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In response to the ongoing COVID-19 pandemic caused by SARS-CoV-
2, governments are taking a wide range of non-pharmaceutical interventions
(NPI). These measures include interventions as stringent as strict lockdown
but also school closure, bar and restaurant closure, curfews and barrier ges-
tures i.e. social distancing. Disentangling the effectiveness of each NPI is
crucial to inform response to future outbreaks. To this end, we first develop
a multi-level estimation of the French COVID-19 epidemic over a period
of one year. We rely on a global extended Susceptible-Infectious-Recovered
(SIR) mechanistic model of the infection including a dynamical (over time)
transmission rate containing a Wiener process accounting for modeling error.
Random effects are integrated following an innovative population approach
based on a Kalman-type filter where the log-likelihood functional couples
data across French regions. We then fit the estimated time-varying transmis-
sion rate using a regression model depending on NPI, while accounting for
vaccination coverage, apparition of variants of concern (VoC) and seasonal
weather conditions. We show that all NPI considered have an independent
significant effect on the transmission rate. We additionally demonstrate a
strong effect from weather conditions which decrease transmission during
the summer period, and also estimate increased transmissibility of VoCs.

1. Introduction. The World Health Organization declared the COVID-19 pandemic on
March 11, 2020. This disease is caused by an infection with the SARS-CoV-2 virus. As of
April 30, 2021, more than 150 million cases have been confirmed worldwide, including 3.16
million deaths. While the majority of infected cases have a mild form (upper respiratory
infection symptoms) without specific needs in terms of care Wu and McGoogan (2020),
around 3% of cases, in particular the elderly, need hospitalization for treatment, such as
oxygenation therapy Lapidus et al. (2021); Salje et al. (2020); Angulo, Finelli and Swerdlow
(2021). Among those, about 17% are severe forms (severe acute respiratory syndrome) which
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will need to be admitted to intensive care units (ICU), with a potential need of mechanical
ventilation Docherty et al. (2020).

The COVID-19 pandemic has pushed modern health care systems to a breaking point
all over the world. Indeed, SARS-CoV-2 being a newly emerging pathogen, means the en-
tire human population is susceptible to infection. Surges in hospitalizations and especially
ICU needs wherever SARS-CoV-2 outbreaks arise have been observed. Due to an infectious
phase starting before any symptoms are visible and a significant proportion of a- or pauci-
symptomatic infections Jones et al. (2021), the spread of SARS-Cov-2 is extremely difficult
to control Wu et al. (2021). In response, most governments have adapted drastic public health
measures, also called Non-Pharmaceutical Interventions (NPI), in order to reduce the trans-
mission of SARS-CoV-2 among their population, and consequently relax the pressure on their
health-care system. In particular, the French government adopted the concept of a “graduated
response” to the pandemic, deploying an arsenal of various NPI – some very stringent and
others less so – in response to the COVID-19 national epidemic situation. Hale et al. Hale
et al. (2021) built a stringency index that helps understand how strong the measures over
time were. However, this indicator does not allow one to distinguish the effectiveness of each
NPI, which is crucial to inform future preparedness response plans. Because NPI all have
economic, psychological and social costs, it is paramount to evaluate their impact on the
transmission of SARS-CoV-2, and on the dynamics of the COVID-19 epidemic.

Many studies relied on mechanistic models of epidemics in order to either predict its
course Davies et al. (2020), evaluate vaccine prioritization strategies Bubar et al. (2021),
or retrospectively measure NPIs impact. During the beginning of the epidemic, the focus was
mostly on the timing of NPI initiation Pei, Kandula and Shaman (2020); Li et al. (2021)
rather than the effect. However, disentangling the effect of each NPI is a complex problem as
their allocation is not randomized and depends on the epidemic state. Many approaches ag-
gregated data from multiple countries. Some worked on regression from time series based on
incidence data Banholzer et al. (2021); Islam et al. (2020); Hsiang et al. (2020). Others used
semi-mechanistic models and evaluated the percent reduction on the effective reproductive
number Liu et al. (2021a); Haug et al. (2020); Flaxman et al. (2020). We preferably work
at a country level so that the effect is not confounded by various behaviors and adherence
levels of the population. Most of the work published at a country-level has focused on a on
single aggregated NPI such as the Oxford COVID-19 Government Response Tracker Hale
et al. (2021), very early epidemic Kraemer et al. (2020); Dehning et al. (2020), or a very
limited set of interventions, see Brauner et al. (2021) for a review. Regarding France, Salje
et al. (2020); Di Domenico et al. (2020) quantified the effect of various NPI. However, they
based their results on the early epidemic and, they have a limited set of interventions. Our
work rather focuses on the impact of each NPI on the transmission rate, a more valid indi-
cator than direct epidemic curves or the reproductive number because it is independent of
the infected proportion of the population. Finally, existing works do not account for vacci-
nation roll out, introduction of variants, and the importance of weather while estimating the
impact of NPI. The estimation of the independent effect of each of these factors leads to a
challenging problem of estimation, including concerns about practical identifiability of each
effect.

In this work, we propose a two-step approach. First, we estimate the transmission rate
of SARS-CoV-2 and its variations in the 12 non-insular French regions over a period of
more than a year - since March 2, 2020 until March 28, 2021. Second, we estimate, us-
ing linear regression, the effects of several NPI on the transmission rate while accounting
for seasonal weather conditions throughout the pandemic, as well as the appearance of non-
historical variants of concern (VoC) and an increasing proportion of vaccinated people. The
first step consists of estimating the transmission rates in the 12 non-insular French regions.
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USING POPULATION BASED KALMAN ESTIMATOR TO MODEL FRENCH COVID EPIDEMIC 3

This is extremely challenging due to the sparsity and noisiness of the available data, and
also because the parametric shape of the transmission rates is unknown. Using data assimi-
lation across multiple geographical regions, and coupling public data with a dynamic mech-
anistic model, smooth transmission rates can be estimated through a Kalman filtering ap-
proach Simon (2006); Bensoussan (2018) – as already used in epidemiology for COVID-19
spread Arroyo-Marioli et al. (2021); Islam, Hoque and Amin (2020) or for other epidemics
with regional variability Hu et al. (2020). More precisely, we develop an ingenious method-
ology to tackle this difficult problem, based on two important methodological innovations:
(1) in the model with the introduction of a time-varying dynamics for the transmission rate
including a Wiener process accounting for modeling error, and (2) in the way the population
is integrated as we follow a new method Kalman-type filter, compatible with population ap-
proaches. This method in which the log-likelihood functional – estimated using for example
the Unscented Kalman Filter Julier and Uhlmann (2002) – elegantly couples data across mul-
tiple geographical regions is presented in Collin, Prague and Moireau (2020). These two inno-
vations are coupled in a strategy allowing the estimation of smooth transmission rates without
knowledge of their shapes. This second step allows us to provide estimations alongside asso-
ciated uncertainties for a) the transmission rate of SARS-CoV-2 throughout the COVID-19
pandemic in France, b) the effect of the principal NPI implemented in France on this trans-
mission rate, and c) the effect of seasonal weather conditions and new VoC circulation, from
observed hospitalization data in French regions.

Section 2 presents the data and the SEIRAH model. In Sections 2.4 and 2.5, the two-step
strategy to estimate the transmission rate, and the regression to estimate the effects of NPI
are presented. Our results are highlighted in Section 3; and their limitations are discussed in
Section 4.

2. Material and Methods. Open-data regarding the French COVID-19 epidemic, in-
cluding hospitalization data, NPI implementations, VoC prevalence and the vaccination pro-
gram are presented below. The dynamic model of the COVID epidemic, using an extended
SIR type model, is then presented. Finally, we describe our strategies to estimate the transmis-
sion rate, using a population-based Kalman filter, to determine the impacts of NPI, seasonal
weather conditions, and VoCs.

2.1. Available Data.

Hospitalization Data. Hospitalization data are extracted from the SI-VIC database (Sys-
tème d’Information pour le suivi des VICtimes), a governmental system created in 2016 in
order to identify and follow victims in exceptional circumstances (e.g. terror attacks). Since
March 18th 2020, the SI-VIC database provides, to Santé Publique France, the daily number
of hospitalized COVID-19 patients, at multiple geographical scales. In this work, we focus
on the 12 French non-insular regions.

An entry in the SI-VIC database corresponds to a patient hospitalized in connection with
COVID-19. Specifically, it requires the presence of at least one of two criteria: i) a biologi-
cally confirmed diagnosis of COVID-19 (e.g. RT-PCR positive test result), or ii) a chest CT
scan suggestive of COVID-19. In this analysis, we rely on the daily incident number of hos-
pitalizations (Y Hin ), and the total number of individuals hospitalized daily (Y H ). The two
data series are displayed in Figure 1 over a period of 391 days (from March 2, 2020 to March
28, 2021). Of note, in order to be able to compare the magnitude of epidemic in each region,
we standardized the data by the size of the population in each region: direct interpretation
would be the number of incident or prevalent hospitalization for 100,000 inhabitants.
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FIG 1. Top: standardized total prevalent number of individuals hospitalized daily for 100,000 in-
habitants ( 100,000N YH ). Bottom: standardized daily incident number of hospitalizations for 100,000

inhabitants( 100,000N YHin ).

Non-Pharmaceutical interventions. Timing and modalities of the various NPI implemented
in France over the course of the epidemic have been gathered from the French government’s
action summary website . In France, public health interventions have been highly multi-
pronged. In our analysis, we considered the following summarized NPI occurring during the
first year of the epidemic in France: i) first lockdown (with two phases of relaxation/reopening
as described bellow), ii) second lockdown (with one phase of relaxation/reopening as de-
scribed bellow), iii) 8PM curfew, iv) 6PM curfew, v) school closure, vi) bar and restaurant
closure, vii) barrier gestures (including all mandatory sanitary protocols: physical distanc-
ing, hand washing, part-time remote work and, mask wearing in public spaces). Of note, NPI
such as travel bans, enhanced testing, contact-trace-isolate, were ignored to ensure identifia-
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USING POPULATION BASED KALMAN ESTIMATOR TO MODEL FRENCH COVID EPIDEMIC 5

bility, as they were either i) with a magnitude difficult to quantify, or ii) enforced in complete
overlap with other NPI. In addition, partial interventions at a sub-regional level were not
considered as an implementation of a measure. This resulted in a rather similar profile of
interventions across regions as most of them were applied simultaneously in the 12 regions
of interest. Figure 2 summarizes all 10 considered NPI over time.

The first and the second lockdowns have been disconnected due to their different modali-
ties resulting in different behaviors, and thus possibly different impact on transmission. For
example, during the first lockdown (from March 17, 2020 to May 11, 2020), the entire pop-
ulation had to work from home – the only exceptions were for workers in vital sectors, such
as medical, security, or food sectors – and outings could not exceed one hour in a one kilo-
meter perimeter. Whereas during the second lockdown (from October 29, 2020 to December
15, 2020), working on-site was authorized when working from home was not feasible, and
outings were limited to only 3 hours in a 20 kilometers perimeter. In addition, the end of the
first lockdown was gradual and separated by the government in three official phases (phase 1:
May 11, 2020 to June 2, 2020, phase 2: June 2, 2020 to June 22, 2020 and phase 3: after June
22, 2020) with many evolving measures as the authorized distance of travels, the reopening
of cultural places (i.e., museums), the reopening of non-essential stores, etc. A government
campaign to raise awareness about barrier gestures started at the end of the first lockdown.
Masks and hand washing were mandatory in many places such as public transports, schools
and companies. We assume that barrier gestures start on May 11th 2020, assuming that most
of mandatory measures with a potential strong impact started to be implemented at this date.
Concerning the second lockdown, a reopening of the non-essential stores happened 2 weeks
prior to the end of the lockdown prior to Christmas. To account for this, we separate the
second lockdown in two phases: a full lockdown until November 28th 2020 and a reduced
lockdown afterwards.

School closures were documented as of the holiday schedule, which can vary between
regions. In France, schools were also closed during the first lockdown. Furthermore, the
reopening of schools from May 11, 2020 (end of first lockdown) to July 4, 2020 (end of term)
was very progressive with phased school and level-reopening and attendance rising slowly
back to normal. We averaged the estimated school attendance to be 30% of school capacities
during that transition. Complete closure of all of bars and restaurants happened twice over
the study period: first a few days before the implementation of the first lockdown in March
2020 (as for schools closure), and along the beginning of the second lockdown in October
2020. The measure was lifted progressively in all regions after the end of the first lockdown
in June 2020. At the end of the second lockdown, the measure was not lifted considering the
epidemic situation was not good enough. It was still in place at the end of the study period.

Curfew measures started to be implemented October 17, 2020 in the 12 regions of interest
in several major cities and in Île-de-France, with a curfew from 9PM to 6AM. It was extended
on October 22nd to 54 departments (sub-regional administrative unit). It was suspended dur-
ing the second lockdown from October 30th to December 15th 2020, when a new one was
implemented at 8PM at a national level. From January 2-12, 2021, the starting hour was
changed to 6PM progressively at the departmental level until January 16th when it switched to
6PM for all 12 regions of interest. Finally on March 20, 2021, the starting hour was changed
again nationally to 7PM. To model the measures we considered only two variables, grouping
curfews starting at 9PM or 8PM and those starting at 6PM or 7PM, and we set the value to
1 only when a whole region was under the curfew. Assuming that curfews and lockdowns
induce different behaviors, curfews are not considered to be included in lockdowns, even if
it is forbidden to go out in the evening during lockdowns. Similarly, 6PM curfew and 8PM
curfew were considered as different interventions instead of nested ones as they are likely to
induce different behaviors.
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FIG 2. Major NPI at the regional level

2.2. Other exogenous variables: weather, VoC, vaccination coverage.

Weather conditions. The role of weather conditions on the transmission of the SARS-CoV-2
remains disputed, and early publications were criticized for their inconsistency in results Za-
itchik et al. (2020). Nonetheless, the potential impact of both temperature and humidity on
aerosolized and fomite transmission routes based on comparisons with other respiratory in-
fections is based on sound mechanistic arguments Rodó et al. (2021). Additionally, with the
Northern Hemisphere going through a second winter season during the pandemic, evidence
of the association of transmission with seasonal trends of temperature and humidity appears
more robust in recent publications Rodó et al. (2021); Liu et al. (2021b). Daily weather data
– namely temperature in Celsius degrees (T ), relative humidity in percentage (RH) and ab-
solute humidity in g.m−3 (AH) - measured by meteorological stations were extracted from
the National Oceanic and Atmospheric Administration database using R package worldmet.
Regional daily means were estimated with all stations located in the region or at less than 10
km from the region border. To account for variations of population density across a region,
a weighting was used based the on population living in a 10km buffer around each station,
giving more importance to weather conditions around densely populated areas. We use the
PREDICT index of weather transmissibility of COVID-19 (IPTCC), as defined by Bukhari
and Jameel (2020) and Roumagnac et al. (2021):

IPTCC = 100e
−
1

2

(T − 7.5)2

196
+
(RH − 75)2

625
+
(AH − 6)2

2.89


.

As for interpretation, this rough index ranges from 0% to 100%, the smaller the less favor-
able are the conditions for COVID-19 transmissions. For France, we observe a seasonality
of IPTCC being small during summer months and higher otherwise, with a north-east/south-
west gradient.
From this index, we created a weather variable by normalizing (min-max range equal to 1),
subtracting the global average value and by reversing it, see black curves in Figure 3. Finally,
to focus on the seasonal variation, a loess smoothing with a span of 0.2 was applied before
use, leading to a smooth weather variable, denoted by W in what follows. Resulting seasonal
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USING POPULATION BASED KALMAN ESTIMATOR TO MODEL FRENCH COVID EPIDEMIC 7

variations of this variable for each of the 12 regions of interest over the study period are
shown on Figure 3 (red curves). The lower the value, the closer temperature and humidity
conditions were close to optimal transmission conditions defined by Bukhari and Jameel
(2020). Again, two clear period appear, summer with higher values of this weather variable
and winter with lower values. This variable is denoted Wi(t) for the ith region. When taking
W = 0, one considers the global average value over all French regions over the study period.
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FIG 3. Weather variable modeling the seasonal weather conditions of the 12 regions of interest in black and
after smoothing in red (denoted by W in this paper). The higher the value, the lower the favorable conditions
(temperature and humidity) for COVID-19 transmission.

VoC of SARS-CoV-2. Some variants of the SARS-CoV-2 virus have been classified by na-
tional and international health authorities as VoCs as they impact transmissibility or viru-
lence, or decrease the effectiveness of measures World Health Organization. Since January
2021, French health authorities have conducted surveys to estimate the prevalence of three
VoCs: 20I/501Y.V1 (Alpha), 20H/501Y.V2 (Beta) and 20J/501Y.V3 (Gamma). The survey of
VoC Delta started after this study. We therefore included the cumulative proportion of cases
infected by one of these VoCs as a potential covariate explaining the transmission. We used
data from two cross-sectional “flash” surveys performed on January 7-8, 2021 and January
27, 2021, see Santé Publique France; Santé Publique France and the weekly estimation of
VoC circulation provided by the SI-DEP database at the regional level from February 12,
2021 to March 28,2021 .

Between January 8, 2021 and February 12, 2021, the estimated proportion of the sum of
the three VoC have increased from a national mean of 3.3% to a national mean of 46%. To
complete the missing data, we assume that the proportion before January 8, 2021 equals to 0%
and that the evolution is linear between January 8 and January 27, 2021, and then between
January 27 and February 12, 2021. Of note, a logistic and an exponential growth were also
tested with no significant changes in conclusions (results not shown). With no data reported
for Bourgogne-Franche-Comté region on January 27, 2021, only one slope was estimated on
the time window. This variable is denoted V oCi(t) in what follows. Representations of the
VoC proportion in each region over time are given in Section 1 of the Web Supplementary
Material.
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Vaccination process. Vaccination started in France on December 27, 2020. Three COVID
vaccines were at that time authorized: BNT162b2 mRNA (Pfizer), ChAdOx1 nCoV-19 (Az-
traZeneca) and mRNA-1273 (Moderna). To take into account the vaccination process, we
used the VAC-SI database which provides the cumulative percentage of the population who
have been vaccinated with at least one dose of vaccine over time. Vaccination was first tar-
geted to the elderly 75+ years of age. The proportion of vaccinated individuals, denoted here
within as V , ramped up to about 12% by the end of study period. Representations of the
vaccination coverage in the population over time are given in Section 1 of the Web Supple-
mentary Material.

2.3. Model of the epidemic.

The mechanistic model:. We model the evolution of the COVID-19 epidemic using an ex-
tended SEIR type model Wang et al. (2020), called a SEIRAH model, adapted from Wang
et al. (2020); Prague et al. (2020) where the population of size N is divided into 5 com-
partments: susceptible S, latent exposed E, symptomatic infectious I , asymptomatic/pauci-
symptomatic infectious A, hospitalized H , removed R (i.e. both recovered and deceased),
see Figure 4. The number of vaccinated people denoted by V is assumed to be known, see
Section 2.2. The dynamics of such model is given by

(1)



Ṡ =−b
(
1− V

N

)S(I + αA)

N

Ė = b
(
1− V

N

)S(I + αA)

N
− E

DE

İ =
rE
DE

E − 1− rI
DQ

I − rI
DI

I,

Ṙ=
rII +A

DI
+

H

DH

Ȧ=
1− rE
DE

E − A

DI

Ḣ =
1− rI
DQ

I − H

DH

where α, rE ,DE , rI ,DI ,DQ,DH are time-independent parameters described in Table 1
while b is a function of time modeling the disease transmission rate.

Parameter Interpretation Value
b Transmission rate of infectious cases Region Specific - Estimated
rE Ascertainment rate 0.844 He et al. (2021)
rI Non hospitalized rate 0.966 Angulo, Finelli and Swerdlow (2021)
α Ratio of transmission between A and I 0.55 Li et al. (2020)
DE Latent (incubation) period (days) 5.1 Lauer et al. (2020)
DI Infectious period (days) 5 Cevik et al. (2020)
DQ Duration from I onset to H (days) 11-DE = 5.9 Delfraissy et al. (2020)
DH Hospitalization period (days) 18.3∗

N Population size Region Specific
TABLE 1

Model parameters for the SEIRAH model, and associated values. ∗Computed using the correlation between the
data YHin and YH when considering region data, see Section 2 of the Web Supplementary Material.
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FIG 4. SEIRAH model representation – adapted from Wang et al. (2020); Prague et al. (2020)

The observation model:. The two quantities Y H and Y Hin relate to the solutions of
System (1) respectively as for all regions i = 1, . . . ,12, for all observation time in days
j = 1, . . . ,391: Y H

ij = Hi(j) + εHij and Y Hin

ij = (1−rI)
DQ

Ii(j) + εHin

ij , in which εHij and εHin

ij

represent normally distributed constant measurement errors.

Effective reproductive number and attack rates:. When individuals are homogeneous and
mix uniformly, the effective reproductive ratio Reff(t) is defined as the mean number of in-
fections generated during the infectious period of a single infectious case at time t. In this
model, the effective reproductive ratio can be written as a function of model parameters (see
Section 3 of the Web Supplementary Material for details), namely

(2) Reff(t) = b(t)
(
1− V

N

)S(t)
N

(
DIα(1− rE) +

DIDQrE
(1− rI)DI + rIDQ

)
.

When neglecting the deaths, the proportion of infected individuals assuming no waning
immunity – also called attack rates – among the population in each region at a given date is
given by:

E + I +R+A+H

N
= 1− S

N
.

2.4. A population-based Kalman filter to estimate the transmission rate.

Framing the problem.. In order to sustain the modeling choices behind the disease trans-
mission rate b, and more generally the selected inference procedure, we used Kalman-based
estimation strategies Simon (2006); Bensoussan (2018) applied to the epidemic model (1).
We define the global transmission rate t 7→ b(t), which accounts for the proportion of suscep-
tible removed from the system thanks to vaccination:

b(t)
def
= b(t)

(
1− V (t)

N

)
.

We propose to estimate b and ultimately to retrieve b using an estimation of vaccinated people
V , see Section 2.2. In each region, we then introduce a dynamic equation for b of the form

(3) dbi(t) = gi(t)dt+dνi(t),
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where νi consists in a Wiener process such as for all t, s≥ 0, νi(t)−νi(s)∼N (0, (t−s)σν)
with σ2ν is known and constant in all regions and gi is a function describing the evolution of
the global transmission rates bi in each region.
After discretization using forward Euler time-scheme with small-enough time-step δt, we end
up with a discrete-time dynamical system applied to the variable x= (E,I,R,A,H)ᵀ ∈R5,
for each region i= 1, . . . ,12:

(4) zin+1
def
=

xin+1

bin+1

θin+1

=

xin + δt f(xin, b
i
n, θ

i
n)

bin + δt gi(tn, θ
i
n)

θin

+

 05
1

0Np

νin,

where f accounts for the dynamics of (E,I,R,A,H) in (1) while S is reconstructed after-
wards using S = N − (E + I + R + A +H) in each region. In the time discrete system,
(νin)n≥0 now represent independent random variables, normally distributed with 0 mean and
a variance equal to σ2νδt. Moreover, if constant parameters have to be estimated, the vector
θ ∈ RNp gathers all of them. For the estimation in the following, we transform the variable
z to account for biological constraints. Remarking that all state variables are positive and
bounded by N , the total population size of the region, we transform the state variable using
x 7→ logit(x/N). We also apply a similar transformation to b 7→ logit(b/maxb). Of note, state
and transmission rate variables are more likely to have Gaussian distributions in the transfor-
mation space. After calibration, we fixed maxb = 1.5 and checked that other values did not
substantially changed the results (result not shown).

Population approach.. To perform the estimation, we rely on an extension of the classi-
cal Unscented Kalman filter (UKF) Julier and Uhlmann (1997, 2002); Simon (2006). The
particularity in this application, as described in Section 2.4, is that multiple series of data are
observed jointly in multiple regions as we observe multiple realizations of the same epidemic.
In order to take into account in our Kalman estimation that parameters in different regions
are correlated as in a population approach, we follow a recently proposed population-based
Kalman formulation Collin, Prague and Moireau (2020). As in mixed-effect models Lavielle
(2014), each initial uncertainty variable zi0 is assumed to be randomly distributed around a
common population intercept zpop

0 with a Gaussian distribution of unknown covariance Q0,
namely:

zi0 ∼i.i.d. N (zpop
0 ,Q0).

When we treat the population intercept as the empirical mean over the population members
in the construction of the objective function, we recover a classical filtering problem Simon
(2006) on the aggregated variable z = (z1 · · ·zNr)ᵀ. The only difference is the formulation
of the initial covariance prior P̂0 which couples the observations across regions and can be
written as:

P̂−10 =
1

N2
r

1
...
1

(1 · · · 1)⊗M +

1Nr
− 1

Nr

1
...
1

(1 · · · 1)
⊗ Q̂−10 ,

where ⊗ indicates a Kronecker product, Q̂0 is a prior of Q0 and M a small penalization
matrix that guarantees the overall invertibility of P̂0. As a consequence, the matrix P̂0 is not
block diagonal with respect to the region i and thus all the region dynamics are coupled.
The resulting time-discrete Kalman estimator couples all the regions together to produce a
population-based estimation. Note that in such strategy, forcing a variable to be constant
in the population is possible by simply choosing Q̂0 such that Tr(Q̂−10 ) is very small with
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respect to Tr(M). Conversely, Tr(M) small with respect to Tr(Q̂−10 ) in a large popula-
tion Nr � 1 will encourage each region to remain decoupled from each others. Starting
from a given prior knowledge, our Kalman implementation uses the available measurements
(Y H
ij , Y

Hin

ij )1≤i≤12,0≤j≤391, to compute recursively in time the following estimates:

ẑn ' E(zn|(Y H
ij , Y

Hin

ij ),1≤ i≤ 12,1≤ j ≤ n), 0≤ n≤ 391,

and

P̂n 'Cov(zn − ẑn|(Y H
ij , Y

Hin

ij ),1≤ i≤ 12,1≤ j ≤ n), 0≤ n≤ 391.

Then exploiting that ẑn gather the augmented state (xin+1, b
i
n+1, θ

i
n+1), 1 ≤ i ≤ 12 of the

12 regions, a simple post-processing over the regions provides estimations of b and the state
variable. We refer to Collin, Prague and Moireau (2020) for further details about this Kalman-
based population approach.

Estimation strategy.. As we want to inject as few information as possible on the shape of
the transmission rate b, we will first consider that the Wiener process ν defined in Equa-
tion (3) is a time-dependent function which thus encompass the complete dynamics of b.
This corresponds to choosing g ≡ 0, meaning we have no prior knowledge on the evolution
of transmission rates, i.e. on the NPI effects. However, to avoid overfitting, our objective is to
disentangle the latent trajectory of b from possible noise in the data which can be observed in
Figure 1. We adopt a 3-step approach described below consisting in smoothing the trajectory
of b:

1. Estimate a reasonable prior for the initial transmission rate b before the start of any NPI.
We use data before the first lockdown (10 days available) and assume the transmission
rate bi(t) = biinit for t= 1 · · ·10 days to be a constant. In other words, we apply the pop-
ulation Kalman filter estimation described above with θ from Equation (4) being reduced
to binit.

2. Estimate the shape of b with prior on initial value but without any prior on the dynamics.
We set the initial value of bi for times t = 1 · · ·10 days to biinit and take g(t) ≡ 0 such
that Equation (3) rewrites db(t) = dν(t). We apply the population Kalman filter estima-
tion described above. Of note, the parameter vector θ from Equation (4) is now empty.
As there is no information on b, the model error is very important and could lead to an
over-fitting of the data. We then build a prior for the dynamics of b by fitting a parametric
shape based on sum of logistic functions on the weighted average trajectories of b over all
regions with least-square method. Then, we build a prior for the dynamics of b by fitting a
parametric shape based on sum of logistic functions on the weighted average trajectories
of b over all regions with least-square method. We choose logistic functions as they seem
well adapted to model variations due to for example stiff lockdowns or smooth unlocks.
We set the number of logistic functions from the number of main changes of variations
of the weighted average trajectories of b. This function will represent a prior g on the
dynamics.

3. Estimate the shape of b with prior on initial value and informative prior on the dynamics.
We set the initial value of bi for times t = 1 · · ·10 days to biinit and take db(t) =
g(t)dt + dν(t) such as in Equation (3). We apply the population Kalman filter estima-
tion described above. As the dynamics of b still includes a modeling noise, the shape of b
could be different from the prior transmission rate defined from Step 2. This is the result
of this final analysis that is used for further description of the effect of NPI.

2.5. Explanatory model for the transmission rate.
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Mixed effects model. Using the function b obtained with population Kalman filter as de-
scribed in Section 2.4, one can determine the impacts of NPIs, seasonal weather conditions,
and VoCs on the transmission rate b = b

(1−V/N) . We followed the example of Flaxman et
al. Flaxman et al. (2020) - in considering interventions effects to be multiplicative. There-
fore, we fitted a linear mixed effect model on the logarithm transformation of the transmis-
sion. The model equations are given in Section 4.2 of the Web Supplementary material. It
consists of an intercept, which represents the average transmission of COVID-19 across all
regions without NPI without VoC circulation and for an average French weather condition
(W=0), the sum of effect of the 10 NPIs described in Section 2.1, the effect of weather and
the effect of the VoC percentage. It is known that the transmission of SARS-CoV-2 is very
different indoors and outdoors Bulfone et al. (2021). Thus, we also added an interaction effect
between bar and restaurant closure and the weather, accounting for the opening of outdoor
sitting areas. Of note, this is the only interaction tested to avoid overfitting. We finally added
random effects to account for heterogeneity between regions. We added a random intercept
and random slopes for the effect of first, second lockdown and 6PM curfew as they may be
highly variable between regions. We assume a full covariance matrix for the random effects,
allowing effects to be correlated together in each region. In particular, we believe that they
may be impacted by various factors not accounted for in the epidemic model, such as the
density, the age distribution or the urbanization of the region.

Note that we added a 7-day delay to the lockdowns, which can be interpreted as a neces-
sary time to allow people to organize themselves for adaptation (implementation of working
from home, childcare etc ...). This choice has been motivated by the observed 7-day delay in
the transmission rates obtained by Kalman filters and will be discussed. To ease interpretation
of the estimated effects, parameters were transformed back and expressed as a decrease or
an increase in transmission in percentage by applying the function x 7→ 100(ex − 1). Classi-
cal 95% confidence intervals were obtained using 100(ex+/−1.96SE(x) − 1), were SE is the
standard error obtained from the regression.

Interpretation of the impact of seasonal weather conditions. To facilitate understanding, we
calculated some NPI effects during the summer and winter periods. To do so, we replace in
the results W by its summer (resp. winter) average from June 21st, 2020 to October 21st,
2020 (resp. before June 21st, 2020 and after October 21st, 2020 ) over all regions.

Basic reproductive number. The intercept of the regression presented above represents the
mean transmission rate over all regions when there is no NPI in place, no VoC and the weather
condition is taken to be the average weather condition over a year in France. Thus, inserting it
in Equation (2) directly provides the basic reproductive number and 95% confidence intervals
can be computed using the standard error of this parameter.

3. Results.

Estimation of the transmission rate using a population-based Kalman filter. Step 1 of esti-
mation provided the initial values for the transmission rate and exhibited quite similar values
between regions (average 0.78 sd 0.012, see Section 4.1 of the Web Supplementary Material
for the values at the regional level). Although higher values are found for the regions with
the higher first wave, the small variability between regions may indicate that the magnitude
of the first wave was not fully driven by a higher transmission rate, but also by different ini-
tial epidemic states (i.e. number of exposed and infectious cases resulting in differences in
virus introduction timelines or the occurrence of super-spreading events Roux, Massonnaud
and Crépey (2020)). In Step 2, the transmission rates obtained without knowledge of their
shapes are given in Figure 5 (top, left) for all the regions. As there is no information on b,
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FIG 5. First column (Step 2): Top - Time evolution of b in the 12 French regions with g = 0 (no apriori). Bottom -
Mean value of b over time (black line) obtained at Step 2 fitted using 7 logistic functions (dashed red line). Second
column (Step 3): Top - Time evolution of b in the 12 French regions when g corresponds to 7 logistic functions
obtained at Step 2 (with ν 6= 0). Bottom - Time evolution of Reff in the 12 French regions when g corresponds
to 7 logistic functions (with ν 6= 0). If Reff is superior to 1 (see the horizontal dashed black line), the infection
will spread. The first (resp. second, third, fourth, fifth) vertical gray line corresponds to the first day of the first
lockdown (resp. the last day of the first lockdown, the start of the academic year, the first day of the second
lockdown, the last day of the second lockdown).

the model error is very important and leads to an over-fitting of the data. In particular, oscil-
lations with zero mean and with period close to 7 days are visible for many regions. This is
related to a known under-reporting during week-ends. The weighted average trajectory of b
is displayed in Figure 5 (bottom, left). We approximated the function g by a sum of 7 logistic
functions. Results of the least-square fitting are displayed in dashed line and constitute the
prior for the following. Finally, in Step 3, the transmission rates b are obtained and displayed
in Figure 5 (top, right). As the dynamics of b still includes a modeling noise, the shape of b
is different from the prior transmission rate defined from Step 2 but still smoother.

Effective reproductive number. The resulting effective reproductive ratio Reff is given at the
regional level in Figure 5 (bottom, right). It starts from a value ranging between 3.5 and
4 in all regions. This is partially driven by winter-like conditions during the first days of
March 2020. The basic reproductive number will be later computed adjusting for weather.
The time variation of Reff shows that it rapidly gets under the critical value of one after the
first lockdown initiation and then oscillates around this value.

Attack rates. The attack rate represents one intrinsic feature of interest in any epidemic
model (as described in Section 2.3). On top of adding an insight on the epidemic dynamics
by adding extra knowledge on the number of possible hidden / unmeasured cases, attack rates
are a good way to validate how realistic the model fitting is. Figure 6 represents the attack
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rate at various important times: at the end of first lockdown (May 11, 2020), October 5, 2020
and at the end of our study period (March 28, 2021). The national French attack rates are
respectively estimated to be 5.7%, 8.8%, and 25.3% at these dates.

Basic reproductive number. After adjusting for average weather over a period of one year
in France, we estimate the national average basic reproductive number at 3.10 [2.95 ; 3.26].

FIG 6. Model estimation for the proportion of naturally immunized individuals in the population (deaths and
vaccinated people not taken into account) on May 11th, 2020 (left), on Oct. 5th, 2020 (middle) and on March
28th, 2021 (right).

Modification of the transmission rate
Covariate scale increase/decrease
NPI
Lockdown 1 - delay of 7 days -78% [-82% ; -74%] ↘
Post lockdown 1 - Phase 1 -54% [-56% ; -52%] ↘
Post lockdown 1 - Phase 2 -48% [-50% ; -47%] ↘
Lockdown 2 - delay of 7 days -54% [-57% ; -49%] ↘
Lockdown 2 with opened shops -51% [-53% ; -49%] ↘
Closing schools - 7% [- 8% ; - 5%] ↘
Barrier gestures -46% [-48% ; -44%] ↘
Curfew at 6PM -30% [-33% ; -26%] ↘
Curfew at 8PM -28% [-31% ; -25%] ↘
Bar and restaurant closure (ref. W = 0) -10% [-13% ; - 8%] ↘
Bar and restaurant closure, summer (vs. ref.) - 8% [-11% ; - 4%] ↘
Closing bars & restaurants, winter (vs. ref.) -11% [-14% ; - 8%] ↘
Other factors
100% of VoC circulating 22% [15% ; 28%] ↗
Weather effect during summer (ref. W = 0) -22% [-24% ; -21%] ↘
Weather effect during winter (ref. W = 0) 10% [ 9% ; 11%] ↗

TABLE 2
Estimation and 95% confidence intervals of the effects of seasonal weather conditions, VoC proportion, and NPI

on the transmission rates. Model AIC = -1,388.

Effects of NPI on transmission rate. Table 2 summarizes the estimation of the effect of NPI
on the transmission rates derived from the fixed effects of the model provided in Section 2.5.
Regression residuals, fixed and random effects are given in Section 4.2 of the Web Supple-
mentary Materials. Figure 7 shows the corresponding individual fits. The very restrictive first
lockdown (respectively the less restrictive second lockdown) decreases the transmission rate
by ∼ 80% (respectively ∼ 55%). The impact of school closure is around 7% and the bar and
restaurant closure around 10%. The barrier gestures decrease the transmission by ∼ 46%.
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FIG 7. Transmission rates. Estimated using the population-based Kalman filter. Individual fits for each region.
Random effects on log(binit), bl1, bl2 and bcurf6PM .

One can see that the values between the curfew at 6PM and the curfew at 8PM (around 30%)
are very close and not statistically different (3% [-2% ; 8%]). We demonstrate that all NPI in
this analysis decrease the transmission and have an effect significantly different from zero.

Effect of weather. The seasonal weather conditions variable is unitless, so the interpretation
of its estimated effect should be made by comparing a value to a reference, which is set
to be the average weather in France. We find that transmission is on average significantly
increased by 10% during the winter period, and significantly decreased by 22% during the
summer period, compared to average weather. Figure 8 (top) presents the estimated effect of
seasonal weather conditions over the period of study, by region.

The estimated interaction between the closure of bars and restaurants and the seasonal
weather conditions is statistically significant (p=0.037) but is also complex to interpret. We
show that although closing bars and restaurants always has a significant effect, decreasing the
transmission, it is slightly more effective in winter (11% [8%;14%] decrease) rather than in
summer (8% [4%;11%] decrease). Figure 8-Middle presents the estimated effect of bar and
restaurant closure for the 12 regions of interest over the study period and its interaction with
weather conditions. The weather conditions impacts the estimation, with a stronger effect on
transmission reduction in Northern regions compared to Southern ones, and also a stronger
effect is observed in the Spring 2021 due to more favorable weather.

Effect of VoC. Concerning the effect of the three VoCs, our results show that an increase
from 0 to 100% of the proportion would increase the transmission rate by an estimated 22%
[15% ; 28%]. Figure 8 (bottom) presents how the increased transmissibility varies over time
due to VoC proportion.

4. Discussion. In this paper, we use an innovative method to infer the transmission rate
over time from hospitalization data, and estimate the effect of multiple NPI, weather and
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FIG 8. Top: Estimated effect of seasonal weather conditions and its 95% confidence band for the 12 regions of
interest over the study period using the global average value over the period as reference for comparison. Middle:
Estimated effect of bar and restaurant closure for the 12 regions of interest over the study period. In red, the main
effect of -10%. In black and grey, the effect with the interaction with weather conditions and its 95% confidence
band. Bottom: Estimated effect of VoC appearance and its 95% confidence band from January 1, 2021.
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VoC on it. We showed that all NPI considered have a significant and independent effect on
the transmission rate. We additionally demonstrated a strong effect of weather conditions,
decreasing the transmission in the summer period, and increasing it in the winter period, and
we observed an increased transmissibility due to VoCs.

Concerning the transmission rate, interpretation of our results is conditional on the mech-
anistic model illustrated in Figure 4, and careful attention must be given to the parameters
values set from the scientific literature which are detailed in Table 1. This model does not take
into account the age-structure of the population on the contrary to the works of Salje et al.
(2020); Di Domenico et al. (2020) using French data. However, we believe that using a pop-
ulation approach accounts for different intrinsic characteristics such as population density,
age structure, transportation habits, etc. that influence disease spread through each region-
specific transmission rate. Another shortcoming of the SEIRAH model is that it does not take
into account waning immunity or travel between regions. The model could be slightly modi-
fied to take these aspects into account but would necessitate further fixing of more parameters
while no other data is available, especially on inter-regional travel. For this reason we did not
proceed with this development. Concerning the available data, the drawback to use hospital-
ization data is its lack of exhaustiveness given that hospital services declaring cases may vary
over time. However, one may think that this variation is less important than in other sources
of data such as the daily number of new confirmed cases for which the testing policy has
greatly changed during the course of the epidemic.

Interestingly, although the models were different and the data not fully identical, our re-
sults were comparable in terms of attack rates with existing modeling works Hozé et al.
(2021) and sero-prevalence studies Warszawski et al. (2020); Carrat et al. (2020); Santé
Publique France. A comparison is available in Web Supplementary material, Section 4.1.
Overall, our estimates tend to be slightly higher by less than 5% than other estimation and
sero-prevalence studies. This is presumably due to the strong assumption that there is no
waning immunity in our model. Indeed, we assume that all individuals, once infected, have
a high enough titer of antibody response to systematically test positive in sero-prevalence
studies. In terms of reproductive numbers, we found 3.10 [2.95 ; 3.26] (after removing the
weather impact using the regression model) compared to 3.18 [3.09 ; 3.24] in Di Domenico
et al. (2020) and 2.90 [2.81 ; 3.01] in Salje et al. (2020). These comparisons allow us to val-
idate the estimation strategy, which has the great advantage of estimating transmission rates
without assumptions on the shape of the transmission functions. Furthermore, the compu-
tational times are not excessive (a few minutes for the full estimation on a classical work
station without code optimization).

We restricted our analysis to the estimation of ten NPI effects. More variables could have
been added, e.g. partial interventions (applied, for example, only in large cities in regions
highly affected by COVID-19) – but those would be inconsistent with our model defined
at a regional level. Other potential variables suffer from inconsistent definitions. Working
from home is a good example. First, the adherence to this intervention (which can vary due
to employee fatigue, organization difficulties and the absence of legal constraint) is difficult
to evaluate. Second, regarding quantitative indicators, the DARES carried out surveys for
companies with 10 or more employees and showed that the mean percentage of remote work
is around 29.6% [18.8%, 40.4%] with the max value during the two lockdowns . However,
this indicator accounts for working from home and paid vacation which may be very different
in terms of behaviors. Hence by omitting the working from home in the model, its effect
is captured by the effect of lockdown and barrier gestures. Identifying the proper effect of
working from home is very difficult, because injunctions and implementations of "working
from home" fluctuate greatly over time and over geographical areas without a valid way of
measuring adherence.
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We also had to make a certain number of modeling assumptions. For some interventions,
such as lockdowns, we considered a 7-day delay of implementation (which is visible on the
transmission rates obtained with the Kalman filter). This choice is validated by other stud-
ies such as Dehning et al. (2020), in which the delay can be up to 15 days. However, we
investigated its impact on our regression adjustment. Not considering the delay of 7 days
greatly deteriorates the fits, see Section 4.2 of the Web Supplementary Materials for more
details. Considering our choice to model the effect of the partial opening of schools during
the May 11th to July 4th 2020 period as equal to 70% of the effect of a full closure could be
considered as an oversimplification. Over this period following the first lockdown, schools
reopened very gradually according to three different phases and school attendance growth
was even more progressive. Up to June 2nd, strong disparities in openings and attendance
existed among regions, with an average of only 30% of pupils under 12 years old attend-
ing. Other levels of secondary schools ("collèges" and "lycées") reopened in early June and
progressively received more students until vacation, starting in early July. Not to risk facing
identifiability issues, we chose not to differentiate regions or phases of reopening and a ratio
of 0.7 of closure effect was applied for all regions. Regarding the effect of curfews, we failed
at demonstrating a statistically significant difference between 6PM and 8PM. This is may be
due to an identifiability issue as the 8PM curfew was in place for less than 3 weeks in many
regions. An alternative explanation could be that both curfews were impacting globally social
gathering the same way. As for example, both are preventing most private dinners and parties
(or at least reducing drastically the number of guests).

In this article, we decided to take into account the weather condition using past works
of Bukhari and Jameel (2020) and Bukhari and Jameel (2020). Using separately tempera-
ture, absolute, and relative humidity was not explored in this work. All in all, we saw a
clear point in including the weather condition as a variable modifying the transmission. Sec-
tion 4.2 of the Web Supplementary Materials explored simpler models. All deteriorated the
fits. However, we remain extremely cautious about the interpretation of the estimated effects
of weather conditions and, beyond, of associated mechanisms. Finally, we consider an inter-
action between seasonal weather conditions and bar and restaurant closure justified by the use
of terraces (which have been expanded in many places since the beginning of the pandemic).
Of course other interactions can be considered and more complex models can be written but
it may lead to over-fitting.

Looking back at the original data, the variant 20I/501Y.V1 (Alpha) appears to have al-
ways been predominant (over 90% at any time) compared to the two other VoCs (Beta and
Gamma) considered in the French non-insular territory . Widely variable estimations of trans-
missibility increase for the variant 20I/501Y.V1 (Alpha) have been proposed in the scientific
literature, ranging from 29% to 90% Graham et al. (2021); Campbell et al. (2021); Wash-
ington et al. (2021); Volz et al. (2021); Davies et al. (2021) the lower values being in line
with our own findings. The higher estimates could be partially explained because new VoCs
appeared at the beginning of winter in England and in the USA. This may lead to confusion
between weather conditions and VoCs, which both increase weather conditions, as mentioned
by Campbell et al. (2021). We tested this assumption by removing weather conditions from
our model and found an increased transmissibility of 43%, see Section 4.2 of the Web Sup-
plementary Material. We retained the weather condition in our model as it greatly improved
the fit.

Altogether, this work is one of the first attempts to evaluate retrospectively the effect of
multiple NPIs over a period of one-year of the COVID-19 epidemic. On top of applying
a novel methodology to current and important application, this work could be extended to
generate “what-if” scenarios and help determine appropriate NPI implementations for future
waves of infection.
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