t− τi)I(t− τi)

N
dL
dt

= αS−νL

(8)



dS
dt

= −β
SI
N
−αS+νL

dI
dt

= β
SI
N
− γI−β ∑

J
i=1 δi

S(t− τi)I(t− τi)

N
dRik

dt
= λikδiβ

S(t− τi−θik)I(t− τi−θik)

N
dL
dt

= αS−νL

(9)

and 

dS
dt

= −β
SI
N
−αS+νL

dI
dt

= β
SI
N
− γI−β ∑

J
i=1 δi

S(t− τi)I(t− τi)

N
dDik

dt
= κikδiβ

S(t− τi−µik)I(t− τi−µik)

N
dL
dt

= αS−νL

(10)

where Eq.(8), (9) and (10) can be used to calculate incubation period3, recovery period and decease period, respectively. In the
present context, we focus on recovery as well as decease periods. We solve Eq.(8), (9) and (10) using matlab inner-embedded
function dde23 with particular sets of model parameters. To solve the initial value problem, in the interval [t0, t1], we consider
L(t0), S(t0), I(t0), T (t0), R(t0) and D(t0) as follows:

L(t0) = 0 ,
S(t0) = N−L(t0)− I(t0)−V (t0)−T (t0) ,
I(t0) = q ,
V (t0) = 0 ,
T (t0) = T̃ (t0) ,
R(t0) = R̃(t0) ,
D(t0) = D̃(t0) ,

(11)

where T̃ (t0), R̃(t0) and D̃(t0) are the available data at time t0, and q is the initial value adjusting parameters. Initially, there are
no lockdown individual and no removed individuals from asymptomatic group so that we can consider L(t0) = 0 and V (t0) = 0.
It follows from (7) and (11)

J

∑
i=1

Ti(t0) = T (t0) = T̃ (t0). (12)

In the present context T̃ (t0) = 0, since there were no corona-positive cases reported on January 22, 2020. As a consequence,
we also take Ti(t0) = 0 for i = 1,2, · · · ,J, and the similar assumptions are valid for Rik(t0) and Dik(t0) i.e., Rik(t0) = 0 and
Dik(t0) = 0 for i = 1,2, · · · ,J and k = 1,2, · · · ,M.

Parameter estimation
We focus on the exponential growth phase of the COVID-19 epidemic in Canada; one can use this approach to estimate the
incubation, recovery period and decease periods for any region affected by this infectious disease. The time resolved (daily
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Figure 5. Model, methodology and estimated values of the parameters: (a) Schematic diagram of the present
compartmental based model, total 830 compartments. Here Λik = λikδiβS(t− τi−θik)I(t− τi−θik)/N and
Kik = κikδiβS(t− τi−µik)I(t− τi−µik)/N for i = 1,2, · · · ,J and k = 1,2, · · · ,M. We consider J = 14 and M = 29. (b)
Bubble diagram of the foundation of the present work, splitting publicly available database, total cases (T), recovered
individuals (R) and death toll (D), into myriad groups. (c) Sketch of the Monotonic Iteration Scheme (MIS); for ’recovery’
calculation ∆i = {λik|k = 1,2, · · · ,29} and for ’decease’ calculation ∆i = {κik|k = 1,2, · · · ,29} and i = 1,2, · · · ,14. (d) Sketch
of the optimization scheme for the primary, P0, and secondary, P1 and P2, parameters. P1/2 indicates either P1 or P2. (e)
Estimated values of the primary parameters. (f) Estimated values of the secondary parameters, upper panel: λik and lower
panel: κik. (g) Iteration verses error function in MIS, upper panel: estimating λik and lower panel: estimating κik.
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updated) database27 provides the number of total corona-positive cases, the number of recovered individuals and the death
toll. We define two groups of model parameters: primary parameters, the parameters involved in Eq.(8) i.e., q, α , β , γ , δi for
i = 1,2, · · · ,J and ν , and secondary parameters, the parameters involved in Eq.(9) and (10) other than the primary parameters
i.e., λik and κik for i = 1,2, · · · ,J and k = 1,2, · · · ,M. We use the estimated values of the primary parameters to optimize the
secondary parameters. The optimal values of the primary parameters P0 = (q,α,β ,δ1(t), · · · ,δJ(t),ν)T , q is the initial value
of I(t), is obtained by minimizing the error function Er(P0), defined as

Er(P0) =
1
K

√
K

∑
m=1

(T (m)(P0)− T̃ (m))2 , (13)

where T̃ (m) is the available data of total corona-positive cases on the particular mth day, and T (m) is the calculated results
obtained from the system (8). The integer K, used in (13), is the size of the data set. Due to the complexity of the error function,
the minimization using the matlab function fminsearch requires a very large number of iterations. We use the similar error
functions Er(P1) and Er(P2) to optimize the secondary parameters P1 = (λ11, · · · ,λJM)T and P2 = (κ11, · · · ,κJM)T , defined
as

Er(P1) =
1
K

√
K

∑
m=1

(R(m)(Pop
0 ,P1)− R̃(m))2 , (14)

and

Er(P2) =
1
K

√
K

∑
m=1

(D(m)(Pop
0 ,P2)− D̃(m))2 , (15)

where Pop
0 is the estimated values of P0; R̃(m) and D̃(m) are the available data of total number of recovered individuals and total

number of death toll; R(m) and D(m) are the calculated results obtained from the Eq.(9) and (10), respectively.

Numerical experiment
In this section, we present a detailed description of the computational procedure for the proposed model. On 23 January 2020, a
56-year old man admitted to Toronto hospital emergency department in Toronto with a new onset of fever and nonproductive
cough, and returning from Wuhan, China, the day prior31, 32. It is believed this is the first confirmed case of 2019-nCoV in
Canada, and according to the government report, the novel coronavirus arrived on the Canadian coast on January 25, 2020, first
reported case. The above information suggests that the start date of the current pandemic in Canada is possibly to be January
22, 2020. Additionally, some research studies reported that the estimation of the incubation period is from 2 days to 14 days,
and recovery as well as decease period of COVID-19 is from 2 weeks to 6 weeks2, 33. As a consequence, in the present study
we consider J = 14 i.e, 14 delays for the incubation period, and M = 29 i.e, 29 delays for the recovery as well as decease
periods. Here we consider a calculation of 177 days, from January 22, 2020 to July 16, 2020, duration of the first wave in
Canada. The purpose of the model is to separate the publicly available database T , R and D into myriad groups Ti, Rik and Dik
for i = 1,2, · · · ,14 and k = 1,2, · · · ,29 (Fig. 5(b)).

Then the local minimum computed by the optimization algorithm depends on the initial values of the parameters: for q,
α , β , ν we consider any positive random number less than unity, where as a choice of δ = (δ1, · · · ,δ14)

T is tricky. For this
purpose, we consider a vector of 14 positive random numbers δ such that δ1 < · · ·< δ4 < δ5 > δ6 > · · ·> δ14 and ∑

14
i=1 δi = 0.9.

We observe, from numerous numerical experiments, the renormalization factor 0.9 works perfectly for the computation. The
estimated values of the primary parameters Pop

0 are presented in Fig.5(e), and the value of the error function Er(P0) = 41.64.
The estimated values of the primary parameters are related to Eq.(8), the set of coupled delay differential equations, and
Eq.(13), the error function. Using the estimated values of the primary parameters, we optimize the secondary parameters λik for
i = 1,2, · · · ,14 and k = 1,2, · · · ,29 related to Eq.(9) and (14). The choice of the initial values of λik is such that for any fixed i,
i = 1,2, · · · ,14, the first fourteen λiks i.e., {λi1,λi2, · · · ,λi14} are in ascending order, and the rest i.e., {λi15,λi16, · · · ,λi29} are
in descending order; and ∑

29
k=1 λik = 0.72. After optimization, we obtain the value of the error function Er(P1

op) = 236.47.
Using the estimated values of the primary parameters, we optimize the secondary parameters κik for i = 1,2, · · · ,14 and
k = 1,2, · · · ,29 related to Eq.(10) and (15). The choice of the initial values of κik is such that for any fixed i, i = 1,2, · · · ,14,
the first fourteen κiks i.e., {κi1,κi2, · · · ,κi14} are in ascending order, and the rest i.e., {κi15,κi16, · · · ,κi29} are in descending
order; and ∑

29
k=1 κik = 0.1. After optimization, we obtain the value of the error function Er(Pop

2 ) = 52.82. The values of the
error functions Er(Pop

1 ) and Er(Pop
2 ) are not sufficiently small. To overcome that difficulties, here, we introduce a Monotonic

Iteration Scheme (MIS).

14/17

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.16.21260675doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.16.21260675
http://creativecommons.org/licenses/by-nc/4.0/


Monotonic Iteration Scheme
To optimize the parameters ξik for i = 1,2, · · · ,J and k = 1,2, · · · ,M, we use a MIS with J = 14 and M = 29. However, the
method can be applied for any finite integer values of J and M. The schematic diagram of MIS is presented in Fig.5(c), and
consists of the following steps.

• Step 1: We decompose the parametric domain ∆ = {ξik|i = 1,2, · · · ,14;k = 1,2, · · · ,29} into 14 subdomains ∆i =
{ξik|k = 1,2, · · · ,29} so ∆ = {∆1,∆2,∆3, · · · ,∆14}.

• Step 2: We optimize the subdomain ∆1 and consider the other parameters ∆2,∆3, · · · ,∆14, as constants. After first
iteration, we get estimated parameters ∆

op
1 ; the entire parametric domain is ∆(1) = {∆op

1 ,∆2,∆3, · · · ,∆14}, and the error
function Er(∆(1)).

• Step 3: In the second iteration, we optimize the subdomain ∆2 and keeping the other subdomains of ∆(1) unchanged.
After second iteration, we get estimated parameters ∆

op
2 ; the entire parametric domain is ∆(2) = {∆op

1 ,∆
op
2 ,∆3, · · · ,∆14},

and the error function Er(∆(2)).

• Step 4: Repeated the same procedure discussed in Step 3.

The optimization of the subdomain ∆2, demonstrated in Step 3, is related to minimizing the error function such that Er(∆(1))≥
Er(∆(2)); the equality sign holds for ∆

op
2 = ∆2. The error function of the n+1th iteration, Er(∆(n+1)) cannot be greater than

that of nth iteration, Er(∆(n)), because of this characteristic of the error function we define the approach as MIS. The flow chat
of the optimization scheme is presented in Fig. 5(d). The upper and lower panels of Fig.5(f) show the estimated values of
the secondary parameters λik and κik, respectively, obtained from the MIS. The upper and lower panels of Fig.5(g) show the
values of the error functions ER, using MIS to optimize λik, and ED, using MIS to optimize κik, for fourteen iteration steps
and Er(PopMIS

1 ) = 104.07, Er(PopMIS
2 ) = 26.66 where PopMIS

1 and PopMIS
2 are the estimated values of Pop

1 and Pop
2 , respectively,

using MIS. Fig. 5(g) shows that the MIS works efficiently to get better estimations.
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