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Abstract

Vaccines have measurable efficacies, obtained first from vaccine trials.
However, vaccine efficacy is not a static measure upon licensing, and the
long term population studies are very important to evaluate vaccine perfor-
mance and impact. COVID-19 vaccines were developed in record time and
although the extent of sterilizing immunity is still under evaluation, the cur-
rently licensed vaccines are extremely effective against severe disease, with
vaccine efficacy significantly higher after the full immunization schedule. We
investigate the impact of vaccines which have different efficacies after first
dose and after the second dose administration schedule, eventually consider-
ing different efficacies against severe disease as opposed to overall infection.
As a proof of concept, we model the vaccine performance of hospitalization
reduction at the momentary scenario of the Basque Country, Spain, with
population in a mixed vaccination setting, giving insights into the popula-
tion coverage needed to achieve herd immunity in the current vaccination
context.

Keywords: COVID-19, epidemic models, momentary reproduction number,
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July 12, 2021

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.12.21260390doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.07.12.21260390
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction

More than a year has passed since a severe respiratory syndrome (COVID-
19) caused by a new coronavirus (SARS-CoV-2) was identified in China [1].
Declared a pandemic by the World Health Organization (WHO) in March
2020 [2], COVID-19 has spread rapidly around the globe. As of July 1st,
2021, approximately 180 million cases were confirmed with more than 3.9
million deaths and a global case fatality ratio (CFR) of approximately 2%
[3, 4].

With eventually substantial global underestimation of SARS-CoV-2 in-
fection, COVID-19 symptoms can range from asymptomatic/mild to severe
illness, and disease severity and death occurring according to a hierarchy
of risks [5], with age and pre-existing health conditions enhancing disease
severity.

Vaccines against COVID-19 have been developed in record time [6, 7, 8, 9].
With different efficacies, COVID-19 vaccines are remarkably effective against
severe disease, however, the so called sterilizing immunity, occurring when
vaccinated individuals cannot transmit the virus, is still being evaluated [10,
11]. Moreover, vaccine performance is expected to be driven by the ability
of undetected asymptomatic infections transmitting the virus [12, 13], and
therefore, a well planned strategy to use different COVID-19 vaccines will
optimize hospitalization reductions.

Mathematical models convey ideas about the components of a host-patho-
gen interactions and have been intensively used to model the dynamical
spreading of COVID-19. Acting as a tool to understand and predict the
spread of the disease as well as to evaluate the impact of control in different
epidemiological scenarios, several task forces were created to assist public
health managers and governments during the COVID-19 pandemic.

Already in March 2020, a multidisciplinary task force (so-called Basque
Modelling Task Force, BMTF) was created to assist the Basque health man-
agers and the Basque Government during the COVID-19 responses. As an
extension of the simple SIR model, a stochastic SHARUCD modeling frame-
work was developed [14, 15, 16, 17, 18, 19]. Able to describe the COVID-19
epidemic in terms of disease spreading and control, and giving accurate pro-
jections on hospitalizations, ICU admissions and deceased cases, this frame-
work is currently used to monitor the COVID-19 epidemic as lockdowns are
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relaxed and tightened.
In this paper, we investigate the impact of COVID-19 vaccination roll

out in the Basque Country, Spain, using a flexible modeling framework tak-
ing into account the differences on a single dose and two dose immunization
schedule over time. Studies like the one described here are of major im-
portance to understand the impact of uneven roll out of vaccination, giving
insights into future planning of immunization programmes of new vaccine
generations that will need to be evaluated under the same settings presented
here.

The paper is structured as follows. In Section 2 we describe the SHARU-
CD modeling framework currently used to assist the public health managers
in the Basque Country during the COVID-19 crisis. Section 3 describes the
baseline modelling framework used for the current model extensions. Section
4 presents the analytical results and numerical experiments with vaccine
model using the latest data available on vaccine efficacy and coverage. The
last section concludes this work with a discussion presenting the connection
of this research with the current vaccination strategy to control COVID-19
spreading and severe disease reduction in the Basque Country, Spain.

2. Modeling COVID-19 in the Basque Country, Spain

As an extension of the simple SIR and SHAR models, the SHARUCD
modeling framework considers populations of susceptible individuals (S), se-
vere cases prone to hospitalization (H), mild, sub-clinical or asymptomatic
(A), recovered (R), patients admitted to the intensive care units, ICU, (U).
The recorded cumulative positive cases, which includes all new positive cases
for each class of H, A, U, R, are counted within the C classes, including the
deceased (D) cases [14, 15, 16, 17, 18].

Able to describe the COVID-19 epidemic in terms of disease spreading,
the SHARUCD model gives accurate projections on hospitalizations, ICU
admissions and deceased cases, from March 4, 2020 to December 2020, shown
in Fig. 1, when vaccination started. The modeling framework was used to
monitor the COVID-19 epidemiological dynamics in the Basque Country
while the lockdown measures were relaxed and tightened over time.

However, to evaluate the implications of different vaccine efficacies and
coverages, this framework is under refinement to include the uneven vacci-
nation roll out strategy currently in place worldwide. As continuation of the
BMTF efforts, we now evaluate the vaccination trial data for the vaccines
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Figure 1: From March 4 to December 31, 2020, on the left hand side we plot the ensemble
of stochastic realizations of the SHARUCD-model for cumulative cases. In a) cumulative
hospitalized cases CH(t), in c) cumulative ICU admissions CU(t) and in e) cumulative
deceases cases D(t). The mean the of the stochastic realizations is plotted in light blue.
Empirical data are plotted for hospitalizations and for ICU admissions (black dots) and
deceased cases (red dots). On the right hand side we plot the model results for the daily
incidences. In b) daily hospitalized cases, in d) daily ICU admissions and in f) daily
deceased cases. Empirical data are plotted for hospitalizations (red line), ICU admissions
(purple line) and deceased cases (black line). The mean of 200 stochastic realizations are
plotted as a light blue line. The 95% confidence intervals are obtained empirically from
200 stochastic realizations and are plotted as red, purple and black shadow for each disease
related variable, hospitalizations, ICU admission and deceased cases, respectively.
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which have been licensed for emergency use in Europe. Results are imple-
mented into the simple SHAR modeling framework and its extensions to get
the qualitative overview of the impact of COVID-19 vaccination strategy in
the Basque Country and many other European regions.

2.1. Modeling COVID-19 vaccine trial and data analysis

Every vaccine must go through extensive and rigorous testing to ensure
it is safe before it can be introduced in a country’s vaccine programme. The
so called pre-clinical phase of a vaccine development determines which anti-
gen invoke an immune response to a given pathogen. This phase is done
without testing on humans. If the vaccine triggers an immune response, it
will be then tested in human clinical trials which have three phases to assess
its safety and confirm it generates an immune response. While the Phase I
enrolls a small number of volunteers, in the Phase III vaccine is given to a
much larger group of people, often across multiple countries, to determine
the so called vaccine efficacy against the disease. For that, the studied pop-
ulation is divided into two groups: the vaccinated with individuals receiving
the vaccine and the control group receiving a placebo solution [20]. These
groups are compared to obtain the so called vaccine efficacy (VE) measure,
i.e., the proportionate reduction in cases among vaccinated persons calcu-
lating the risk of disease among vaccinated and unvaccinated persons and
determining the percentage of reduction in risk of disease among vaccinated
persons relative to unvaccinated persons [21]. Vaccine efficacy is generally
reported as relative risk (RR), the ratio of the probability of an outcome in
an exposed group to the probability of an outcome in an unexposed group,
which is calculated based on the number of confirmed infections, mild or se-
vere, in each group. It is important to stress, however, that vaccine efficacy
is not a static measure and therefore its evaluation continues further with
eventually newly upcoming aspects of disease protection and preconditioning
for its use being identified over time [22, 23, 24, 25].

In the present epidemiological scenario, COVID-19 were approved for
emergency use according to current regulatory guidelines and legal require-
ments. Due to the global emergency, the vaccine trials lasted shorter time
enrolling similar sample sizes for vaccine and placebo groups. As such, long
term population studies and large scale field analysis, possible now after the
global vaccination roll out, are very important to evaluate vaccine perfor-
mance and impact.
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Four vaccines are now used in the Basque Country, Spain, and other Euro-
pean countries. On the one hand, mRNA type vaccines BioNTech/Pfizer and
Moderna, with above 90% vaccine efficacy estimated after second dose, while
on the other viral vector vaccines by Oxford/AstraZeneca and Janssen/Johnson&-
Johnson, with about 70% vaccine efficacy estimated upon full immunization
schedule, with two or one dose respectively [6, 8, 9, 10].

The analysis of the raw vaccine trial data can be done by a Bayesian
framework to estimate the efficacy conditioned on numbers of detected in-
fected in the vaccine group and in the placebo group [26, 27, 28, 29].

In this section, we analyse the trial data from the Oxford/AstraZeneca
vaccine [6], showing explicitly the COVID-19 vaccine efficacy as Bayesian
posterior, and from this its cumulative distribution function, obtaining the
confidence intervals in good agreement with reported numbers in [6].

Note that some vaccines have, by now, larger scale vaccine efficacy data
publicly available. With a much larger group sizes, these studies are able to
obtain information of various aspects of the vaccine efficacy after one dose
versus full immunization, after the full immunization scheme of two doses,
see e.g. for the BioNTech/Pfizer vaccine [10]. From such studies, the efficacy
against severe disease/hospitalization and against infection can be obtained
separately, for single dose and two dose regimes. Results of this analysis
are shown in the section below, and will be also included into the modelling
framework to evaluate the expected impact of vaccination campaigns in a
populations with known vaccine coverage of individuals receiving two doses
and for at least one dose.

2.2. Analysis of the Oxford/AstraZeneca COVID-19 vaccine trial

The Oxford/AstraZeneca vaccine trial in the UK/Brazil study [6] has
roughly the same sample size for control group and vaccine group, i.e, Nv ≈
Nc. While the control group Nc = 5829 reported Ic = 101 infected individu-
als, the vaccine group Nv = 5807 counted Iv = 30 infected individuals, giving
a maximum likelihood estimate for the vaccine efficacy of k̂ = 70%, as also
reported in [6]. This estimation was obtained via

k̂ = 1−
ln
(

1− Iv
Nv

)
ln
(

1− Ic
Nc

) ≈ 1−

(
Iv
Nv

)
(
Ic
Nc

) (1)

with the approximation valid for small numbers of infected compared to the
trial group sizes I/N � 1 which is well valid in all cases here. See [28]
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and [29], for example, for the mathematical approach used to estimate the
vaccine efficacy for a dengue vaccine using the publicly available Phase III
trial data.

In detail, from the initially susceptible individuals in each group one
estimates the infection rate β from the control group, and the eventually
reduced infection rate (1− k)β in the vaccine group with efficacy k, via the
processes

Nc + I∗
β−→ Ic + I∗

Nv + I∗
(1−k)β−→ Iv + I∗

giving first a likelihood for the probability of background infection, for con-
venience the probability not to become infected in the control group θβ, i.e.
L(θβ) = p(Ic|θβ) and via the Bayesian ansatz the posterior

p(θβ|Ic) =
p(Ic|θβ)

p(Ic)
p(θβ) (2)

and likewise in the vaccine group, such that we finally obtain the posterior
p(k|Iv, Ic) of the vaccine efficacy k only as function of the trial data (by
marginalizing over the internal background infection parameter, hence the
form of which is not entering into the final results) via

p(k|Iv, Ic) =

∫ 1

0

p(k|Iv, θβ) · p(θβ|Ic) dθβ (3)

and from this also its cumulative distribution function P (k|Iv, Ic). In Fig.
2 a) we show the numerical results for the the Oxford/AstraZeneca vaccine
efficacy posterior p(k|Iv, Ic), giving a good visual impression of the estimated
efficacy and its insecurity due to the small trial data numbers. In Fig. 2
b) we show the cumulative distribution function P (k|Iv, Ic), from which one
can read off the confidence intervals.

From the data which generates Fig. 2 we obtain from the median of
the marginalized posterior P (k0.5|Iv, Ic) = 0.5 the Bayesian estimate of the
vaccine efficacy k0.5 = 0.703 = 70.3% and the 95%-confidence interval from
the 0.025 and 0.975 quantils, hence P (k0.025|Iv, Ic) = 0.025 for the lower
bound k0.025 = 0.559 and P (k0.975|Iv, Ic) = 0.975 for the upper bound k0.975 =
0.805.

These estimations are in good agreement with the values given in [6] (with
70.4 % (95%-CI: 54.8 - 80.6) ), with small differences due to Bayesian priors
being as uninformed as possible, see [28, 29] for further details.
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Figure 2: Bayesian analysis of the vaccine efficacy bases on the raw trial data of the
Oxford/AstraZeneca vaccine [6]. a) Posterior distribution of the vaccine efficay p(k|Iv, Ic),
and b) its cumlative distribution function P (k|Iv, Ic) to read off median and confindence
intervals.

2.3. BioNTech/Pfizer vaccine: large scale population analysis

After the first period of vaccine trial data published around Decem-
ber 2020 (Oxford/AstraZeneca vaccine [6], BioNTech/Pfizer vaccine (mRNA
vaccine) [7], Moderna vaccine (mRNA vaccine) [8], and Janssen/Johnson-
&Johnson [9]), results of first larger scale population studies of vaccine effi-
cacy became available, e.g. for the mRNA vaccine BioNTech/Pfizer [10].

In this study, data from Israel’s largest health care organization, the Clalit
Health Service, were used to evaluate the effectiveness of the BioNTech/Pfizer
vaccine (BNT162b2 mRNA) vaccine. Aspects of vaccine efficacy after the
first dose and after the second dose are given. Such detailed studies are rare
and not yet available for all the vaccines already licensed for emergency use.

For this specific study, preliminary analyses of vaccine efficacy against
hospitalization and severe disease, called kH in the modelling setup, and
in some cases different efficacies against infection (immunizing effect of the
vaccine reducing the probability of a vaccinated individual to transmit the
infection), called kI can be performed.

A first inspection of the given vaccine efficacies in [10] already indicates
that not only the medians of kH and kI can be quite different, but also the
confidence intervals merely overlap, or in some cases are disjunct, indicating
that future studies will, most likely, not give equal efficacies against severe
disease and infection. In the present case of the BioNTech/Pfizer vaccine the
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differences in efficacies are mostly observed after a single dose, while efficacies
after the second dose are estimated to be above 90%, hence remarkably higher
than for the estimated vaccine efficacy for the Oxford/AstraZeneca vaccine,
for example, after the full immunization (two dose) scheme.

Data from the Clalit Health Service data were analyzed from December
20, 2020, to February 1, 2021, with all newly vaccinated persons matched
in a 1:1 ratio to unvaccinated controls [10]. With Nv = Nc = 596 618 (and
later keep to a good extend to equal group sizes, hence Nv/Nc ≈ 1), vaccine
efficacies can be obtained from the raw data given above as

k̂ = 1− (∆Iv)

(∆Ic)
. (4)

Using a refined Bayesian analysis, as described in Section 2.2, we com-
pare the vaccine efficacy against hospitalization and against infection. First,
for the one dose vaccination schedule, see Fig. 3 a), we use the data for
“documented infection” with confirmed PCR with 21 to 27 day after vac-
cine administration. With the two distributions only slightly overlapping,
a high vaccine efficacy is estimated for protection against hospitalization
kH,1, kH,1 = 78%[61%− 91%], with maximum around 80%, plotted in green
in Fig.3 a). Vaccine efficacy against infection kI,1 is estimated as kI,1 =
60%[53% − 66%], and has its maximum just below 60%, plotted as purple
curve in Fig.3 a).

Vaccine efficacy increases significantly with the complete immunization
with two dose vaccination. Here, the two distributions are well overlapping,
with both, the efficacy against hospitalization kH,2 = 92%[88% − 95%] and
efficacy against infection kI,2 = 87%[55% − 100%], having their maxima
around or above 90%, see Fig. 3 b).

The efficacy against infection is quite well measured with confidence in-
tervals between 80% and nearly 100%, whereas the smaller trial numbers of
hospitalized can leave some wider insecurity of efficacy with lower bound as
far down as 50 to 60%. Nevertheless, the bulks of the distributions overlap
well, and for modelling purposes we assume, here, roughly equal protec-
tion against hospitalization and against infection for the two dose vaccine,
kH ≈ kI ≈ 92%, as given in [10]. It is important to consider the reduction
of efficacies due to the new variants. New information on vaccine efficacies
are released frequently and can be included in the modeling framework as
needed. Moreover, please, note that the actual numbers of median efficaies
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are not that important on the second or third digit, due to still large confi-
dence intervals in the studies, but the order of magnitude is informative in
modelling exercises as presented here.
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Figure 3: Comparison of vaccine efficacies against hospitalization kH , in green, and against
infection kI , in purple. In a) vaccine efficacy is estimated for a single dose vaccine kH,1

and kI,1, for 21 to 27 days after vaccine administration and in b) vaccine efficacy is
estimated for two dose vaccine kH,2 and kI,2, for 7 days after vaccine administration, the
full immunization schedule to the end of the follow-up. Data were obtained from [10].

Nevertheless, the first dose vaccination regime is still important to be
considered in the momentary scenario in which populations have large pro-
portion of the vaccinated individuals with a single dose, still awaiting to
receive the second vaccine dose. As an example, the Basque Country set-
ting in Spain, as of June 14, 2021, see Fig. 4, counting 47.6% and 31.3% of
the population vaccinated with at least one dose and with the complete im-
munization schedule respectively. Note that the full immunization schedule
considers two dose for BioNTech/Pfizer, Moderna and Oxford/AstraZeneca
and a single dose for Janssen/Johnson&Johnson. Official data on vaccination
doses are updated every day 15 of each month.

3. Vaccination coverage to achieve herd immunity: basic concepts
using the simple SIR model

Differences in vaccine efficacies after the full immunization schedule with
two doses, e.g. in the compared efficacies of Oxford/AstraZeneca of roughly
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a) % Vaccinated population in the Basque Country
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Figure 4: Vaccination roll out in the Basque Country, Spain, as of June 14, 2021. Four
vaccines are approved for emergency use: BioNTech/Pfizer & Moderna (mRNA vaccines)
and Oxford/AstraZeneca & Janssen/Johnson&Johnson (viral vector vaccines). In a) the
vaccination coverage of individuals that have received at least a single dose of a vaccine
(≈ 47.6%) and the coverage of individuals that have completed the immunization schedule
(≈ 31.3%). In b) the detailed numbers of doses per vaccine type administered in the Basque
Country, Spain, up to June 14, 2021, given in percentage.
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70 % and BioNTech/Pfizer of above 90 %, affects the vaccination coverage
needed to achieve herd immunity by vaccination.

Here, we present the basic concepts of a simple SIR model, which are
already quite informative, and later refine our modelling framework to evalu-
ate the current situation in the Basque Country, Spain, and other European
regions with a mixed vaccination coverage of first and second dose, and even-
tually mixed vaccine efficacies against hospitalization and infection.

From a simple SIR model with

d

dt
I =

(
β
S

N
− γ
)
I (5)

and the vaccination coverage c of population N as c · N , hence remaining
susceptible individuals S = (1 − c)N , we use the condition of zero growth
λ = 0 as threshold condition for the vaccination coverage c via

0 = λ =

(
β
S

N
− γ
)

= β(1− c)− γ (6)

giving

c = 1− 1(
β
γ

) (7)

as threshold coverage to obtain the population herd immunity λ ≤ 0. This is
the classically used formula c = 1− 1/R0 for vaccination coverage threshold
in function of the basic reproduction ratio R0.

With a perfect vaccine k = 1, the herd immunity threshold is driven by
the so called R0 of a disease. As an example, for β ≈ 3.5γ (an estimated
R0 = 3.5), we obtain

c = 1− 1(
β
γ

) = 0.714 ≈ 70% (8)

vaccine coverage, with full amount of doses as aim to obtain herd immunity
in the population. This value has being frequently mentioned in the public
media during the COVID-19 pandemic.

However, in real life, the situation is more complex, since vaccines are
imperfect k < 1 and therefore herd immunity by vaccination depends not
only on the R0 value but also on the given vaccine efficacy of the vaccines
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administrated in the population. Moreover, applied to COVID-19, the al-
ready gained immunity via natural infection will eventually play a role for
the population coverage needed to achieve the herd immunity status.

Some useful contributions in this direction are provided by [30, 31], for
example, where models for SARS-CoV-2 considering heterogeneity on the
population level or overall vaccine efficacy is considered. However, to our
knowledge, this is the first exercise considering heterogeneity on vaccine ef-
ficacy for a single dose versus two dose immunization schedule, including
population immunity by natural infection.

As such, we will present in the next Section, a refined model to include
variability between vaccine efficacies after a first dose and after a second
dose. With this modeling framework the eventual differences in protection
against severe disease and against infection for different vaccines can be also
evaluated, as soon as empirical evidence such as in [10] becomes available.

3.1. Considerations for imperfect vaccines and population immunity by nat-
ural infection: the Basque Country as a case study

Applied to the current epidemiological scenario in the Basque Country,
Spain, with vaccination roll out using imperfect vaccines, we consider empir-
ical vaccines efficacy k < 1 and a proportion of already naturally immunized
persons via previous natural COVID-19 infection as recorded by the public
health managers. With a population size of N = 2.2 · 106, less than 200 000
infections were reported as of July 1st 2021, around 10% of the population
been already immune prior to vaccination, a pool of default susceptible indi-
viduals S0/N ≈ 90% is considered. This assumption can be modified as new
positive cases are detected to be included in the analysis counting the current
immunized population via natural infection or by vaccination at a given time.
Vaccination coverage is given by cN = c(S0 + R(t0) ) = cS0 + cR(t0) with
the recovered R(t0) at a given time t0of analysis, when vaccines are admin-
istrated in the population independently of the individual previous record of
negative or positive PCR test.

For non-vaccinated (1− c)S0 and vaccinated with vaccine efficacy k, i.e.
c · (1− k)S0, where r = 1− k is the relative risk measured in vaccine trials,
we obtain now a refined version of the dynamics of infected

d

dt
I =

(
β
S

N
− γ
)
I =

(
β

N
( (1− c)S0 + c · (1− k)S0 )− γ

)
I (9)
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giving via the growth condition of λ = 0 the result for the vaccination cov-
erage threshold

c =
1

k

1− 1(
β
γ
· S0

N

)
 (10)

showing that S0

N
< 1 reduces the coverage threshold, but k < 1 can signifi-

cantly increase the threshold again.
Here, as an example, as shown in Section 3, we consider an infection rate

of
β ≈ 3.5 γ (11)

and a proportion of the susceptible population as

S0

N
≈ 90% . (12)

By assuming vaccination roll out with a perfect efficacy k = 1, the value
of vaccination coverage to achieve herd immunity is given by

c =

1− 1(
β
γ
· S0

N

)
 = 0.683 ≈ 68% (13)

which is only slightly below the value estimated for a 100% susceptible pop-
ulation, i.e, considering no acquired natural immunity, of c = 0.714 ≈ 71%.

On the other hand, by assuming vaccination roll out with an imperfect
efficacy k < 1, such as estimated in Section 2.2 and in Section 2.3, the
vaccine efficacies to be assumed here are, for example, in the case of the
Oxford/AstraZeneca vaccine with an estimated efficacy of

kOxAZ ≈ 70% , (14)

and for the BioNTech/Pfizer vaccine, with a reported efficacy of

kBioN/Pf ≈ 90% . (15)

The results for the vaccination coverage threshold to obtain herd immu-
nity are different, assuming vaccination roll out with one or another vaccine.
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When assuming that the Basque population will receive only the BioN-
Tech/Pfizer vaccine, we obtain the following result for the vaccination cov-
erage threshold to reach population herd immunity

c =
1

kBioN/Pf

1− 1(
β
γ
· S0

N

)
 = 0.758 ≈ 76% (16)

which is close to what is expected for perfect vaccine efficacy. Here, the
vaccination coverage of c = 0.714 ≈ 71% for vaccine efficacy of kBioN/Pf ≈
95% is extremely good as in a scenario of a perfect vaccine protecting again
overall infection.

On the other hand, for the example of the Oxford/AstraZeneca vaccine
with kOxAZ ≈ 70% efficacy we obtain

c =
1

kOxAZ

1− 1(
β
γ
· S0

N

)
 = 0.975 ≈ 97% . (17)

for the vaccination coverage threshold to reach the population herd immunity.
This result is surprising and must be considered carefully in the case of

using the vaccine with significantly lower efficacy only, needing a very high
vaccination coverage of more that 95% to achieve herd immunity.

In the next Section we will describe a further refined modelling frame-
work to include various aspects of the variability of the vaccines, considering
different efficacies as well as their performance against severe disease and
against overall infection.

4. Modeling COVID-19 with the basic SHAR model

Applied to COVID-19 pandemic in which mild and severe cases of infec-
tion are well distinguished, we extend the basic SIR (Susceptible-Infected-
Recovered) modeling framework into the so-called SHAR model [14], where
the infected class is stratified into Hospitalized/severe disease cases (H) and
Asymptomatic/mild cases (A). With infection rate β and recovery rate γ,
susceptible S individuals becoming infected can either develop severe disease
prone to hospitalization H, with a proportion η, or develop a mild infection,
potentially asymptomatic A, with a proportion (1 − η). A scaling factor φ
is used to differentiate the infectivity φβ of mild/asymptomatic infections in
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respect to the baseline infectivity β of severe/hospitalized cases. The value
of φ can be tuned to reflect different situations. While a value of φ < 1 re-
flects the fact that severe cases have larger infectivity than mild cases (e.g.,
enhanced cough and sneeze), a φ > 1 value indicates that asymptomatic
individuals and mild cases contribute more than severe cases to the spread
of the infection (e.g., due to their higher mobility and contacts). Recovered
individuals R are considered resistant to reinfection. The dynamics for the
mean values can be written as ordinary differential equation system

d

dt
S = −β S

N
(H + φA)

d

dt
H = ηβ

S

N
(H + φA)− γH (18)

d

dt
A = (1− η)β

S

N
(H + φA)− γA

d

dt
R = γ(H + A)

and the vaccination coverage threshod to achieve herd immunity is obtained
similarly as presented for the simple SIR model in Section 3.1.

The SHAR model was extended to a SHARUCD modeling framework to
describe the epidemiological situation of COVID-19 in the Basque Country,
validated with empirical data and it is, up to date, used by the local public
health managers to monitor the impact of lockdown measures [14, 15, 16, 17,
18, 19].

4.1. Modeling vaccine efficacy against severe disease or/and infection: the
SHARV

A vaccine which protects against severe disease but not against infection
needs to be modelled in a SHAR framework to distinguish the remaining risk
r = 1− k for hospitalization and no effect at all against mild/asymptomatic
infection. In the last case, the undetected cases will contribute to the force
of infection. Here, we distinguish naive susceptibles S and vaccinated sus-
ceptibles Sv, where the naive susceptibles have the natural infection rate β
and the vaccinated the reduced infection rate (1− k) · β, as described in the
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vaccine trial analysis above. Hence we have the complete model given by

d

dt
S = −β S

N
(H + φA)

d

dt
Sv = −βSv

N
(H + φA)

d

dt
H = ηβ

S

N
(H + φA) + r1 · ηβ

Sv
N

(H + φA)− γH (19)

d

dt
A = (1− η)β

S

N
(H + φA) + (1− η)β

Sv
N

(H + φA)

+(1− r1)ηβ
Sv
N

(H + φA)− γA

d

dt
R = γ(H + A)

which we call a model for a vaccine of type 1, protecting against severe disease
but not against infection.

On the other hand, a model for a vaccine which protects as much against
infection as against severe disease is given by the following dynamical system

d

dt
S = −β S

N
(H + φA)

d

dt
Sv = −βSv

N
(H + φA)

d

dt
H = ηβ

S

N
(H + φA) + r2 · ηβ

Sv
N

(H + φA)− γH (20)

d

dt
A = (1− η)β

S

N
(H + φA) + r2 · (1− η)β

Sv
N

(H + φA)− γA

d

dt
R = γ(H + A) + (1− r2) · β

Sv
N

(H + φA)

and is in its dynamical behaviour much closer to the simple SIR model as
described before. We call this a vaccine of type 2.

The different COVID-19 vaccines currently in use have features placing
them closer to one or the other of these two extreme cases, and as shown in
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previous analysis of the large population studies, real life vaccines would have
aspects of the vaccine type 1, protecting against severe disease but failing to
block transmission, but also some protection against infection, vaccine type 2.
The differences between these vaccine types can be analyzed in detail (please
see [32]), revealing a significant sensitivity to the difference of infection rate
for severe cases H and for mild/asymptomatic A, which are parametrized in
the SHAR modelling framework by the parameter φ.

These two limiting cases of vaccine type 1 and vaccine type 2 are refined to
consider a mixed vaccination roll out scenario with different vaccines efficacy
and its effects observed with a single dose versus a two dose immunization
scheme. It is important to mention that there is not much reported on varying
efficacies per dose administrated for the Oxford/AstraZeneca vaccine, or any
other vaccine already licensed for emergency use. In this study we consider
the available information for the BioNTech/Pfizer vaccine [10], assuming that
the variations reported eventually capture many aspects of heterogeneous
vaccine coverage and efficacies.

5. The SHARV model for a mixed immunization schedule: single
dose and second dose vaccination roll out

To evaluate the impact of the current vaccination programmes we extend
and refine the SHARV model described above. Susceptible population are
now stratified into unvaccinated susceptible (S), susceptible vaccinated with
a single vaccine dose (Sv1) and susceptible fully immunized with two vaccine
doses (Sv2).

As reported in [10], a single vaccine dose has a significant lower effi-
cacy as compared to the full immunization schedule with two vaccine dose.
Furthermore, it has been reported that in a single dose regime the efficacy
against hospitalization and severe disease is significantly higher than the effi-
cacy against infection, i.e. the so called sterilizing immunity, occurring when
vaccinated individuals cannot transmit the virus.

These differences are taking into account and the model framework is
flexible enough to also consider different vaccines, different vaccine efficacies
and different vaccine coverages. Vaccines performance are reported in term
of relative risk r = 1− k and vaccine efficacy k. Vaccination is implemented
by assuming reduced infectivity r · β (for vaccinated group) against natural
infectivity β (for non-vaccinated group), as measured in vaccine trials and
described above.
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In this model, different vaccines with various efficacies against severity
and against infection can be evaluated. By taking different efficacies into
account after first dose kH,1 and kI,1, and eventually second dose kH,2 and
kI,2, hence kH,j and kI,j for j ∈ {1, 2}, labeling the first and second dose of
vaccine, the dynamical system of the model is given by

d

dt
S = −β S

N
(H + φA+ %N)

d

dt
Sv,1 = −βSv,1

N
(H + φA+ %N)

d

dt
Sv,2 = −βSv,2

N
(H + φA+ %N)

d

dt
H = ηβ

S

N
(H + φA+ %N)− γH

+
2∑
j=1

rH,j · ηβ
Sv,j
N

(H + φA+ %N) (21)

d

dt
A = (1− η)β

S

N
(H + φA+ %N)− γA

+
2∑
j=1

[rI,j(1− η) + (rI,j − rH,j)η] β
Sv,j
N

(H + φA+ %N)

d

dt
R = γ(H + A) +

2∑
j=1

(1− rI,j)β
Sv,j
N

(H + φA+ %N) ,

with vaccine coverage Sv,1 = c1S0 for first dose uptake, Sv,2 = c2S0 for second
dose uptake, and finally S = (1− (c1 + c2))S0 for non vaccinated susceptible
individuals, with S0 = N −R(t0).

5.1. Analytical solutions and numerical experiments
For analytical insights into the behaviour of the model with a single dose

vaccination and two dose vaccination compared to the non-vaccination sce-
nario, we consider the dynamics of the disease compartments

d

dt
H = ηβ

S

N
(H + φA+ %N)− γH
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+
2∑
j=1

rH,j · ηβ
Sv,j
N

(H + φA+ %N) (22)

d

dt
A = (1− η)β

S

N
(H + φA+ %N)− γA

+
2∑
j=1

[rI,j(1− η) + (rI,j − rH,j)η] β
Sv,j
N

(H + φA+ %N)

including the vaccination coverage vector c := (c1, c2) for single dose and
two dose vaccine administration as the fraction of vaccinated susceptible
individuals over the total number of susceptible S0 := S + Sv1 + Sv2, hence
Sv1 = c1 ·S0, Sv2 = c2 ·S0 and the naive susceptible S = 1−(c1+c2)·S0 and for
vaccine efficacy vector k = (kH,1, kI,1, kH,2, kI,2) for the respective efficacies
against hospitalization and against infection after administering one dose or
two doses.

5.2. Stationary state solutions and relative hospitalization reduction

Our model considers an imperfect vaccine with vaccinated individuals able
to transmit the disease even when the vaccine is reported with a significant ef-
ficacy. Moreover, we assume the COVID-19 herd immunity is not yet reached
(please see Section 3.1), and therefore, we consider S0(t0) =: N −R(t0). The
stationary state solution is(

H∗

A∗

)
=

β S0

N
· %N

γ − κβ S0

N

(
ηy

(1− η)z

)
(23)

now with vaccination specific variables

y = 1−
2∑
j=1

cj · kH,j (24)

and

z = 1 +
2∑
j=1

cj
ηkH,j − kI,j

1− η
(25)

using κ := ηy+φ(1−η)z = κ(c, k) in the stationary state solution, depending
on the vaccination variables y, z and on the SHAR specific parameters η and
φ.
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For the relative reduction of hospitalizations we have

H∗(c, k)

H∗
0

=
1− (η + φ(1− η)) · β

γ
S0

N

1− (ηy + φ(1− η)z) · β
γ
S0

N

· y (26)

with vectors for vaccination coverage c = (c1, c2) for one dose and two doses
respectively, and for vaccine efficacies k = (kH,1, kI,1, kH,2, kI,2) for the re-
spective efficacies against hospitalization and against infection for one dose
or for two doses.

6. Vaccination impact in the Basque Country

To investigate the vaccination impact in the Basque Country, Spain, as a
first conceptual study taking variable vaccine efficacies and vaccine coverages
into account we use the values obtained in [10], as presented in Section 2.3.
We evaluate the vaccine impact on severe cases/hospitalizations of COVID-
19 in the Basque Country, Spain, assuming the reported vaccine coverages,
including the present population status of remaining suceptibles after one
year of natural infection, and considering vaccine efficacies as reported from
Israel in ,[10].

First, to make a projection of the vaccine impact on hospitalization for the
end of May 2021, vaccine efficacy vector is given by k = (kH,1 = 78%, kI,1 =
60%, kH,2 = 92%, kI,2 = 92%) and from the vaccination coverage, as of 23
May 2021, of c2 = 17.5% for coverage of two doses vaccinated, and (c1+c2) =
38.8%, hence c1 = 21.3% for single dose coverage alone, giving the vaccination
coverage vector c = (c1 = 21.3%, c2 = 17.5%), we obtain the vaccination
related variables to be

y = 1−
2∑
j=1

cj · kH,j = 1− (0.21 · 0.78 + 0.18 · 0.92) = 0.6706 , (27)

and by assuming η = 0.08 = 8% for the hospitalization ratio in the Basque
Country,

z = 1 +
2∑
j=1

cj
ηkH,j − kI,j

1− η
= 1− 0.1227− 0.1656 = 0.7117 . (28)

Further, with around 200 000 identified infected cases over the past year,
representing roughly the number of recovered individuals from COVID-19 in
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the Basque Country,

S0

N
≈ 2.2 · 106 − 0.2 · 106

2.2 · 106
= 2.0/2.2 = 0.909 (29)

gives a first approximation for the remaining suceptibilty in the study pop-
ulation.
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Figure 5: Evaluation of the vaccination impact on hospitalizations in the Basque Country
for May and June 2021 (plotted as red dots) in comparison with the official data on
hospitalizations in the Basque Country from January to May 2021 and with preliminary
data for June, up to 29th (plotted as black dots).

Results for the evaluation of the vaccination impact on hospitalizations in
the Basque Country are presented in Fig. 6. When considering the number of
hospitalizations in January 2021 as baseline, assumed to have no significant
effects on population immunity by vaccination that only started in the end
of December 2020, we observe first a significant reduction of hospitalizations
with present vaccination uptake at mid June (see red and black dots in month
6, June, in Fig. 6), whereas in May the expected reduction was not reached
at all, and with the April value above expectations, probably due to large
subcritical fluctuations [18, 19], see Fig. 6, plotted in black in month 4, April.

In detail, we first obtain the overall hospitalizations for each month of
2021, from January 1st onward (black dots). Data was continually updated.
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The value available at 15th of May was multiplied by two to obtain an ap-
proximation for the total hospitalizations notified for the whole month (blue
dot at month 5, May, in Fig. 6 ). This is a reasonable assumption as the cur-
rent setting is shown to be in quasi-stationarity with large fluctuations, see
[18, 19]. The expected number of hospitalizations from the reduction H∗(c,k)

H∗
0

to baseline in January, including a proportionality of reported incidence with
the calculated prevalence’s

CH(c, k)

CH,0
=
H∗(c, k)

H∗
0

(30)

which gives an evaluation of the vaccination impact from CH,0 = CH(T =
Jan 2021) without vaccination as baseline to the values in May 2021 as

CH(c, k) =
H∗(c, k)

H∗
0

· CH,0 (31)

with the vaccination coverage from May 23, 2021, as c = (c1 = 21.3%, c2 =
17.5%), shown as red dot at month 5 in Fig.6.

This procedure gave still unsatisfactory results for May 2021, due to the
large fluctuations observed also between January and April, see [18, 19] for
further discussion on such large subcritical fluctuations and import. When
repeating this exercise in mid of June, now with updated two doses coverage
as 34.1% and with at least one dose coverage as 50.9%, we have cn+1 = (c1 =
16.8%, c2 = 34.1%) for June, as opposed to the May values of cn = (c1 =
21.3%, c2 = 17.5%). We then projected from the 15th of June value for
hospitalizations the full number expected for end June (blue dot at month 6
in Fig.6). The data point available for the 29th of June (black dot at month
6, June of 2021, in Fig.6) is still lower than the expected value, however,
much closer than observed for May, with the expected vaccination impact
on the hospitalization ratio (red dots) agreeing qualitatively well with the
empirical data (black dots).

7. Discussion and conclusions

We have analysed the impact of variable vaccine efficacies and coverages
on the reduction of severe disease/hospitalization of COVID-19 in an example
of the Basque Country epidemiological setting. To evaluate the vaccine ef-
fects on sever cases, a mathematical modeling framework considering hetero-
geneity on vaccine efficacy for hospitalization and overall infection, including
population immunity by natural infection, was developed and analyzed.
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We use the recent results of vaccine efficacies from large scale population
surveys and although we have considered simplified assumptions for the re-
maining levels of susceptibles and the efficacies for mainly one vaccine, results
are consistent with the presently available data, since this vaccine accounts
for the majority of vaccinated individuals in the Basque country. However,
it is important to mention that there is still an ample space for further evalu-
ations, including additional stochastic effects as described e.g. in [18, 19, 33]
and appearing also in the large confidence intervals so far observed in the
vaccine efficacies in vaccine trials as well as in larger population studies, see
e.g. [6, 10] representative for other such studies recently published.

Information on COVID-19 vaccine efficacies are updated frequently and
the new information can be included into the modeling framework as needed.
Studies like the one described here are, nevertheless, timely and of major
importance to understand the vaccination coverage needed to achieve herd
immunity in different settings.

Differences of vaccine efficacy against severe disease versus vaccine efficacy
against overall infection after the full two dose immunization regime in the
uneven vaccination roll our settings are the goal for understanding the real
impact of COVID-19 vaccines worldwide, using different types of vaccines at
the same time, i.e., mixed efficacies of two different vaccine classes.

For that, extensions to evaluate a single dose versus two dose immuniza-
tion schedule efficacy are also included in the minimalistic SHARV framework
which is, nevetheless, the baseline model to evaluate different scenarios when
new empirical evidence for COVID-19 vaccines performance becomes avail-
able.

Insights on how to best combine the use of the available COVID-19 vac-
cines optimizing the reduction of hospitalizations are of major interest, since
the existing vaccines are imperfect, leaving a proportion of the population
at risk of acquiring the infection and eventually developing severe disease.
Although the vaccination roll out are advancing fast, large part of the pop-
ulation are still covered with a single dose of different vaccines. Finally, the
results presented here give a robust conceptual framework to evaluate vac-
cines impact not only for the next few months, when eventually the herd
immunity threshold might be achieved, but also to evaluate new vaccine gen-
erations in the case of vaccine waning immunity or even when immune escape
by new variants might be observed, leading eventually also to reinfection[34]
and with further evolutionary effects of large fluctuations [33].

Finally, it is important to pint out that further monitoring will be needed
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since other factors such seasonality of respiratory diseases might play an
additional role on disease transmission and control.
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