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Abstract The classical SEIR model, being an autonomous system of differen-
tial equations, has important limitations when representing a pandemic situation.
Particularly, the geometric unimodal shape of the epidemic curve is not what is
generally observed. This work introduces the βSEIR model, which adds to the
classical SEIR model a differential law to model the variation in the transmission
rate. It considers two opposite thrives generally found in a population: first, reac-
tion to disease presence that may be linked to mitigation strategies, which tends
to decrease transmission, and second, the urge to return to normal conditions that
pulls to restore the initial value of the transmission rate. Our results open a wide
spectrum of dynamic variabilities in the curve of new infected, which are justi-
fied by reaction and restoration thrives that affect disease transmission over time.
Some of these dynamics have been observed in the existing COVID-19 disease
data. In particular and to further exemplify the potential the model proposed in
this article, we show its capability of capturing the evolution of the number of
new confirmed cases of Chile and Italy for several months after epidemic onset,
while incorporating a reaction to disease presence with decreasing adherence to
mitigation strategies, as well as a seasonal effect on the restoration of the initial
transmissibility conditions.
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1 Introduction

A novel Coronavirus (SARS-CoV-2) emerged from the city Wuhan in China in
December 2019 and has caused a devastating public health impact across the
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world [1]. As of June 28, 2021, COVID-19 has caused over 180 million confirmed
cases and over 3.5 million deaths worldwide [2]. The curves for daily confirmed
new cases of COVID-19 in different countries present a high variability in their
geometric forms. Every such curve shows a sequence of outbreaks and valleys
when observed over time, while the sharpness of the outbreaks and the length of
the valleys can vary [3].

In fact, Fig. 1 shows the daily number of confirmed new cases (7 day moving
average) from March, 2020, to January, 2021, for different countries. Most of them
have experienced a second wave and others show even a third [3]. Some European
countries show a sharp first outbreak followed by a plateau of low height (that
lasted several months) before the second wave, whose peak out-measures the peak
of the first outbreak by at least three-fold (see plots (a-b-c) in Fig. 1). On the
contrary, several South American countries presented an initial exponential phase
of several months, soon after which a second wave of similar peak height as the
first occurs (see (d-e-f) Fig. 1). Finally, there are countries in which the curve of
new cases of COVID-19 has shown extreme behaviors in some part of its evolution
as compared to European and South American countries. For instance, Czech Re-
public has experienced a very weak first outbreak followed by a low plateau lasting
for months; Iran did have a more pronounced first outbreak, but it was followed
by a plateau of important height; and Indonesia experienced a less distinct first
outbreak that resembles exponential growth when zoomed out (see respectively
(g-h-i) in Fig. 1).

Classical compartmental models based on the classical Kermack & McKendrick
SIR model [4] with constant parameters often used to model epidemics do not
reflect the behavior over several months described above. Neither the (β, γ)SEIR
model for a population of size N– which is compartmentalized into susceptible
(S), exposed (E), infectious (I) and removed (R)– given by

S′ = −βS(I/N), E′ = βS(I/N)− eE, I ′ = eE − γI and R′ = γI, (1)

nor extensions of it have been efficient in adjusting the data well beyond the first
epidemic outbreak when considering the transmission rate β and the removal rate γ
constant. This is due to the unimodality of the active-infected-curve those models
provide, i.e. one bell-shaped infection curve and an epidemic growth limited by
the proportion of susceptible individuals [5, 6].

In general, the epidemiological data series do not reflect that the percent-
age variation of susceptibles per proportion of active cases, i.e. |S′/S|/(I/N),
is approximately constant, as is assumed in the aforementioned classical epi-
demiological models. In fact, there exists literature that evidences the chang-
ing temporal behavior of disease transmission in epidemic or pandemic situations
[7, 8, 9, 10, 11, 12, 13, 14, 15]. In particular, there are studies using mathemati-
cal models– some aiming to understand COVID-19 transmission– that include the
decrease in the transmission rate [7, 16, 9, 17, 18, 19, 20, 21], and some incor-
porating human behavioral factors as part of the cause for a temporal change in
transmission. For instance, in [7] the behavior of the transmission rate– provid-
ing exponential saturation for a large number of infectives– for three consecutive
months is shown for four geographical settings: worldwide, United States, Russia
and Canada. For each setting, the trend is a decrease in the transmission rate for
then stabilizing at a value several times lower than initially. They as well include a
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(a) Italy (b) Germany (c) France

(d) Argentina (e) Brazil (f) Colombia

(g) Czech Republic (h) Iran (i) Indonesia

Fig. 1: Confirmed new cases (7 day moving average) from March 2020 to January 2021.
European countries ((a), (b) & (c)) showing a sharp first outbreak followed by a low height
plateau (compared to the waves) lasting for several months, after which a second wave occurs
of peak at least three times higher than the peak of the first wave. South American countries
((d), (e) & (f)) showing an initial exponential phase of several months that define an important
first outbreak followed by a reduction in cases of a few months, after which a second wave as
large as the first occurs. Other countries that show curves of new cases that reflect extreme
situations as compared to European and in South America ones. Czech Republic (g) shows a
very weak first outbreak followed by a long plateau. Iran (h) pictures a plateau of important
height after the first outbreak. Indonesia (i) shows a less distinct first outbreak that shapes an
exponential behavior when zoomed out. Plots downloaded from “Maps & Trends. New cases
of COVID-19 in world countries" [3].

parameter representing mask wearing within their transmission rate. Finally, this
study also shows that the recovery rate R′/I is for each setting much more stable
than the transmission rate. Supporting the idea that the lack of efficiency for the
classical compartmental models to adjust well to data is due to that the trans-
mission rate β is assumed constant over time. We present in more detail examples
found in the literature about non-constant transmission rates within compartmen-
tal models in Sec. 2.
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In this article we attempt to break the unimodality of the active-infected-curve
of the classical epidemiological models. We introduce a novel way to model the
behavior of the transmission rate β, considering a balance equation between a
reaction rate and a restoration rate; and including the resulting dynamic law for
the transmission rate into the classical SEIR model. The paper is structured in the
following way: In Sec. 2 we provide some understanding about the transmission
rate of infectious diseases. In Sec. 3 we introduce and describe a new basic model,
which we call βSEIR model, by adding to the classical SEIR the aforementioned
dynamic law for the transmission rate, and show some mathematical analysis.
In Sec. 4 we provide numerical results and finally in Sec. 5 the discussion and
conclusions.

2 The transmission rate

There exist at least two groups of epidemic control measures. The first, aims to
reduce the population that is being hit by the disease, i.e., the susceptible pop-
ulation. Such measures are, for example, vaccination or limiting the mobility of
individuals. The second, intents to reduce the force of infection that is defined
as the product of three quantities: number of close contacts per unit of time of a
susceptible individual (pC), probability that a close contact is with an infectious
individual (pI) and probability of transmission given a close contact with an in-
fectious (pT ). Reducing pI results in that per unit of time, there exist fewer active
cases in the population, which is accomplished by eradication, i.e., removal from
the system (e.g., slaughtering of sick animals which is widely used in animal epi-
demics, or banishing infectious individuals as was done aforetime), or by applying
actions for a rapid recovery. Notice that the product of pC and pT is called the
transmission rate and is usually denoted by β (see e.g. Eqn. (1)). Hence, the objec-
tive of most mitigation strategies that aim to reduce the force of infection, aim to
reduce the transmission rate (lower β) by either increasing physical distance and
hence reducing the number of close contacts (lower pC) or blocking the transfer
of pathogens to a new host (lower pT ). There are secondary measures such as for
example reducing population movement (which is not reducing physical distancing
nor blocking transmission), which make close encounters less likely.

When a highly transmissible disease with high mortality or morbidity invades
a population of mostly susceptible individuals, and a vaccine is not in sight in the
short term (as was initially the case for COVID-19), health authorities’ only way
for reducing morbidity and mortality is mitigation, while the general population’s
duty is to comply to the new norms and desired behavior. In other words, the
efforts are put into reducing the transmission rate β. In this sense, β is a time-
spacial dependent variable, i.e. it changes according to time and location. Also
less controllable physical-environmental aspects in relation with the bio-chemical
characteristics of the pathogen may influence it (but we consider those factors
constants in this study). It is also worth mentioning that in general populations,
individuals may live and participate in several cultural regions, which may also
determine the variability of the transmission rate. We will assume in this study
that the population stays within its territory during the time horizon studied,
behaving homogeneously in this respect. We suppose that the disease studied will
have a base line transmission rate β0, that we will call natural transmission rate,
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measured for a population that is initially free from the disease and does not
consider any mitigation strategies or personal protective measures.

One of the characteristics of COVID-19 was that it has had a large media cov-
erage since the first confirmed cases appeared in December 2019. This provoked
sentiments of fear in the general population and played an educational role for pan-
demic preparedness (e.g. global media emphasizing on washing hands and physical
distancing) before the imminent arrival of COVID-19 in many countries. It shaped
how countries would confront COVID-19 right from the appearance of their first
confirmed case and even before. The reproduction numbers corresponding to dif-
ferent geographical locations was most likely to be between 2 and 5 [22, 23], and
was shown to rapidly decrease during the first weeks of the pandemic [13, 12, 14],
however reaching values above one that nevertheless allowed COVID-19 expansion.

To consider this decreasing effect, many authors assume an exponential decay
of the transmission rate for a certain amount of time, for example, in [18, 19]
they assumed in their continuous time model β(t) = β0 exp(−b0t), t ≥ 0, or in in
[20, 21] they defined βk = β0 a

k, 0 < a < 1, k ≥ 0, where k is a day-counting
integer in their discrete time model. In order to extend the horizon of validity of
their model some authors consider an exponential decrease from β0 to a minimum
positive bound [24, 25]. To understand the rate of decrease from that baseline
natural β0 and identify a time varying β(t) transmission rate, some researchers use
mathematical expressions and the data on active cases I(t) and removed cases R(t)
in a population of constant size N ; for instance, one can use β(t) = −NS′/(SI) as
in [7], which can be obtained from a SIR model and approximating the derivatives
using the finite differences on one week running averages; or one could use β(t) =
γ + I ′/I at the beginning of an outbreak, assuming S ∼ N in the SIR model.

More time-varying transmission rates have been considered within mathemat-
ical models. For instance, the authors in [9] capture the early decreasing trend
of COVID-19 in Malaysia using a time varying exponential decay log function
β(t) = zβ(1− p)t for the transmission rate in an SIR model, that uses a fractional
term z to measure the effectiveness of interventions and a proportion p to account
for depletion. In the literature there are studies that, in order to capture realistic
disease transmission, assume non-linear functions of S and I governing the force
of transmission, as for instance in [16], where the force of transmission they use
in an SIR-type model depends on the product of fractional powers of S and I.
They use the model to fit COVID-19 data of Italy, Germany, France and Spain. In
[26] the authors include in an SIR model time-varying transmission rate, assuming
that the probability of transmission of a susceptible is βλt(It/N), where λt(·) is
a random variable, they refer to this model as a Spatial-SIR model. In [27] the
authors assume a contagion rate as a sum of a base-line transmission rate and a
component that satisfies a first order linear differential equation to represent the
effect of non-pharmaceutical interventions (NPIs).

Behavioral factors represented in the transmission rate are also considered by
more authors in order to represent the changing dynamics of the transmission rate.
For instance in [28] the authors study a model that incorporates a non-constant
transmission rate β(M) that depends not only on the current number of infec-
tious individuals but on M , representing an information index that summarizes
the current and past history of disease prevalence. Part of their results discuss
that social behavioral change may trigger oscillations. The study in [29] extends
an SIR type model defining a transmission rate that captures the impact of school

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.13.21260408doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.13.21260408
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 F. Córdova-Lepe1, K. Vogt-Geisse2∗

and workplace closure through a function of time. The changing behavior of this
function is based on Imitation Dynamics [30] and describes population-level sup-
port dynamics for closure. The article in [31] also uses Imitation Dynamics and
studies a population in which individuals develop and learn a behavior of mutual
protection.

The novelty of this article is that at each time t, we consider the variation of
the transmission rate between the end-points of the time interval [t, t+∆t] to be
given according to a balance equation between two opposite thrives: a reaction
rate (fraction of reduction per unit of time) and a restoration rate (fraction of
increment per unit of time). It takes the form

β(t+∆t) = β(t)−
[ relative reaction

rate
]
β(t)∆t+

[ relative restoration
rate

]
β(t)∆t. (2)

In what follows we are going to justify the functional forms of the reaction and
restoration rates, as well as present the βSEIR model that incorporates the dy-
namic law for β. Further, we are going to analyze its effect on the shape of the
main epidemiological curves.

3 The βSEIR Mathematical Model

In this section we present the dynamic law of the transmission rate β in order to
introduce the βSEIR model and some mathematical analysis.

3.1 Transmission rate β

In this subsection we derive the form of the transmission rate at which suscepti-
ble individuals become exposed upon contacts with infectious. The only infectious
class of the model is the I class. We model the case of an infectious disease trans-
mitted directly from person to person, and assume that at the beginning of an
outbreak, the appearance of first cases do not provide a reason for alarm and panic.
Hence, initially the disease propagation is due to a high natural-transmission rate
intrinsic to the population while no interventions to mitigate disease spread are in
place. We call this natural-transmission rate β0. In general, β0 makes the disease
expand rapidly, producing a fast initial increase in new cases.

We present a new form for the transmission rate, which is represented by a
dynamic, time-dependent quantity that is governed by a balance equation between
a reaction rate, g[t, I], and a restoration rate, f [t, β], i.e. the proportion by which
the transmission rate decreases and increases per day, respectively, represented by

β ′ = −g[t, I]β + f [t, β]β, with β(0) = β0. (3)

Next we justify the introduction of a reaction rate and a restoration rate and
propose a functional form for each.
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3.1.1 Reaction rate

During severe epidemic outbreaks that attract huge public attention and media
coverage due to for instance a high morbidity and/or mortality in the popula-
tion, a steady increase in the implementation of measures that aim to reduce
the transmission rate can be observed. As long as there is no licensed vaccine or
treatment, these measures are mainly based on non-pharmaceutical interventions.
Here we are interested in those directed to diminish the factors pC and pT , whose
product defines β, such as social distancing measures (that reduce the number of
close contacts between people: large-scale or home quarantines, workplace non-
attendance, travel restrictions, prohibition of social gatherings, school closures,
etc.) that reduce pC , or blocking measures (that, given e contact, reduce the pass
of the pathogen: hand-washing, respiratory etiquette, face-masks usage, etc.) that
reduce pT , see [32, 33]. When fear governs the population, people react, complying
with mandatory measures or adopting self-protecting measures to avoid infection
[34]; we note that risk communication is also a factor to support the general pub-
lic response [35]. It is to expect that the higher the severity of the disease is, the
more effort is put into mitigation. In this sense, individuals’ reactions produce a
decrease in the transmission rate from its initial natural-transmission rate value,
β0. Hence, we define a reaction rate that we denote g[t, I], which is non-negative
and positively correlated with the number of active cases I(t), in a way that it
increases when I(t) does. It may also depend on other circumstantial conditions
of the moment relative to the population. These we will discuss further later in
the text.

We assume in this article, that the reaction rate, follows the Michaelis-Menten
model [36] describing the reaction to the presence of the infectious (active cases)
I(t) at any moment in time, i.e. we define

g[t, I] := µ(t) · I

I + Im
, (4)

where we call µ(t) the reaction coefficient, which is a non-negative function that
represents the daily maximum possible reduction at time t, and Im > 0 is the
half-saturation constant, i.e. is the number of active cases, where the reduction is
half-maximal. Notice that the parameter Im characterizes the population, i.e. it
determines its sensibility to react to active cases.

3.1.2 Restoration rate

It is important to observe that upon the appearance of a reaction rate there exist
socio-environmental factors that tend to restore the transmission rate to the level
observed at the beginning of the pandemic, i.e. to β0 [29, 37]. When in a certain
location the health authorities cease to impose protective measures, e.g. the use
of face masks, and individuals lost their initial fear, then the transmission rate
that had been reduced due to these measures no longer stays low and returns to
its natural level. Therefore, we introduce a restoration rate that at each instant t,
t > 0, is responsible for an increase in the transmission rate. The restoration rate
that we denote by f [t, β], is a non-negative function that correlates directly with
the distance between β(t) and its natural value β0, as presented in the following
equation:
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f [t, β] = ν(t)

(
|β(t)− β0|

β0

)α
, (5)

where α ∈ R is a positive exponent. We call ν(t) the restoration coefficient, which
is a non-negative function that regulates the daily form of the restoration rate.
Also, f is an increasing function of |β(t)− β0|, and f [t, β0] = 0, which means that
if the transmission rate β(t) reaches at a certain time point t its natural value,
then there is no deviation to restore.

3.2 The βSEIR model: formulation and analysis

We incorporate the differential equation (3) to the classical SEIR model (1) ob-
taining the βSEIR model, given by the following system of equations

β′ = {f [t, β]− g[t, I]}β
S′ = −βSI/N
E′ = βSI/N − eE
I ′ = +eE − γI
R′ = +γI,

(6)

with some non-negative initial conditions β(0) = β0, S(0) = S0, E(0) = E0,
I(0) = I0, R(0) = R0, and f [t, β], g[t, I] as in Eqns. (5) and (4) respectively. Table
1 describes the variables and parameters of the model.

In the following we show that 0 ≤ β(t) ≤ β0, for all t ≥ 0 and β0 > 0.
Observe that β′ ≥ −µ(t)β, and hence due to Grönwall’s inequality (see [38]) we
can conclude that β(t) ≥ β0e

−
∫ t
0
µ(s) ds. Therefore, β(t) is non-negative for any

non-negative initial condition β0. We also observe that β(t) ≡ β0 is an equilibrium
solution of the first equation in system (6) as long as I(t) ≡ 0. In case I(0) > 0, i.e.

Variable/Parameter Description

β(t) Transmission rate at time t.

S(t) Susceptible individuals at time t.

E(t) Latent individuals at time t.

I(t) Infectious individuals at time t.

R(t) Removed individuals at time t.
N Total constant population size.

e Transition rate from the latent to the infectious class.
γ Transition rate from the infectious to the removed class.
β0 Natural transmission rate.
Im Half-saturation constant of infectious individuals, where

the rate of reduction coefficient is half maximal.
α Multiplicity of the deviation of the transmission rate.

ν(t) Restoration rate coefficient.

µ(t) Reaction rate coefficient.

Table 1: Description of variables and parameters from the model in system (6).
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disease is present in the population, β′(0) < 0 and hence β(t) decreases initially.
Since β′ ≤ ν(t){|β − β0|/β0}αβ, using Grönwall’s inequality and the fact that the
solutions to the differential equation β′ = ν(t){|β − β0|/β0}αβ that pass through
points (t, β̃) with 0 < β̃ < β0 are increasing and bounded by β0, we obtain that
β(t) ≤ β0 for all t ≥ 0 and β0 > 0, I0 > 0.

Just as for the classical SEIR model, we observe that the epidemiological state
variables of the model in system (6) remain positive for positive initial conditions
and are bounded by the total population size N . Also, adding the second, third
and fourth equations in system (6) together we obtain (S + E + I)′ = −γI < 0
whenever I > 0. Hence, S+E+I is a non-negative smooth decreasing function, and
therefore lim

t→∞
(S+E+ I) exists. On the other hand, the derivative of any smooth

non-negative decreasing function must tend to zero, and hence 0 = lim
t→∞

(S +E +

I)′ = lim
t→∞

−γI, which implies lim
t→∞

I = 0. Similarly, by adding the second and
third equation in system (6) together, we can prove that lim

t→∞
E = 0. Since the

limit of S + E + I exists when time tends to infinity, we can then conclude that
lim
t→∞

(S+E+I) = S∞. The behavior of R can be obtained from N = S+E+I+R

and we obtain lim
t→∞

R = N − S∞. Hence, the long term behavior of the model we
present holds (i.e. the limit of the epidemiological state variables exist for infinite
time), just as for the classical compartmental epidemic models SIR or SEIR with
constant transmission rate β [39]; in particular we have shown that the disease in
the long term goes extinct.

Finally, as for classical models we can obtain a threshold condition that deter-
mines an initial epidemic outbreak. Given β0 > 0 and considering that β(t) ≤ β0
for all t ≥ 0 as well as that the state variables are bounded by N , we have
that (I + E)′ = γI{(β/γ)(S/N) − 1} ≤ γI{(β0/γ) − 1}. Hence, we define the
basic reproduction number [40, 41] as R0 := β0/γ. This way, if R0 < 1, then
the curve representing the infectious population is decreasing to zero and there
is no epidemic outbreak. On the other hand, if R0 = β0/γ > 1, then (E + I)
increases initially when we assume S ∼ N and β(0) = β0, and increases as long as
(β(t)/γ)S(t)/N > 1 holds. Notice that, in this case, the curve of infectious indi-
viduals may be increasing at several time intervals depending on the behavior of
the function β(t), and not only depending on the ratio of susceptible individuals in
the population that is decreasing according to the second equation in system (6).
In Section 4 we will call the quantity (β(t)/γ)S(t)/N the Effective Reproduction
Number, Re, and its dynamics will determine disease dynamics.

In the context of our study, we consider short-medium term scenarios under
an epidemic situation, i.e. when R0 > 1. In particular, we will point out the
differences compared to the classical SEIR model with constant β, in which E
and I are variables that describe the known unimodal behavior of one bell-shaped
curve.

Our model generalizes an idea presented in [42], where the authors consider an
SIR-type model with variable transmission rate of the form β(D(·)), in which the
time dependent function D(·) represents social distancing that individuals in the
population maintain to each other, governed by the dynamics of D′ = −λ1 (D −
D∗) + λ2 I/N , where λ1 and λ2 are positive constants, and D∗ is the culturally
dependent natural social distance, to whichD(·) converges in the absence of disease
(I = 0). Notice that if in their model β(D) := β∗[D̄/D]ν with positive parameters,
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we observe that β̃(·) = β(D(·)) satisfies the equation β̃′ = {f̃ − g̃[t, I]} β̃, with f̃ =

νλ1 and g̃[t, I] = ν λ1D∗+λ2[I/N ]

D∗+e−λ1t{(D0−D∗)+λ2

∫ t
0
eλ1s[I/N ]ds} . Observe that regardless of

the convergence of
∫∞
0
eλ1sI(s)ds, we obtain g̃ → f̃ when t→∞.

4 Numerical Results

In this section, we present simulations of disease dynamics assuming: first, constant
reaction (µ(t)) and restoration (ν(t)) coefficients; second, we extend our results to
consider time-varying reaction coefficients, representing a diminishing mitigation
effect of government responses; third, an additional seasonal effect on the restora-
tion coefficient and we show that our model is capable of capturing real COVID-19
disease data. For the simulations we use the Python programming language [43].

4.1 The autonomous βSEIR model: constant reaction and restoration coefficients

We consider in this subsection the autonomous βSEIR model from system (6),
assuming a constant reaction coefficient, µ(t) = µ; i.e. we suppose that the reaction
to reduce the transmission rate just depends on point prevalence levels and not on
an additional time factor (see Eqn. (4)); and also assuming a constant restoration
coefficient, ν(t) = ν; i.e. the regulation on the restoration rate depends only on the
deviation of the transmission rate from its natural value β0 and not on external
temporal factors (see Eqn. (5)). We present qualitative results of our model through
simulations considering an 18 months time span, and present in each of the Figs.
2-4 five subplots that represent the dynamics for: restoration f(t, β) and reaction
rates g(t, I); the transmission rate β(t); the effective reproduction number Re;
the new confirmed cases eE(t); and finally we illustrate the cumulative number
of cases. The effective reproduction number is a time-varying threshold quantity–
defined by Re(t) := (β(t)/γ)S(t)/N– such that the number of cases increase while
R(t) > 1, reach a peak when R(t) = 1 and decrease when R(t) < 1 [44, 45], and
in particular Re(0) = R0.

Additionally, the constant restoration coefficient ν takes in Fig. 2, Fig. 3 and
Fig. 4 the values 0.8 (high), 0.5 (medium) and 0.2 (low), respectively, representing
high, medium and low rates to restore transmission levels due to the urge to return
to the natural transmission rate β0. For each constant restoration coefficient value,
we choose within each figure the constant reaction coefficient µ to take the values
0.3 (low, in blue), 0.4 (medium-low, in green), 0.5 (medium-high, in orange) and
0.6 (high, in red), representing different constant levels of the daily maximum
reaction to disease that reduces the transmission rate. The remaining parameter
values and initial conditions used in the figures are described in Table 2. Note that
the basic reproduction number obtained from the values β0 = 0.65 and γ = 1/14
from Table 2 isR0 = 9.1 > 1. For illustration purposes, we use a value significantly
larger than one.

Figure 2 considers a high restoration coefficient, ν = 0.8. Observe that for
high reaction coefficients, e.g. µ = 0.6 as well as for small reaction coefficients, e.g.
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Variable/Parameter Value Units

β0 0.65 (day)−1

S0 N Individuals
E0 50 Individuals
I0 100 Individuals
R0 0 Individuals
N 1006 Individuals
e 1/5 (day)−1

γ 1/14 (day)−1

Im 104 Individuals
α 1 Unitless

Table 2: Initial conditions and parameter values and their units, for the simulations
in Figs. 2-4 and Figs. 5-7.

Fig. 2: Simulations for a high restoration coefficient ν = 0.8. The first subplot
illustrates the restoration rate f(t, β) (dotted) and the reaction rate g(t, I) (solid).
The remaining subplots show: The transmission rate β(t), the effective repro-
duction number Re(t), the new confirmed cases eE(t), and the cumulative cases
E(t) + I(t) + R(t). The reaction coefficient in each subplot are chosen to be µ:
0.3 (blue); 0.4 (green); 0.5 (orange) and 0.6 (red), and the remaining parameter
values and initial conditions are as in Table 2.

µ = 0.3, the restoration rate f(t, β) and the reaction rate g(t, I) are very similar to
each other. Initially the restoration rate is slightly smaller than the reaction rate,
producing that β′(t) < 0 (from the first equation in system (6)) and therefore
being the reason for the initial decrease of in the transmission rate. After that
drop, the reaction and restoration rates are almost equal, producing a plateau
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in the transmission rate due to β′(t) ∼ 0, and subsequently, a slightly larger
restoration rate than reaction rate produces an increase in the transmission rate,
which converges to its original natural transmission rate value β0. Additionally,
observe that for all values of the reaction coefficient µ, the duration of the plateau
in the transmission rate is directly correlated with the value of µ: the higher the
µ value, the longer its duration. Note that, while the transmission rate is at the
plateau– i.e. β(·) behaves similar to constant– when equaling the first equation in
our βSEIR model (system (6)) to zero, we conclude from f(t, β) = g(t, I) when
α = 1 that

β(t) ∼ β0
λ+ Im/I

1 + Im/I
, with λ := (ν − µ)/ν.

Hence, if Im � I, then β ∼ β0 λ. Indeed, notice that the value of β0 λ for µ =
0.3, 0.4, 0.5 and 0.6 in Fig. 2 are respectively 0.406, 0.325, 0.244 and 0.163, which
correspond very closely to the plateau levels of the respective transmission rates.
For all µ cases, the effective reproduction number shows a decreasing shape, staying
above one at least during the first months of a pandemic. While the effective
reproduction number stays above one, one can observe that the number of new
confirmed cases increases, reaching a peak when the effective reproduction number
reaches the threshold value one. The lower the reaction coefficient value is, the
larger is the transmission rate throughout the epidemic, which produces sooner
and larger epidemic peaks of new confirmed cases, as well as a rapid increase in the
number of cumulative cases, reaching quickly a number close to the final number
of infected individuals throughout the whole epidemic. This happens shortly after
the effective reproduction number reaches the value of one, and is due to a small
number of susceptibles remaining in the population at that time.

Figure 3 considers a medium restoration coefficient, ν = 0.5. We observe that
for a high reaction coefficient µ = 0.6, the restoration (f(t, β)) and reaction
(g(t, I)) rates show an initial oscillation and differ from each other more clearly,
being initially the reaction rate larger than the restoration rate and subsequently
both intersecting several times. This produces an oscillatory behavior in the trans-
mission rate due to the β equation in system (6), attaining the transmission rate
a local maximum or minimum value each time the reaction and restoration rates
intersect, i.e. f(t, β) = g(t, I). On the contrary, in the case of a low reaction coef-
ficient value, e.g. µ = 0.3, we observe very similar restoration and reaction rates
(blue curves) just as in Fig. 2. We can also observe from Fig. 3 that a high (red)
or medium-high (orange) reaction coefficient µ, drives the effective reproduction
number below one much faster than in was observed in Fig. 2 (in the case of
a higher restoration coefficient) and way before the cases for medium-low (green)
and low (blue) reaction coefficient values. It is interesting to see that in the cases of
higher reaction coefficients (red and orange), after the initial fast drop of the effec-
tive reproduction number, during the remaining time pictured it oscillates around
one. When comparing the curves of the new confirmed cases and cumulative cases
for these two reaction coefficient values, with the cases of low and medium-low re-
action coefficients, we notice that the number of cases is way higher for the latter.
Additionally, one bell-shaped curve of new confirmed cases is being observed for
smaller reaction coefficient values (blue, green), since the effective reproduction
number only manages to cross the threshold Re = 1 once due to the small number
of susceptibles remaining after that first large peak. On the contrary, an oscillatory
behavior is seen for higher µ values, obtaining small epidemic peaks each time the

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.13.21260408doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.13.21260408
http://creativecommons.org/licenses/by-nc-nd/4.0/


SEIR model with a reaction-restoration type transmission rate 13

Fig. 3: Simulations for a medium restoration coefficient ν = 0.5. The first sub-
plot illustrates the restoration rate f(t, β) (dotted) and the reaction rate g(t, I)
(solid). The remaining subplots show: The transmission rate β(t), the effective
reproduction number Re(t), the new confirmed cases eE(t), and the cumulative
cases E(t) + I(t) +R(t). The reaction coefficient in each subplot are chosen to be
µ: 0.3 (blue); 0.4 (green); 0.5 (orange) and 0.6 (red), and the remaining parameter
values and initial conditions are as in Table 2.

effective reproduction number reaches one in a decreasing manner. In other words,
the unimodality of the behavior for new confirmed cases observed when µ is low
(blue) or medium-low (green) is broken for high (red) and medium-high (orange)
µ values, which was not seen in Fig. 2. One can also observe that for higher µ
values (red and orange), the increase in the cumulative cases is close to linear in
the time-frame pictured, as opposed to the rapid increase in cumulative cases for
smaller reaction coefficient values (blue, green).

Figure 4 shows the case of a low restoration coefficient ν = 0.2. We observe
oscillatory behavior in the restoration and reaction rates, producing an oscillatory
behavior in the transmission rate, and hence also in the effective reproduction
number and in the number of new confirmed cases. We observe that for high re-
action coefficient values, e.g. µ = 0.6, the absolute difference between the reaction
and restoration rates are larger and their intersections occur sooner, and hence the
oscillations in the transmission rate have a higher amplitude and their local max-
ima occur sooner, than in the case of lower reaction coefficient values, e.g. µ = 0.3.
Also, transmission rates with higher amplitudes produce less pronounced peaks in
the oscillatory behavior of the number of new confirmed cases. Additionally, sooner
starting oscillations correspond to higher values of the reaction coefficient µ. The
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cumulative cases show a near to linear increase, where smaller slopes correspond
to higher reaction coefficient values.

Fig. 4: Simulations for a low restoration coefficient ν = 0.2. The first subplot il-
lustrates the restoration rate f(t, β) (dotted) and the reaction rate g(t, I) (solid).
The remaining subplots show: The transmission rate β(t), the effective repro-
duction number Re(t), the new confirmed cases eE(t), and the cumulative cases
E(t) + I(t) + R(t). The reaction coefficient in each subplot are chosen to be µ:
0.3 (blue); 0.4 (green); 0.5 (orange) and 0.6 (red), and the remaining parameter
values and initial conditions are as in Table 2.

4.2 A non-autonomous βSEIR model: time-varying reaction coefficient
representing a diminishing mitigation effect

It is to expect that, when a disease enters a population, the reaction coefficient
µ(t) right after the onset increases quickly, reaches a maximum value µ0, and then
decreases due to many factors. This can be deduced (at least) from two sources:
(a) The data and information provided by the Oxford COVID-19 Government
Response Tracker (OxCGRT) and the time curves defined by the Stringency Index
[46, 47]. This index records the intensity of several government responses combined,
such as containment and closure policies by country. In general, we observe that,
first, the time curves representing the stringency index rise, but then follow a
decreasing behavior due to local socioeconomic reasons [48, 49, 50, 51, 52, 53].
(b) Studies in behavioral science explain the public fall of adherence to mitigation
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(distancing) measures, as a daily average compliance curve in times of COVID-19
shown for instance in [54] or discussed in the conclusions in [55]. Additionally, it
is known that information-based interventions positively impact compliance with
mitigation restrictions, such as keeping a certain social distance, decreasing the
number of times individuals go out and their time spent outside. Nevertheless, if
individuals have been restricted for a prolonged period of time, compliance with
such mitigation strategies decreases [56].

We can include such a behavior– representing a diminishing mitigation effect of
restrictive measures– through a time-varying reaction coefficient µ(t), for instance,
given by the following Eqn. (7),

µ(t) = µ0 · h(t), with h(t) =
(a+ 2b)t

t2 + at+ b2
, t ≥ 0, (7)

with 0 < µ0 < 1. Notice that h(·) is a non-negative, unimodal function such that
h′(b) = 0 and h(b) = 1, i.e. it achieves its maximum value at t = b and then
decreases at a rate that depends on the parameter a.

In each of the Figs. 5, 6 and 7 we show for high, medium and low constant
restoration coefficients ν, respectively, the curves for the restoration (f(t, β)) and
reaction (g(t, I)) rates, the transmission rate β(t), the effective reproduction num-
ber, the new confirmed cases and the cumulative cases, for a forgetting curve h(t)
of the form given in Eqn. 7, with a = 40, b = 90, such that the maximum occurs
at t = 90 days. Within each plot we present curves for different maximum values
µ0 of the now variable reaction coefficient µ(t) = µ0h(t). The other parameters
used for these figures are given in Table 2.

We present in Fig. 5 the case of a high constant restoration coefficient ν = 0.8.
We observe that the restoration and reaction rates are very similar regardless of the
µ0 value. Despite their similarity, initially, up to day 90, a slightly higher reaction
than restoration rate produces a sharp decrease in the transmission rate. The
decreasing shape of the forgetting curve starting on day 90, immediately reduces
the reaction rate to slightly below the restoration rate, producing an increase in the
transmission rate, eliminating the plateau observed in Fig. 2, in which the reaction
coefficient was assumed constant. Due to the incorporation of a forgetting-curve in
the reaction coefficient we can also observe higher and earlier occurring epidemic
peaks in the curves of new confirmed cases as compared to the constant reaction
coefficient case (see Fig. 2), especially for large µ0 values.

Figure 6 depicts the dynamics for a medium restoration coefficient ν = 0.5.
Here we can observe– especially for a large maximum value µ0 of the reaction
coefficient µ(t) = µ0h(t)– that the restoration rate f(t, β) and the reaction rate
g(t, I) differ more from each other, as compared to the case depicted in Fig. 5. If
we observe the curves for µ0 = 0.6 we see that initially, up to day 90, the reaction
rate is clearly higher than the restoration rate, which again produces a sharp
decrease in the transmission rate. Every time the restoration and reaction rate
curves intersect, we can observe a local maximum/minimum in the transmission
rate, which eventually increases and converges back to its natural value β0. The
changing human behavior reflected in the restoration and reaction rates, observed
for µ0 = 0.6, produces a late occurring but large epidemic peak, preceded by one
small peak. This dynamics can also be explained by observing the shape of the
effective reproduction number, which crosses the threshold Re = 1 three times
(red curve).
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Fig. 5: Simulations for a high restoration coefficient ν = 0.8. The first subplot
depicts the shape of the compliance curve h(t) = (a + 2b)t/(t2 + at + b2), with
b = 90, a = 40, and the second plot in the first row illustrates the restoration
rate f(t, β) (dotted) and the reaction rate g(t, I) (solid). The remaining subplots
show: The transmission rate β(t), the effective reproduction numberRe(t), the new
confirmed cases eE(t), and the cumulative cases E(t)+ I(t)+R(t). The maximum
value µ0 of the reaction coefficient (µ(t) = µ0h(t)) used in each subplot is: µ0:
0.3 (blue); 0.4 (green); 0.5 (orange) and 0.6 (red), and the remaining parameter
values and initial conditions are as in Table 2.

Figure 7 shows the dynamics for a low constant restoration coefficient ν =
0.2. Here we observe initial oscillatory dynamics for the restoration and reaction
rates, which explain the oscillatory dynamics in the transmission rate and also
in the effective reproduction number, which crosses the threshold Re = 1 several
times, producing small oscillations in the new confirmed cases, followed by a large
epidemic peak.
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Fig. 6: Simulations for a medium restoration coefficient ν = 0.5. The first subplot
depicts the shape of the compliance curve h(t) = (a + 2b)t/(t2 + at + b2), with
b = 90, a = 40, and the second plot in the first row illustrates the restoration
rate f(t, β) (dotted) and the reaction rate g(t, I) (solid). The remaining subplots
show: The transmission rate β(t), the effective reproduction numberRe(t), the new
confirmed cases eE(t), and the cumulative cases E(t)+ I(t)+R(t). The maximum
value µ0 of the reaction coefficient (µ(t) = µ0h(t)) used in each subplot is: µ0:
0.3 (blue); 0.4 (green); 0.5 (orange) and 0.6 (red), and the remaining parameter
values and initial conditions are as in Table 2.
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Fig. 7: Simulations for a low restoration coefficient ν = 0.2. The first subplot
depicts the shape of the compliance curve h(t) = (a + 2b)t/(t2 + at + b2), with
b = 90, a = 40, and the second plot in the first row illustrates the restoration
rate f(t, β) (dotted) and the reaction rate g(t, I) (solid). The remaining subplots
show: The transmission rate β(t), the effective reproduction numberRe(t), the new
confirmed cases eE(t), and the cumulative cases E(t)+ I(t)+R(t). The maximum
value µ0 of the reaction coefficient (µ(t) = µ0h(t)) used in each subplot is: µ0:
0.3 (blue); 0.4 (green); 0.5 (orange) and 0.6 (red), and the remaining parameter
values and initial conditions are as in Table 2.
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4.3 A non-autonomous βSEIR model and the example of COVID-19 in Chile and
Italy: time-varying reaction and restoration coefficients

Although it has not been proven that the virus SARS-CoV-2 is seasonal in nature,
seasonality of transmission may be an important factor to consider since social
behavior is environmentally driven [57]. The main hypothesis regarding seasonal-
ity indicates that the higher the temperature the fewer infections occur [58, 59].
Therefore, additional to a time-varying reaction rate, the restoration rate could
depend, among other, on environmental factors such as for instance temperature.
For example, in regions with Mediterranean climate, an annual oscillation of the
daily mean temperature can be observed [60], as is the case in a large part of Italy
or central Chile. The seasonality could also represent peoples’ behavior during
winter months vs summer months, or during vacation periods. This affects the
tendency of the population to return to its natural transmission rate β0, while
making it seasonal in nature. Hence, to capture seasonal factors we consider an
annual periodic restoration coefficient of the form

ν(t) = ν0 + σ sin

(
2π

365
(t− tmax) +

π

2

)
, (8)

where ν0 is the average restoration coefficient value, σ the amplitude of the oscilla-
tion and tmax the moment in time, where the restoration coefficient is maximum.

Considering this non-constant seasonal behavior for the restoration coefficient
ν(t) as given in Eqn. (8), as well as a time-varying reaction coefficient as described
in Eqn. (7), we illustrate through Fig. 8 and Fig. 9 the applicability of our model
during the first months of the pandemic, by performing a simple fit to COVID-19
data of new confirmed cases of Chile and Italy [61, 62], respectively, which uses
the minimize() function and the leastsq method in Python. We use Chile and Italy
as examples of countries at different hemispheres that experienced COVID-19 in
distinct ways, due to cultural differences, distinct levels of initial knowledge of
the virus, seasons, etc., and this way to show that our model can capture different
COVID-19 dynamics and partially describe them through reaction and restoration
thrives of the population. Table 3 and Table 4 show the respective fixed and fitted
parameter values used in each figure.

We can observe how the restoration rate and reaction rate differ among coun-
tries: In the case of Chile (see Fig. 8), they are very similar, expecting a population
whose reaction to disease presence and urge to return to their normal behavior
(restoration) is similar in nature. Nevertheless, a small difference in those rates
produce a large impact on the transmission rate, such as the steep decrease ob-
served initially.

On the other hand, from Fig. 9 one can see that the reaction rate (solid curve)
and the restoration rate (dotted curve) differ more than in the case of Chile, having
initially a population, which is reacting to disease presence faster than their urge to
restore normal conditions, for later reversing their behavior three times, producing
during that time period a long lasting plateau. Finally, one can see that a larger
restoration rate than reaction rate produces the appearance of a large second peak.
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Fig. 8: The first subplot depicts the restoration rate f(t, β) (dotted) and reaction
rate g(t, I) (solid); the second plot the transmission rate β(t); and in the third plot
the blue dots represent data of daily confirmed new cases of COVID-19 in Chile,
from March 16th, 2020, to February 16th, 2021 [61]. The red curve represents the
least square fit of the model to the data with parameter values as in Table 3 for
the population of Chile, with N = 18 million individuals and initial conditions of
the model (6) taken to be E0 = 20, I0 = 81, R0 = 0, S0 = N − E0 − I0 −R0.

Fixed parameters Value Reference
e 1/5 [63, 64]
γ 1/14 [65, 66]
R0 5.4 [12]
β0 0.38 Assumed as R0γ

b 110 Adapted from [46, 47]
a 500 Adapted from [46, 47]
Im 7200 Assumed
α 1 Assumed

Fitted parameters Fitted Value

µ0 0.79406527± 0.00241983

ν0 0.76149013± 0.00663077

σ0 0.14000051± 0.00641483

tmax 41.2846863± 1.96538852

Table 3: Parameters for the simulations in Fig. 8 for the case of Chile.
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Fig. 9: The first subplot depicts the restoration rate f(t, β) (dotted) and reaction
rate g(t, I) (solid); the second plot the transmission rate β(t); and in the third plot
the blue dots represent data of daily confirmed new cases of COVID-19 in Italy,
from February 24th, 2020, to October 31st, 2020 [62]. The red curve represents the
least square fit of the model to the data with parameter values as in Table 4 for
the population of Italy, with N = 60.5 million individuals and initial conditions of
the model (6) taken to be E0 = 81, I0 = 566, R0 = 0, S0 = N − E0 − I0 −R0.

Fixed parameters Value Reference
e 1/5 [63, 64]
γ 1/14 [65, 66]
R0 5.8 [67, 68, 69]
β0 0.414 Assumed as R0γ

b 67 Adapted from [46, 47]
a 80 Adapted from [46, 47]
Im 12100 Assumed
α 1 Assumed

Fitted parameters Fitted Value

µ0 0.76946067± 0.00138200

ν0 0.66441900± 0.00645309

σ0 0.49996423± 0.00936939

tmax 315.955940± 0.62948680

Table 4: Parameters for the simulations in Fig. 9 for the case of Italy.
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5 Discussion and Conclusions

In [70](1973) and [71] (1989), strategic models are defined as those that, despite not
having high resolution concerning a specific reality, have the advantage of contain-
ing all the minimum aspects of the referenced system. The main contribution of
this work is to achieve a dynamically richer low-cost model, that is, one that adds
only one more differential law to the classical SEIR model (without introducing
new compartments in the population).

There is evidence in the literature that populations change their behavior when
facing dangerous diseases, i.e., reacting to these by managing to modify the trans-
mission rate. Our proposed model, the βSEIR model, is a serious candidate to
contain the minimum aspects for disease transmission of a high impact infectious-
contagious disease in populations that, while living with the urge to restore normal
conditions, react to reduce favorable conditions for disease transmission. Specifi-
cally, the novelty of the βSEIR model we present is, that it incorporates a variation
in the transmission rate, which occurs proportional to the transmission rate itself
but also proportional to a tension given by the difference (f − g) between a) reac-
tion rate (g) to disease presence that may include other behavioral factors, such
as compliance with mitigation strategies, and b) restoration rate (f) that aims
to restore a certain intrinsic value of disease transmission, due to for instance
socio-environmental elements.

Our results show an important gain in dynamic possibilities even in the case
where Eqn. (3) in the βSEIR model (6) is autonomous, i.e. f and g do not de-
pend explicitly on time. Indeed, we can see in Figs. 2-4 the appearance of several
epidemic peaks and initial oscillatory dynamics, explained by the tension between
reaction and restoration thrives of a population. In particular, we observe that
high restoration coefficients ν– affecting the restoration rate f and representing a
higher urge of the population to return to normal conditions– induce temporary
stabilization of the transmission rate after an initial drop, being the duration of
this plateau larger, the larger the reaction coefficients µ (affecting the reaction
rate g) are, i.e. the higher the self-protective reaction is to disease presence. When
considering small ν values (a small urge to return to normality), we observe os-
cillations in the transmission rate, with higher amplitudes for higher µ values, i.e.
amplitudes are higher if individuals’ reaction to disease presence is higher. These
oscillations in the transmission rate generate oscillations in the effective reproduc-
tion number, which lay around one for a period of time proportional to the value
of the reaction coefficient µ. Regarding the curve of new cases, we show that in
general higher restoration coefficients ν produce unimodal behavior, whereas lower
ν values generate the appearance of a finite number of peaks with decreasing peak
size, in a way that for large reaction coefficients µ the timing between peaks is
smaller. These results already define interesting future mathematical challenges.

In general, our results show how the transmission rate is impacted by the
reaction rate g and the restoration rate f . In particular, we observe that a small
difference between reaction and restoration rates may produce a large impact in
the transmission rate. This highlights the importance of individual behavior in a
pandemic setting, where even the behavior of a small number of individuals could
change the dynamics of a disease drastically.

The real data of new confirmed cases presented in Fig. 1 show curves with
two and up to three waves, differing among countries in time and size, with peaks
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and valleys of different heights, proper to a pandemic still under development. We
notice that the βSEIR model can capture such patterns at the cost of varying the
reaction coefficient µ(t) and for further dynamic richness varying the restoration
coefficient ν(t). We can justify a time-varying reaction coefficient µ(t) that consid-
ers two aspects: first, it follows the shape of the Stringency-Index [46] – that records
for each country government mitigation measures–, second, it reflects the reduced
compliance with or adherence to mitigation strategies observed with time. The
βSEIR model shows even richer dynamics when introducing such a time-varying
reaction coefficient (see Figs. 5- 7).

Additionally, our model is capable of capturing the time series of new con-
firmed cases of Chile and Italy when including– on top of a time-varying reaction
coefficient– a time-dependent seasonal variation in the restoration coefficient ν(t),
reflecting distinct temporal and possibly behavioral characteristics of two countries
located at different hemispheres. These results are, at first glance, good indicators
for the richness that a model of such low structural complexity, as the one proposed
here, can provide.
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