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Abstract  

PSAP encodes saposin C, the co-activator of glucocerebrosidase, encoded by GBA. Since GBA 

mutations are associated with idiopathic/isolated REM sleep behavior disorder (iRBD), a prodromal 

stage of synucleinopathy, we examined the role of PSAP mutations in iRBD. We fully sequenced 

PSAP and performed Optimized Sequence Kernel Association Test in 1,113 iRBD patients and 2,324 

controls. We identified loss-of-function (LoF) mutations, which are very rare in PSAP, in three iRBD 

patients and none in controls (uncorrected p=0.018). Two variants were stop mutations, p.Gln260Ter 

p.Glu166Ter, and one was an in-frame deletion, p.332_333del. All three mutations have a deleterious 

effect on saposin C, based on in silico analysis. In addition, the two carriers of p.Glu166Ter and 

p.332_333del mutations also carried a GBA variant, p.Arg349Ter and p.Glu326Lys, respectively. The 

co-occurrence of these extremely rare PSAP LoF mutations in two (0.2%) GBA variant carriers in the 

iRBD cohort, is unlikely to occur by chance (estimated co-occurrence in the general population based 

on gnomAD data is 0.00035%). Although none of the three iRBD patients with PSAP LoF mutations 

have phenoconverted to an overt synucleinopathy at their last follow-up, all manifested initial signs 

suggestive of motor dysfunction, two were diagnosed with mild cognitive impairment and all showed 

prodromal clinical markers other than RBD. Their probability of prodromal PD, according to the 

Movement Disorder Society research criteria was 98% or more. These results suggest a possible role 

of PSAP variants in iRBD and potential genetic interaction with GBA, which requires additional 

studies.   

 

 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.13.21258405doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.13.21258405
http://creativecommons.org/licenses/by/4.0/


Introduction 

Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by the enactment of 

dreams during the REM phase of sleep [1]. In its idiopathic/isolated form (iRBD, presenting before 

the clinical diagnosis of a neurodegenerative disease), it represents a common prodromal stage of 

synucleinopathies, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and 

multiple system atrophy (MSA) [1, 2]. Notably, over 80% of iRBD cases convert to a synucleinopathy 

within 10-15 years [2, 3]. In line with their clinical overlap, iRBD and overt synucleinopathies also 

share some of their genetic risk factors. For example, iRBD and PD are both associated with GBA 

variants, which represent one of the most common genetic risk factors for both diseases [4, 5]. GBA 

variants display an incomplete penetrance in iRBD as well as in PD [4, 5], suggesting that other 

factors, genetic and/or environmental, contribute to the development of these disorders among GBA 

carriers.  

GBA encodes glucocerebrosidase (GCase), a lysosomal hydrolase whose main function is the 

degradation of glucocerebrosides into ceramide and glucose, although it has additional substrates [5]. 

To properly function, GCase requires a co-activator, saposin C (sapC) [6]. This protein is one of the 

four active domains of a protein precursor, prosaposin, encoded by the PSAP gene. After its synthesis, 

prosaposin is cleaved by cathepsin D (CTSD) into its functional proteins: saposins A, B, C and D [7, 

8]. Saposins are lysosomal cofactors that activate enzymes degrading sphingolipids. Mutations in 

PSAP have been associated with the accumulation of sphingolipids and with different lysosomal 

storage disorders (LSD). For example, Gaucher’s disease, an LSD that is typically caused by biallelic 

mutations in GBA, is also rarely caused by biallelic mutations in the sapC domain of PSAP [7, 9].  

Whereas the association of GBA variants with PD is widely accepted, the role played by PSAP 

in general and sapC specifically in PD remains controversial. Studies in Asian populations suggested 

an association between PSAP variants and PD [10-14], yet these results did not replicate in Europeans 

[15-17]. These conflicting results may suggest a possible role played by ethnic differences and/or by 
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the extreme rarity of deleterious PSAP variants, reducing their detection in PD. Despite the clinical, 

biological, and, possibly, genetic links of PSAP with GBA and PD, the role of PSAP in iRBD has not 

been investigated. Herein, we analyzed a multi-center cohort of 1,113 iRBD patients and 2,324 

healthy controls to evaluate a possible association between rare PSAP variants and iRBD.  

 

Methods 

Population 

The current study included 1,113 unrelated iRBD patients and 2,324 unrelated healthy controls of 

European descent. Details on the cohorts and their recruitment have been previously published [4]. 

RBD was diagnosed with video polysomnography (vPSG) according to the International 

Classification of Sleep Disorders, version 2/3 criteria [18, 19]. About 81% of the iRBD patients were 

males (N=897) and their mean age was 68 ± 9.4. Among the controls, 48% of the participants were 

males (N=1,122) and their mean age was 48 ± 16.7.  

 

Standard Protocol Approvals, Registrations, and Patient Consents 

All patients signed an informed consent form before entering the study, and the study protocol was 

approved by the institutional review boards. 

 

Genetic analysis 

The PSAP coding regions were fully sequenced using Molecular Inversion Probes (MIPs) as 

previously described [15, 20]. A detailed description of the MIPs library and protocols is available 

online (https://github.com/gan-orlab/MIP_protocol). Variant annotation was performed with 

ANNOVAR [21]. The frequency of each variant was extracted from the Genome Aggregation 

Database (gnomAD) [22]. Post-alignment quality control and variant calling were done using the 
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Genome Analysis Toolkit (GATK, v3.8) [23] as previously described [24]. Full code is available at 

https://github.com/gan-orlab/MIPVar/.  

 

In silico structural analysis 

The impact of the rare variants on the structure and function of the saposin chains was investigated 

with in silico structural analyses. The atomic coordinates of the human saposin chains B and C were 

downloaded from the Protein Data Bank [25](ID 1n69 and 1m12, respectively). Images were 

generated using PyMol v. 2.4.0. 

 

Statistical analysis 

Rare PSAP variants were filtered using a minor allele frequency (MAF) threshold of < 0.01. To test 

for rare PSAP variants enrichment in iRBD patients we performed optimized sequence Kernel 

association test (SKAT-O) for all rare variants and subsets of rare variants. These subsets included 

nonsynonymous, regulatory, potentially functional (nonsynonymous, frameshift, stop-gain and 

splicing) and loss-of-function (frameshift, stop-gain and splicing) rare variants. A further subset 

consisted of variants predicted to have a high deleteriousness probability based on a Combined 

Annotation Dependent Depletion (CADD) score ≥ 12.37. SKAT-O analysis was performed using 

SKAT package in R 3.5.2 [26]. False discovery rate (FDR) correction was applied to correct for 

multiple comparisons, using Benjamini-Hochberg method with stats package in R 4.0.2.  

 

Results 

We identified 59 rare variants within the PSAP region, of which 15 were nonsynonymous and 3 were 

loss of function (LoF) variants (Supplementary Table 1). The mean coverage was 568X, and a 
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minimum threshold of 30X was applied for variant quality control. To evaluate if rare PSAP variants 

are associated with iRBD, we performed SKAT-O comparing iRBD patients and healthy controls. 

There was a nominally significant enrichment of rare PSAP LoF variants (p=0.018) in iRBD patients. 

However, after FDR correction, the results lost statistical significance (p=0.1, Table 1). Three out of 

1,113 iRBD patients (0.3%) carried a rare PSAP LoF variant, while no carriers of LoF variants were 

found among the controls (0/2324, Supplementary Table 1). In particular, p.Gln260Ter and 

p.Glu166Ter are both stop variants located, respectively, within the sapB and between sapA and sapB 

domains, therefore the sapC domain is not translated. The p.332_333del mutation is an in-frame 

deletion located within the sapC domain.  

 Given the interplay between sapC and GCase, we examined whether any of these three iRBD 

patients with PSAP LoF mutations also carry a GBA variant. Furthermore, we tested the presence of 

GBA copy number variants (CNVs), as was done previously [27]. We found that two of the patients, 

carrying the p.Glu166Ter and p.332_333del variants, also carried a GBA variant: p.Arg349Ter and 

p.Glu326Lys, respectively. None carried GBA CNVs. All PSAP and GBA variants were confirmed 

by Sanger sequencing. 

We further examined the frequency of PSAP LoF variants on gnomAD database v2.11 

(https://gnomad.broadinstitute.org). None of the LoF variants found in this study have been reported 

in gnomAD, and the overall frequency of PSAP LoF variants was extremely low, with a total allele 

count of high-quality LoF variants of 10 in 141,456 individuals (~0.007%, compared to ~0.3% in the 

iRBD cohort). With a frequency of ~5% in the general European population for GBA variants (based 

on gnomAD data), the estimated combined carrier frequency of both LoF PSAP variants and GBA 

variants is 0.00035%, compared to 0.2% observed in the iRBD cohort, more than a 500-fold 

difference. 

 

In silico structural analyses 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.13.21258405doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.13.21258405
http://creativecommons.org/licenses/by/4.0/


To evaluate the impact of the three iRBD-associated variants on the structure and function of the 

saposin chains we performed in silico analyses. The p.Glu166Ter variant, located between saposin 

chains A and B, would result in the termination of expression for chains B-D. The p.Gln260Ter 

variant is located towards the C-terminus of the sapB domain and would result in the deletion of its 

C-terminal helix (Figure 1A), as well as in the termination of sapC and sapD translation. This deletion 

would also unfold sapB and prevent its dimerization, which is critical for binding lipids [28]. Finally, 

the variant p.332_333del is located in a linker between helices 1 and 2 of sapC (Figure 1B) [29]. This 

shortened linker would prevent the formation of stabilizing contacts between these helices and thus 

interfere with its ability to bind membranes and GCase. Therefore, all three variants result in a loss 

of function of the sapC chain.  

Clinical presentation of the iRBD patients with PSAP LoF variants  

The iRBD patient with the p.332_333del PSAP variant was a male in the age range 75-79 who showed 

minor gait impairment, not quite erect posture, slight global slowness and poverty of spontaneous 

movements on the neurological examination. His Unified Parkinson’s Disease Rating Scale (UPDRS) 

III [30] score at last follow-up was 3. No cognitive deficits were present (Montreal Cognitive 

Assessment (MoCA) = 29/30), yet the patient manifested autonomic symptoms associated with 

prodromal PD, including constipation, erectile dysfunction and orthostatic hypotension. The risk of 

prodromal PD according to the Movement Disorder Society (MDS) research criteria [31] at the last 

follow-up was 1.000 (LR = 37452.7, Table 2).  

The iRBD patient with the PSAP p.Glu166Ter variant was a male in the age range 80-84 

displaying initial PD motor symptoms, including mild right leg rigidity, slight bilateral slowing of 

finger tapping movements and stooped posture, with a UPDRS III score of 4. He was also diagnosed 

with mild cognitive impairment (MCI, MoCA = 23/30). Furthermore, the patient had some non-motor 

PD-related symptoms, including significant hyposmia and orthostatic hypotension. His risk for 

prodromal PD was 0.99 (LR=25600, Table 2).  
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Finally, the iRBD patient with the PSAP p.Gln260Ter variant was a male in the age range 60-

64 showing some signs of motor impairment, including mild asymmetric finger tapping and top 

tapping bradykinesia. His UPDRS III score was 3 and he was diagnosed with MCI (MoCA = 26/30). 

He displayed severe hyposmia, while no autonomic symptoms were present. His risk of prodromal 

PD at his last follow-up was 0.98 (LR=4072, Table 2). 

Discussion 

In this study, we found three iRBD patients with extremely rare PSAP LoF variants, not reported on 

gnomAD, while no controls were found with LoF variants. Interestingly, two of the three PSAP LoF 

variant carriers also carried a GBA variant. While the enrichment of rare PSAP LoF variants in iRBD 

was only nominally significant, given their rarity it is plausible that this reflects a real association. 

Furthermore, assuming that in the general European population the carrier frequency of GBA variants 

is about 5%, and the carrier frequency of LoF variants (based on gnomAD) is about 0.007%, the 

probability to carry both a GBA variant and a PSAP LoF variant is 0.00035%. In the iRBD cohort, 

the carrier frequency of both was ~0.2%, suggesting that this is likely not due to chance alone. The 

deleteriousness of the three PSAP LoF variants was further exemplified by structural analyses (Figure 

1A and 1B). All iRBD patients met the MDS criteria for probable prodromal PD (Table 2).  

Although the role of PSAP in iRBD and in synucleinopathies in general is still controversial, 

this study provides the first evidence for a possible role of PSAP variants in iRBD. The lack of a 

statistically significant enrichment in iRBD patients after correction for multiple comparisons can be 

explained by the extreme rarity of PSAP variants, resulting in insufficient power. The Residual 

Variation Intolerance Score (RVIS) of PSAP is -1, putting it in the top 8.47% of genes in the human 

genome which are intolerant to genetic variance, especially for LoF variance (FDR corrected 

p=0.00037 for the observed vs. expected number of LoF variants - http://genic-

intolerance.org/Search?query=psap).  
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Two iRBD carriers of PSAP LoF variants were also carriers of a GBA variant. Given the 

incomplete penetrance of GBA in iRBD, the presence of potentially pathogenic variants in PSAP 

among GBA carriers may suggest oligogenic inheritance and that PSAP variants might act as genetic 

modifiers of risk in GBA-iRBD. This is in line with the biological link between sapC and GCase [6, 

9]. In particular, it is possible that an impairment of the sapC-mediated activation of GCase 

contributes to an increased risk to develop iRBD in GBA variant carriers. These hypotheses require 

additional genetic and functional studies. We cannot rule out that the co-occurrence of GBA and PSAP 

variants is a coincidence, due to chance alone. However, the fact that two out of three extremely rare 

PSAP LoF variant carriers also carried a GBA mutation makes a coincidental association less likely.  

It is still unclear whether PSAP mutations alone can increase the risk of iRBD or PD. It is 

possible that LoF of sapC, as seen in our patient with the p.332_333del mutation, will result in reduced 

activation of GCase and be an independent risk factor. On the other hand, it is also possible that PSAP 

variants might lead to iRBD through mechanisms independent of GBA. A possible mechanism can 

be due to an impairment of CTSD and progranulin (PGRN) activity, as previously hypothesized in 

PD [8]. PSAP, CTSD and PGRN interact in a network involved in lysosomal homeostasis and 

clearance of alpha-synuclein. PSAP dysfunction might lead to decreased transport of PGRN into the 

lysosome, reduction of the pro-CTSD conversion into active CTSD, and consequently to impaired 

lysosomal trafficking and degradation of deleterious or overrepresented proteins, such as alpha-

synuclein [8].   

 This study has several limitations. Age and sex differed between patients and controls. 

However, this difference would generally lead to false negative results (as young mutation carriers 

still would not develop the disease), and is, therefore, less likely to affect our results, as no carriers 

were found in the controls. Although this study was performed in the largest genetic cohort of iRBD 

patients worldwide, the sample size may still be insufficient to detect extremely rare variants in PSAP. 

Finally, we were able to find PSAP LoF variants, different from each other, in only 3 iRBD patients. 
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However, the absence of such variants in the ~twofold larger control group and in the ~140-fold larger 

gnomAD control population suggests that this finding might not be random.  

Further studies in larger cohorts and functional analyses will be required to clarify the role of 

PSAP variants in iRBD and alpha-synuclein physiopathology. In addition, studies in other 

populations, such as East Asians, where PSAP variants have already been proposed as PD risk factors 

[10-14], will be necessary to further explore differences in the genetic underpinnings of 

synucleinopathies between different ethnic groups.  
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Table 1 - Optimized sequence Kernel association test (SKAT-O) for PSAP rare variants 

Rare variant subset P.value P.adj 

CADD 0.034792187 0.1043766 

Encode 0.286264029 0.3021955 

Func 0.302195501 0.3021955 

LoF 0.017929809 0.1043766 

NS 0.052448772 0.1048975 

All 0.246565484 0.3021955 

CADD: Variants selected based on a Combined Annotation Dependent Depletion threshold >12.37; 

Encode: variants in regulatory elements; Func: potentially functional variants; LoF; loss of function 

variants; NS: nonsynonymous; All: all rare variants; P.adj: corrected p-value for multiple 

comparisons using false discovery rate 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.13.21258405doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.13.21258405
http://creativecommons.org/licenses/by/4.0/


Table 2 – Clinical data at last follow-up of iRBD patients carrying PSAP rare variants 

PSAP LoF rare 

variants 

p.332_333del p.Glu166Ter p.Gln260Ter 

GBA variants p.Glu326Lys p.Arg349Ter No 

Sex Male Male  Male  

AAD range 75-79 80-84 60-64 

Disease duration >13 years >2 years >5 years 

Tremor No No No 

Hypokinesia No Initial signs No 

Bradykinesia  No Initial signs Initial signs 

Postural instability No No No 

Cognitive symptoms No Yes Yes 

Psychiatric symptoms No No No 

Hyposmia No Yes Yes 

Orthostatic 

hypotension 

Yes Yes Dizziness standing up 

(negative tilt test) 

Constipation Yes No No 

Urinary dysfunction No No No 

Erectile dysfunction Yes No No 

Imaging signs Substantia nigra 

hyperechogenicity on the right 

side  

 /  / 

Risk prodromal PD 0.98 (288) – 1 (37458)  0.96 (551) - 0.99 

(25600) 

 0.53 (88) - 0.98 

(4072) 

MDS-UPDRS III  3  4  3 

Smoker Yes (ex-smoker) Yes (ex-smoker) Yes (ex-smoker) 

LoF: loss of function variant; AAD range: age at diagnosis range; Disease duration: disease duration 

from age at diagnosis to last follow-up; Risk prodromal PD: risk for prodromal Parkinson’s disease 

according to the Movement Disorder Society (MDS) criteria, not considering iRBD (values on the 

left) and considering iRBD (values on the right). Values in parentheses indicate the likelihood ratios; 

MDS-UPDRS: Movement Disorder Society - Unified Parkinson’s Disease Rating Scale 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.13.21258405doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.13.21258405
http://creativecommons.org/licenses/by/4.0/


Figure 1 – Structural analysis of the saposin B and C domains 

 

(A) Crystal structure of the saposin B dimer (green and cyan, pdb 1n69). A bound 

phosphatidylethanolamine (PE) is shown in violet. The C-terminal helix (a.a. 260-273) deleted in the 

p.Gln260Ter variant is shown in magenta. (B) Solution NMR structure of the human saposin-C 

domain (cyan, pdb 1m12). In-frame deletion of amino acids Asn332 and Lys333 is shown in magenta. 
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