Scoping review and interpretation of Myofascial	1
Pain/Fibromyalgia syndrome: an attempt to assemble	2
a medical puzzle	3
	4
"Fascial Armoring" as a global chronic compartment-like	5
syndrome	6
	7
Shiloh Plaut ¹	8
School of Medicine, St. George's University of London, London, United Kingdom	9
Corresponding author:	10
Shiloh Plaut	11
Shiloh Plaut- sole researcher and author of this manuscript including conception,	12
organization, literature review, integration of information, findings analysis,	13
manuscript preparation and writing.	14
	15
	16
	17
	18
	19

Scoping review and interpretation of Myofascial20Pain/Fibromyalgia syndrome: an attempt to assemble21a medical puzzle22

Abstract

Background: Myofascial Pain Syndrome (MPS) is a common, overlooked, and 25 underdiagnosed condition and has significant burden. MPS is often dismissed by 26 clinicians while patients remain in pain for years. MPS can evolve into fibromyalgia, 27 however, effective treatments for both are lacking due to absence of a clear 28 mechanism. Many studies focus on central sensitization. Therefore, the purpose of 29 this scoping review is to systematically search cross-disciplinary empirical studies of 30 MPS, focusing on mechanical aspects, and suggest an organic mechanism explaining 31 how it might evolve into fibromyalgia. Hopefully, it will advance our understanding 32 of this disease. 33

Methods: Systematically searched multiple phrases in MEDLINE, EMBASE, COCHRANE, 34
PEDro, and medRxiv, majority with no time limit. Inclusion/exclusion based on title 35
and abstract, then full text inspection. Additional literature added on relevant side 36
topics. Review follows PRISMA-ScR guidelines. PROSPERO yet to adapt registration for 37
scoping reviews. 38

Findings: 799 records included. Fascia can adapt to various states by reversibly 39
changing biomechanical and physical properties. Trigger points, tension, and pain are 40
a hallmark of MPS. Myofibroblasts play a role in sustained myofascial tension. Tension 41
can propagate in fascia, possibly supporting a tensegrity framework. Movement and 42

23

to MPS and recurrence. 43

Conclusions: MPS can be seen as a pathological state of imbalance in a natural process; 45 manifesting from the inherent properties of the fascia, triggered by a disrupted 46 biomechanical interplay. MPS might evolve into fibromyalgia through deranged 47 myofibroblast in connective tissue ("fascial armoring"). Movement is an 48 underemployed requisite in modern lifestyle. Lifestyle is linked to pain and suffering. 49 The mechanism of needling is suggested to be more mechanical than currently 50 thought. A "global percutaneous needle fasciotomy" that respects tensegrity 51 principles may treat MPS/fibromyalgia more effectively. "Functional-somatic 52 syndromes" can be seen as one entity (myofibroblast-generated-tensegrity-tension), 53 sharing a common rheuma-phycho-neurological mechanism. 54

55

Key words: fascial armoring, myofascial pain syndrome, myofibroblast generated56tensegrity tension, fibromyalgia, global chronic compartment syndrome.57

Scoping review and interpretation of Myofascial59Pain/Fibromyalgia syndrome: an attempt to assemble60a medical puzzle61

Introduction

Chronic pain is a major cause of morbidity and has a significant impact on quality of	64
life [1]. Myofascial pain denotes a pain arising from muscle and fascia. Commonly	65
known as "muscle knots" myofascial pain usually arises in trigger points (TrPs) or	66
'tender spots' [2-4]. TrPs are small and sensitive areas in a contracted muscle, that	67
spontaneously or upon compression cause pain to a distant region, known as a	68
referred pain zone [3,4]. Traditionally, "TrPs" are perceived as associated with MPS	69
and differ from "tender points" mainly in that they radiate pain [2-4].	70

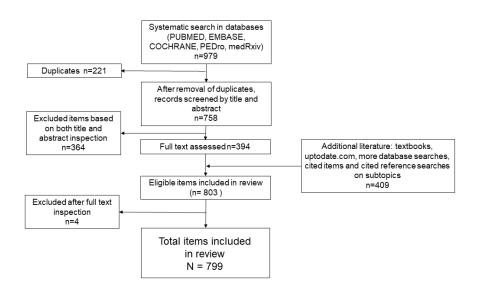
Myofascial pain syndrome (MPS) is an entity that still lacks a clear definition. Some 71 define it as a regional pain disorder [2], others define it on the basis of tenderness 72 and associated painful spots [3]. Nonetheless, TrPs and myofascial pain are a 73 hallmark [2,4,5]. A fundamental difficulty arises when there is no clear definition, 74 epidemiology, pathophysiology, or diagnosis of MPS. Having no accepted definition 75 or criteria, clearly raises issues for both diagnosis and potential studies [6-8]. The 76 purpose of this paper is to systematically search the empirical studies and 77 components of MPS in an effort to assemble them into a suggested organic 78 mechanism, explaining its pathophysiology and how it may evolve into fibromyalgia. 79 Since much of the subject is still somewhat under dispute, textbooks and medical 80 literature were added to establish a consensus on the elements of MPS. 81

62

In clinical practice MPS is often defined by multiple areas of musculoskeletal pain 82 and tenderness associated with painful points [3]. Pain is deep and aching. It may 83 arise after trauma, overuse or sedentarism [3]. A study found laborers who exercise 84 heavily are less likely to develop manifestations of MPS than sedentary workers [3]. 85 Palpation of a TrP can reproduce or accentuate the pain [4]. However, these findings 86 are not unique to MPS: in a controlled study they were also present in "normal" 87 subjects [3]. Literature estimates 45% of men and 54% of women in the general 88 population have TrPs [2,9]. Estimates are 37 to 65 percent of the population have 89 myofascial pain, which costs the united states \$47 billion every year [4,10,11]. MPS is 90 one the most frequently under-diagnosed, under-treated and misunderstood 91 sources of the ubiquitous aches and pains of humankind [4,9]. However, even 92 recently, MPS is considered by some to be fiction, or otherwise paired with 93 psychosomatic disorders since it involves pain and has no clear pathophysiology [11-94 13]. 95

Although MPS and fibromyalgia are defined as separate entities, the two may co-96 exist or considerably overlap [2,3]. They are both characterized by painful points, 97 silent routine laboratory investigations and no systemic inflammation [2-4]. In some 98 patients, regionally localized MPS may seem to evolve into fibromyalgia [3]. The 99 puzzle of the mechanism of MPS and how it may develop into fibromyalgia still 100 eludes our understanding. The marked dissociation between the estimated 101 prevalence and burden of MPS, and the length of text on it in common medical 102 textbooks, reflects this lack of understanding. 103

Studies of fibromyalgia reveal odd findings e.g., complete resolution after	104
laparoscopic surgery, and strong overlap with other conditions (e.g., hypermobility	105
syndrome). Many theories exist for fibromyalgia, the most accepted and studied	106
seems to be central sensitization, but no single theory seems to explain a wide range	107
of empirical evidence, and the pathophysiology and etiology are still not clear.	108
Treatments are insufficient, meanwhile patients suffer. This scoping review focuses	109
on the organic mechanical aspects of myofascial pain with the hope it might advance	110
our understanding of MPS and fibromyalgia, highlight gaps in current knowledge,	111
and stimulate research in a less explored field. Findings will be presented with the	112
purpose of understanding the elements relevant to MPS and fascia, in order to	113
assemble them and discuss a suggested mechanism for MPS and fibromyalgia. The	114
discussion is divided into two parts: part 1 focuses on MPS and suggests a theoretical	115
mechanism ("fascial armoring"), part 2 discusses empirical evidence in support of	116
fibromyalgia as an entity driven by myofibroblast-generated-tensegrity-tension, as	117
predicted by this model.	118


119

Methods

120

A systematic search was held for multiple combinations of keywords in multiple 121 databases. Keywords included : "fascia tension pain", "trigger point satellite", "fascia 122 stiffness pain", "Fascia Densification", "trigger point densification movement", 123 "biotensegrity", for all fields with no time limit; and for "Risk factors myofascial pain 124 syndrome" only for title/abstract; Systematic reviews, meta-analyses and randomized 125 controlled trials were searched in title or abstract for "myofascial pain syndrome", 126 "spinal mobilization sympathetic nervous system", "sympathetic activity induced by 127 pain" since 2015. The databases used were National Library of Medicine PUBMED 128 (MEDLINE), COCHRANE, EMBASE, PEDro and medRxiv. Web of science was used to 129 find items through a cited reference search. All searches were done between 130 September 2020 and September 2021. Only items published in English were included. 131 This work follows PRISMA guidelines for scoping reviews. PROSPERO yet to adapt 132 registration for scoping reviews. A data charting form was used to abstract key data, 133 as well as a summary document that was updated in an iterative process: that 134 document evolved into this review. The systematic search yielded 979 items. After 135 removal of duplicates (N=221), 758 items were screened by assessing both title and 136 abstract. Items off topic, foreign language, and in journal ranked Q4 were excluded 137 (N=364). For the remaining items (N=394) a full text determination of eligibility was 138 then performed. Four items were excluded from the systematic search because they 139 were off topic. Final number of items included in systematic search was N=390. 140

When side topics were encountered, literature was added to broaden scoping review 141
via medical textbooks, www.uptodate.com and more studies from searching 142
databases (n=409). These side topics were not searched systematically. An attempt 143
was made to cite more than one source in such cases. Total review items: 799. Fig 1 144
shows the flowchart of the scoping review. 145

Fig 1. Flowchart of scoping review.

Results

A total of 799 items were included. Numbers of items by recurrent themes were:	149
"MPS and trigger points" (n=95), "properties of fascia" (n=47), "anatomy and	150
movement" (n=43), "nervous system" (n=31), "biotensegrity" (n=26), "myofascial	151
pain treatment" (n=209), "myofibroblasts" (n=93), "fibromyalgia" (n=93), "reviews"	152
(n=33), and "other" e.g., somatic syndromes, stress, chronic pain, Dupuytren's	153
disease, plantar fasciitis (n=129). The systematic search included 127 clinical trials,	154
33 systematic review, and 19 meta-analyses. The findings are presented with the	155
purpose of understanding the elements relevant to MPS and fascia, in order to	156
assemble them and discuss a suggested mechanism of MPS and fibromyalgia. A	157
microscopic view will set the stage for a macroscopic understanding.	158

Properties of fascia

General

Fascia is an important yet often misunderstood tissue in medicine. Essentially, fascia	161
is connective tissue composed of irregularly arranged collagen fibers, distinctly	162
unlike the regularly arranged collagen fibers found in tendons, ligaments, or	163
aponeurotic sheets [14]. When connective tissue collagen is pressed, it can chondrify	164
[15]. Fascia pervasively extends from head to toe, it envelops and permeates	165
muscles, bones, blood vessels, nerves, and viscera, composing various layers at	166
different depths [16]. Fascia supports the human body in vital functions such as	167
posture, movement, and homeostasis [14,16-18], as well as containing various	168
sensory receptors for proprioception, nociception, and even hormones [18].	169
Nociception is influenced by the state of the fascia [18]. This means pain can arise	170
from changes in the connective tissue [18,19]. The interconnectedness of fascia and	171
its ability to transmit force are at the basis of its functions [18]. Fascia is continuous	172
from the trunk across the upper and lower limbs and hence has the potential to	173
influence range of motion [18]. Fascia seems to connect the distant hip and the	174
ankles, not only anatomically, but also mechanically, supporting the concept of a	175
myofascial continuity [18].	176

Biophysical and mechanical functions

177

Fascia has properties that enable it to reversibly change its stiffness and decrease	178
the forces of tension experienced by it. This is a mechanical 'stress relaxation'	179
resulting from the viscoelasticity of fascia that expresses high or low stiffness,	180
depending on the rate of loading. Some experimental tests demonstrate a 90% of	181

stress relaxation achieved in about four minutes, afterwards the stress relaxation182curve is near linear horizontal [20-23]. Other studies observe increase in stiffness183when ligaments are successively stretched, i.e., strains produced by successive and184identical loads decrease. They recover to baseline after a rest period. Isometrically185maintained stress resulted in gradual tightening of the tissue [14].186

Blood vessels and nerves are interspersed in fascia, therefore, involvement of these 187 structures due to fascial changes is commonly seen [14,19]. It is noted a tender point 188 in the gluteus medius can refer pain down the leg and mimic sciatica [3]. Often the 189 patient is aware of numbness or paresthesia rather than pain [9]. Pain is the result of 190 a microenvironment around the nerve composed of connective tissues (e.g., deep 191 fascia, epineurium). Tissue modifications can be translated into change in nerve 192 mobility, with a consequent decrease in the independency of the nerve from its 193 surroundings [24,25]. Altered fibrous tissue around nerves can lead to entrapments 194 and lesions [24,25]. Circulation and perfusion can also be compromised. For 195 example, dysfunction of the posterior layer of thoracolumbar fascia has been 196 reported as a "chronic compartment syndrome" of the paraspinal muscles [26]. 197

Hyaluronic acid

198

Hyaluronic acid (HA) has a key role for fascia. It is the major glycosaminoglycan of the	199
extracellular matrix (ECM) and a major constituent of connective tissue [27]. Its	200
concentration, as well as the temperature and other physical parameters, determine	201
the physical properties of the ECM [27-30]. In fascia, HA is present within the	202
sublayers and facilitates normal free sliding [27]. Infra-red spectroscopy of viscous	203

HA indicates water molecules can be arranged tetrahedrally almost like as in ice [29].	204
HA interchain interactions are reversible, disaggregation occurring with an increase	205
in pH and temperature; a gel-like to fluid-like transition occurs at 35-40 $^\circ$ C [29]. HA	206
solutions can express high viscosity and non-Newtonian flow properties [28],	207
and HA's osmotic activity is relatively high; Its stiffness occurs in part due to its long	208
chains forming an entangled large volume network [29,30]. Once viscosity increases,	209
HA can no longer function as an effective lubricant; this increases resistance in layers	210
with abnormal sliding [27].	211

Fascia and movement

212

Fascia acts as a key player for generating movement [16]. Although often a dropped	213
prefix, fascia is part of the (fascio)musculoskeletal system. It is suggested to be able	214
to transmit tension and affect other muscles, reflecting the direction of force	215
vectors, and play a role in properly coordinated movements of the body [31].	216

Sedentarism

Non-versatile movement patterns and sedentarism are an important lifestyle	218
component for fascial changes and pain [3]. A meta-analysis found that low work	219
task variation is a risk factor for non-specific neck pain [32]. Immobilization of a limb	220
or body segment can lead to pathological changes in the connective tissue. Studies	221
of immobilization suggest an increase in collagen and myofibroblast density as early	222
as one week after immobilization [33]. After about 4 weeks of immobility in the	223
shortened position the collagen fibrils become arranged abnormally [34]. Changes	224

start in the perimysium and after longer periods of immobility the endomysium	225
becomes involved too [34]. Regular physical activity is recommended for treatment	226
of chronic pain and its effectiveness has been established in clinical trials for people	227
with a variety of pain conditions [35]. Proper posture and resting positions are	228
important in preventing muscle tension [3]. Pain often recurs unless appropriate	229
exercises are prescribed [5].	230

Tensegrity

The fact that fascia can transmit tension to a distance is a basis for a "bio-tensegrity"	232
framework [36,37]. Bio-tensegrity applies principles of tensegrity to our	233
understanding of human movement. Tensegrity is an architectural principle.	234
According to this, structures (or tensegrity systems) are stabilized by continuous	235
tension with discontinuous compression, and function as one structure [37].	236

When the tension of fascia increases, the connective tissue can distribute the forces	237
throughout the surrounding areas, propagating along the myofascial system [14,18].	238
The forces passively imposed in a muscle by stretching are distributed over the tissue	239
as a whole by means of the intramuscular connective tissue [34]. According to Wilke	240
et al. [38] fascia links the skeletal muscles, forming a body-wide network of	241
multidirectional myofascial continuity. Cadaveric studies suggest a clinically relevant	242
myofascial force transmission to neighboring structures in the course of muscle-	243
fascia chains (e.g., between leg and trunk) [38]. A study suggests manual traction to	244
the biceps femoris tendon results in displacement of the deep lamina of the	245
thoracolumbar fascia up to level L5–S1 [14]. Acute bout of stretching of the lower	246

limbs increases the maximal range of motion of the distant upper limbs and vice247versa [18]. Recent studies indicate that tightness of the gastrocnemius and248hamstrings are associated with plantar fasciitis [39]. Since most skeletal muscles of249the human body are directly linked by connective tissue, symptoms may develop in250areas distant from the locus of dysfunction [40].251

Acceptance of the concept that a fascial tensegrity system connects the whole body252is not necessary for a scientific discussion of tension spreading to other areas of253muscle groups or structures. Some studies indicate that a tensegrity model might not254be a true representation of the whole fasciomusculoskeletal system, and some255evidence supports tensional propagation only to certain areas [41].256

Myofascial Pain Syndrome

There are several phenomena that accompany MPS including: trigger points (TrPs),258active loci, taut bands, satellites, and the local twitch response.259

Trigger points - Changes in fascia are associated with pain in TrPs and tender spots.260Many patients with active (i.e., painful) TrPs have other areas with the same261electrophysiologic findings that are not symptomatic, called latent TrPs. Latent TrPs262seem to only cause pain upon palpation, while active TrPs cause pain and symptoms263both at the site palpated and referred elsewhere [2,4,9]. The arising of pain is264attributed to those palpable areas in the connective tissue, which seem to activate265nociception [2,4].266

Theories of the origin of TrPs emphasize the chronic contraction associated with 267 them or their tendency of appearing at the muscle spindle [2,9]. Others suggest TrPs 268 represent hyperactive end-plate regions [7]. More theories that either deny the 269 existence of MPS or believe it represents a focal dystonia, microtrauma, or are of 270 central nervous system origin, are also hypothesized [2,7]. Critics of MPS argue that 271 the findings seen at TrPs are simply variants of a normal physiologic finding [7]. 272 There is reason to suspect this is true: about 50% of adults have active or latent TrPs 273 [2,9], and infants have been observed with point tenderness of the rectus abdominis 274 muscle and colic. These both were relieved by sweeping a stream of vapocoolant, 275 which inactivates myofascial TrPs, over the muscle [5]. 276

TrPs are extremely common. Among 224 non-specific neck pain patients, TrPs were 277 found in all of them [9]. In studies in pain clinics, 74-85% of those presented to a 278 clinic had TrPs the primary cause of their pain [9]. TrPs are one of the most frequent 279 causes of neck pain and back pain [42]. The severity of symptoms caused by TrPs 280 ranges from the agonizing, incapacitating pain caused by extremely active TrPs to the 281 painless restriction of movement and distorted posture caused by latent TrPs [5]. 282 The influence of latent TrPs on physical function is commonly overlooked [5]. 283 Patients who had other kinds of severe pain, such as that caused by a heart attack, 284 broken bones, or renal colic, say that the myofascial pain can be just as severe [5]. 285 Some suggest TrPs are present in up to 85% of individuals with colorectal, urological 286 and gynecological pelvic pain syndromes, and can be responsible for many of the 287 symptoms related to these syndromes [43]. It was suggested that TrPs or myofascial 288 tension, not exerted by external forces, can apply enough force to cause various 289

abnormalities, including compression and entrapment of anatomical structures [44],	290
decrease joint range of movement [7,16], affect visceral organs [9,45,46], lead to	291
musculoskeletal abnormalities [47], and alter blood and lymph flow [48].	292

Active loci - TrPs show electrical abnormalities called 'active loci'. This is a small293region in a muscle that exhibits spontaneous electrical activity (SEA), often294characterized as endplate noise measured on electromyography (EMG), leading to295chronic contractions [9]. Although some literature does not regard TrPs as a296discriminating factor for MPS, the 'Active Locus' seems to be a consensus [7].297

Taut Band - A taut band is thought to be composed of several TrPs and shows	298
excessive endplate potential activity [9]. Sustained abnormal activation of	299
acetylcholine (Ach) is hypothesized to create an "Energy Crisis" component [9].	300

TrP Satellite - TrP satellites are another disputed aspect of MPS. Some literature 301 states TrPs themselves can induce motor activity (referred spasm) in other muscles 302 [49]. Illustrated by an example where pressure on a TrP in the right soleus muscle 303 induced a strong spasm response in the right lumbar paraspinal muscles. Pressure 304 applied to a TrP in the long head of the triceps brachii muscle indued a strong motor 305 unit response in the upper trapezius muscle only during the 20 seconds that pressure 306 was being applied. This response failed to be reproduced following inactivation of 307 the triceps TrP. It is known as a 'satellite' phenomenon [9,49]. Moreover, it seems 308 TrPs can spread, since an active TrP in one muscle can induce an active satellite TrP 309 in another muscle [9,49]. 310

Various hypotheses have been suggested to explain the mechanism of MPS, among	311
them are trigger points, non-muscular sensitization of the nervi nervorum, central	312
nervous system, and several other theories [2,7,9,50]. Some relate the muscle	313
contractions in TrPs to a myotatic (stretch) reflex evoked by fascial tension [7,9].	314

Myofibroblasts

315

Fascia itself is able to actively contract. Tensional alterations are caused by	316
contractile cells [51]. Myofibroblasts are present in some developing or normal adult	317
tissues, altering tissue tension [30,51]. Although most tissues exist under a	318
mechanical tension, the same is not necessarily true of their resident cells; These are	319
protected from the relatively massive external loads by the mechanical properties of	320
the surrounding matrix [51]. In engineering terms, this is called 'stress-shielding',	321
occurring due to the matrix material that they deposit and remodel [51].	322

Normal fibroblasts are highly sensitive to the physical stimuli. Tomasek et al. [51] 323 show certain changes in tissue rigidity, strain, and shear forces are mechanical cues 324 sensed by fibroblasts that lead them to trans-differentiate into another cell 325 phenotype [51]. In other words, the transition from fibroblasts to myofibroblasts is 326 influenced by mechanical stress. If subjected to mechanical tension, fibroblasts will 327 differentiate into proto-myofibroblasts, which contain cytoplasmic actin stress fibres 328 that terminate in fibronexus adhesion complexes [51,52]. The adhesion complex 329 bridges the myofibroblast's internal cytoskeleton and integrins with the ECM 330 fibronectin fibrils. This enables proto/myofibroblasts to generate contractile force in 331 the nearby ECM by traction. The force inside the ECM is maintained over time and 332 reinforced further by remodeling and collagen deposition [51]. Functionally, this 333 provides a mechano-transduction system, so that the force that is generated can be 334 transmitted to the surrounding ECM [51]. Increased expression of alpha smooth 335 muscle actin (α -SMA) is directly correlated with increased force generation by 336 myofibroblasts in a positive feedback regulation [51]. A vicious cycle is suggested, in 337 which tension facilitates TGF- β 1 signaling, which induces α -SMA expression. In turn, 338 this increases development of more tension, which upregulates TGF- β and α -SMA 339 repeatedly [51]. In short, myofibroblasts generate the mechanical conditions that 340 enhance their contractility in a detrimental loop [51]. In contrast to the reversible 341 short-lived contraction of striated and smooth muscles, myofibroblast contractility is 342 different: with ECM synthesis and degradation (i.e., remodeling) they lead to 343 irreversible and long contractures in a process that can be maintained for long 344 periods of time [51]. It is thought that myofibroblasts use a lockstep or 'slip and 345 ratchet' mechanism, in incremental and cyclic contractile events using Rho-kinase 346 system, and aside the myosin light chain kinase (MLCK) system [51]. Once achieved, 347 contracture shortening does not require the continuing action of myofibroblasts 348 [51]. The visible appearance of continuous tension in pathological contractures is the 349 consequence of contraction and remodeling [51]. Myofibroblasts might transmit 350 considerably high forces [51]. 351

It is also possible that myofibroblasts can couple their activity directly to other cells352like myocytes via gap junctions and act as a unite [51,53]. Interestingly, if the353collagen lattice is released from its points of attachment such that stress in the354

matrix is lost, the cells rapidly undergo isotonic contraction and subsequently lose	355
their stress fibres and fibronexus adhesion complexes [51].	356
Treatments for MPS	357
Several pharmacological and non-pharmacological treatments are suggested in	358
literature.	359
Non-pharmacological [4,9,11,54-57]: including manipulative therapy, vibration	360
therapy, exercise, etc. Since it is shown that needle insertion reduces pain and SEA	361
on EMG [58], this suggests a therapeutic role for mechanical needling.	362
Pharmacological [4,9-11,54]: including non-steroidal anti-inflammatory drugs,	363
opioids, topical creams, and TrP injections.	364
Discussion	
	365
The discussion includes two parts. Part 1 discusses myofascial pain syndrome (MPS)	365 366
The discussion includes two parts. Part 1 discusses myofascial pain syndrome (MPS)	366
The discussion includes two parts. Part 1 discusses myofascial pain syndrome (MPS) and presents a suggested theoretical model which is based on the scoping and	366 367
The discussion includes two parts. Part 1 discusses myofascial pain syndrome (MPS) and presents a suggested theoretical model which is based on the scoping and systematic literature search. Part 2 is based on part 1 and discusses implications	366 367 368
The discussion includes two parts. Part 1 discusses myofascial pain syndrome (MPS) and presents a suggested theoretical model which is based on the scoping and systematic literature search. Part 2 is based on part 1 and discusses implications derived from the model and further empirical findings in support of the main	366 367 368 369
The discussion includes two parts. Part 1 discusses myofascial pain syndrome (MPS) and presents a suggested theoretical model which is based on the scoping and systematic literature search. Part 2 is based on part 1 and discusses implications derived from the model and further empirical findings in support of the main hypothesis predicted by this model.	366 367 368 369 370

...

Etiological considerations

There are three aspects of fascial induced pain to consider, from the standpoints of375physics, biomechanics, and cellular biology. These seem relevant to fascial tension,376TrPs, and MPS.377

The standpoint of physics relates to energy. Thermodynamically, the human body 378 can be seen as an open system of energy, and so can the fascial system. Although 379 energy and entropy are modulated by various factors, by nature, entropy of this 380 system will spontaneously tend to increase. To tense the fascia energy needs to be 381 expended. Once fascia is tense the energy can remain as potential elastic energy or 382 change due to other modifications, for example molecular rearrangement. 383 Hyaluronic acid (HA) has a molecular structure that enables it to have a high degree 384 of entropy, like an entropic "sponge". When entropy increases it generates osmotic 385 pressure and diffusion of fluids and other processes. Thus, when entropy of HA 386 increases, osmotic pressure increases, and stress decays. If stimulus is not removed 387 after this acute stressing, fascia will remain in the failure part of the stress relaxation 388 curve and will be remodeled in this state. Although entropy goes together with 389 osmosis and stress decay, each oscillation between different energy states will likely 390 cause a loss of energy being a non-ideal system, for example due to friction. Fascia 391 has hysteresis and is not a perfect "energetic spring" to oscillate between high-392 tension and low-tension states, i.e., it dissipates energy. 393

Secondly, from a biomechanical standpoint, the literature review shows that (i) 394 simple stress decay and recovery from it is a reversible process due to elasticity of 395

374

fascia; (ii) trigger points (TrPs) and myofibroblasts are found in normal individuals;	396
TrPs are seen even in childhood and infancy, and in animals [58]; (iii) fascia	397
continuously remodels itself and HA is continuously synthesized and excreted; (iv) a	398
sedentary lifestyle and repetitive overuse of muscles, with low variability of	399
movements, all lead to fascial changes/fibrosis and possibly MPS; (v) exercise and	400
proper movement relieve and prevent MPS; (vi) MPS seems to recur unless	401
appropriate exercises are prescribed.	402

These suggest an underlying ongoing interplay between movement and sedentarism. 403 Since tensional changes are reversible in fascia of normal individuals and depend on 404 the mechanical state of the human body, this indicates fascia is meant to withstand 405 and continuously undergo dynamic changes according to varying dynamic 406 mechanical states. Since immobility often leads to collagen alterations, HA changes, 407 myofibroblasts, and pain, we can see MPS as a natural consequence of the sedentary 408 lifestyle. Resulting from the evolutionary "price" biology paid in a trade-off with 409 chemistry when trying to "come up" with a tissue as effective, pliable, compliant and 410 strong as the fascia. This "bargain" served us well to function effectively as an 411 organism dominated by continuous movement. It seems that by living sedentarily, 412 the natural disadvantages of the properties of fascia (chondrifying, HA aggregation, 413 failure to decay, and fibrosis) manifest pathologically. Stiffness and lack of mobility of 414 fascia has implications beyond a patient being unable to move adequately, it can 415 affect the behavior of all cells interacting with the connective tissue matrix [16]. If 416 indeed nature designed a way to relax fascia during movements and reverse these 417 changes it might happen through (i) dissipation of fascial energy as mentioned 418 above; (ii) mechanical effect of movement that ruptures fascial fibers or shakes off 419 fibers, which might explain why studies find extra-corporeal shock wave therapy to 420 be effective for MPS (e.g., Uritis et al. [54]); (iii) friction between sliding layers of 421 fascia elevating the local tissue temperature, or "warming up" myofascial tissue. 422 Literature suggests the three-dimensional supramolecular assembly of HA breaks 423 down progressively at 35-40 degrees Celsius [29]. The more viscous is HA, the more 424 friction will act to counter viscosity; (iv) increasing clearance of HA due to increased 425 lymph flow. Higher concentrations of HA lead to its more gel-like state, affecting the 426 properties of the matrix; (v) pandiculation; (vi) self-aware "palpation" as a part of 427 one's lifestyle. 428

The third aspect to consider is a cellular one: induction of myofibroblast by tension 429 and by sedentarism [33,51]. Chronic tension is exacerbated with more tension 430 generated by myofibroblast smooth muscle actin fiber contractions. This makes it 431 increasingly more difficult to maintain a relaxation. Tension is converted to HA 432 aggregation and entropy so long as compensation along the stress relaxation curve 433 can allow for it. Increase in HA concentration is expected to keep HA in the denser 434 gel-like state [29,59], which would plausibly be perceived by the individual as bodily 435 stiffness. If the values of tension reached at the stress relaxation curve plateau tend 436 be above the value of the threshold for myofibroblast differentiation, it will be a 437 major driver for MPS (values may vary between individuals). Biologically, the 438 reinforcing of fascial cells with actin fibers may be the way of the body to express 439 support of the repetitive muscular effort. Accumulation of many foci of stretching 440 along a sensory or sympathetic nerve, due to extracellular fibers pulled from 441

multiple directions by proto/myofibroblasts, might cause peripheral nerves to be	442
hyperirritable chronically. This may explain why a study finds the number of active	443
and latent TrPs is significantly and negatively associated with pressure pain	444
thresholds (Do et al. [12]). A chronic peripheral pain could contribute to a central	445
sensitization and to changes in spinal cord pathways, though, as stated, the central	446
mechanisms are not the focus of this review. These three dimensions seem to be	447
relevant to fascial tension, TrPs and the etiology of MPS.	448

Pathophysiological considerations

Three elements combined might help explain MPS. These are: (i) tensegrity, (ii) TrPs,	450
and (iii) myofibroblast contraction and stress shielding.	451

Manifestation of MPS is seen in TrPs. Latent TrPs may be points that have previously	452
nociceptively sensed tension (i.e., active TrPs), due to sedentary behavior or a	453
'satellite', and then were mechanically induced to stress shield themselves via	454
myofibroblasts. The stress shielding does not necessarily eliminate tension (and	455
pain) completely, thus preserving some mechanical drive for further	456
proto/myofibroblast activity. Moreover, new myofibroblasts generate alpha smooth	457
muscle actin (α -SMA) and contractions themselves [51]. Over time, especially if	458
mechanical stimuli continue, fascia remains more towards the failure part of the	459
stress relaxation curve, and cells have time for more stress shielding and matrix	460
remodeling. Then, latent TrPs (via myofibroblasts) start to exert their own tension.	461
This reinforces the abnormality. However, that tension would be more diffuse as it	462
spreads along an intricate web of fibers (i.e., stress shield), inducing more tensions,	463

more force gradients in fascia, more foci of stretch or entrapments of nerves,	464
contractures, and other painful TrPs further away. If mechanical tension is	465
sufficiently reduced by shielding or by other means, myofibroblast will	466
dedifferentiate or undergo apoptosis [51], leaving behind a remodeled dysfunctional	467
fascia. Multiple iterations of the contractile cycle result in incremental and	468
irreversible tissue contracture [60]. TrPs appear on ultrasound as focal, hypoechoic	469
regions and with reduced vibration amplitude, indicating increased stiffness [12].	470

These dynamics may be the basis for the unexplained "metastasis" of TrPs and 471 satellites that Quinter et al. [7] refer to. When sedentary behavior continues, it feeds 472 more tension down the cascade. The clinical manifestation would be determined not 473 only by the amount of myofibroblasts, but by the interconnectedness of their 474 adhesion complexes, gap junctions, and fiber-cellular networks as well. Studies 475 suggest myo/fibroblasts form a cellular network and can exhibit coordinated calcium 476 oscillations and actively respond to mechanical stimuli [61-63]. Studies suggest 477 myo/fibroblasts have stretch activated calcium channels, and that intracellular 478 calcium and myofibroblast contractility is mechanistically linked [60,61]. Langevin et 479 al. [62] find evidence that leads them to a conclusion that soft tissue fibroblasts form 480 an extensively interconnected cellular network, suggesting they may have important 481 and so far unsuspected integrative functions at the level of the whole body. 482

Activating a latent TrP is hypothesized to involve interference with the stress shield483or stretch-activating myofibroblasts to rapidly contract, thus exposing the area to484higher tension and initiate nociception. Eliminating a TrP seems to induce a local485twitch response, which possibly signifies the neuron's or muscle's calcium driven486

response to a recovery from an active locus or shielded tension. Alternatively, it may 487 be on-off "flickering" of the myotatic reflex due to nearby myofibroblast rapid MLCK 488 contractions and their waves of calcium flux. Active loci may be a multifactorial 489 phenomenon. For example, stress shielding (with or without gap junctions) 490 superimposed on sympathetic activity, i.e., a myotatic reflex on top of sympathetic 491 drive. It would seem plausible to expect one to "learn to relax" or "learn to 492 cognitively override the sympathetic aspect by focusing attention", but not to 493 willfully override a reflex response. The fact that muscle spindles are surrounded by 494 a capsule of connective tissue, an area that sometimes might be palpated as a 495 nodule (i.e., TrP) suggests that if there are microscopic tensions, they might possess 496 a sensitivity to generate more tension at the spindle (via proto/myofibroblasts 497 positive feedback), thus locking the stretch reflex to a certain degree. Locking the 498 reflex would "turn on" an active locus in the associated muscle. To complicate the 499 above, if electrical coupling of this structure occurs with an end plate (or non-500 intrafuseal fibers), via myofibroblasts, it might perpetuate an "arrhythmic" picture on 501 EMG, with background noise, and random spikes upon myofibroblast contractions. 502 Mechanical disruption of this structure e.g., manipulative therapy, should unlock this 503 pathology, at least partially. This might be one of the reasons for different degrees of 504 body relaxation and the inability of some to experience it. If neurotransmitter 505 molecules (or acetate) leak outside the synaptic cleft they might induce adjacent 506 fibroblasts to transdifferentiate, which might explain why muscle overuse is 507 associated with "TrPs" ("TrPs" can be found in peri muscular and myofascial tissue 508 [4]). 509

"TrPs" and "tender spots" are therefore suggested here to be basically the same 510 (driven by myofibroblasts), but different in their location and fascial layer. This 511 notion is made under the now common presupposition that the main difference 512 between the definition of "TrPs" and the definition of "tender spots" is radiation of 513 pain. If a large nerve is affected by a nearby population of myofibroblasts that 514 contract upon mechanical stimuli, it could radiate pain. If a large nerve is not 515 affected by them, it might not radiate pain. If enough stress shielding and armoring 516 has been created, nerves will be mechanically shielded from an external force 517 applied to the tensegrity (i.e., palpation). Snapping palpation held longer would elicit 518 more of a response (pp. 82 Travel, Simons & Simons [9]). Thus, the terms "TrPs" and 519 "tender spots" can be used interchangeably throughout this discussion since both 520 are suggested to be phenomenological variations of the same underlying biology: 521 myofibroblast-generated-tensegrity-tension. 522

Notwithstanding, other factors are not excluded. Factors associated with the central 523 nervous system could also be implicated in the genesis of MPS, as well as genetics, 524 environmental factors, psychosocial aspects, chronic sympathetic "freeze" reaction 525 to everyday psychological stress, etc. Based on this discussion, we might expect 526 factors affecting fascial myofibroblasts to have potential to cause tension, pain, or 527 even lead to MPS. For example, diet is believed to play a role in MPS [9], and studies 528 suggest myofibroblasts are promoted by certain diets and by pesticides/herbicides 529 [64-67]. Similarly, the molecule CCN2/CTGF is suggested to play a role in 530 development of pain due to overuse [68], and CCN2/CTGF is shown to be important 531

in myofibroblast α -SMA synthesis [69]. Applying this sort of logic, we may find more	532
factors linking myofibroblasts to myofascial pain [70-73]	533

It is unclear where the tipping point between a status quo of movement-sedentarism	534
and a deranged myofibroblast activity is. It is likely multifactorial, but lifestyle seems	535
to be a major factor. A mechanical stimulus causes differentiation to myofibroblast	536
[51,74], some studies suggest a threshold of ~20-24 kPa [75]. Therefore, mechanical	537
forces might be one of other possible factors contributing to MPS and myofibroblast	538
induction. For example: sedentarism and muscle overuse [3,9,76-78], infection or	539
inflammation [4,7], and trauma/fracture or immobilizing a casted limb	540
[4,9,74,79,80]. Since MPS is so prevalent, also common overlooked factors in a	541
lifestyle that is not evolution-oriented may be suspected, e.g., medications that are	542
shown to both induce myofibroblasts and increase risk of myofascial pain [72,73].	543

Symptomatologic considerations

TrPs and myofascial pain, particularly when severe, can cause various symptoms that 545 are not limited to the fascial-muscular-skeletal system. It is suggested that the 546 sympathetic nervous system (SNS) causes TrPs [4]. Reciprocally, pain and TrPs can 547 activate the SNS [2,4]. This activation may actually be due to coactivation of larger 548 diameter mechano-sensitive afferents rather than nociceptive afferents [81,82]. If 549 the SNS is activated by paraspinal mechanical stimuli, then maybe it can be activated 550 by muscular tension alone. If so, this may serve as a slippery slope for further TrPs, 551 active loci and MPS. Moreover, it seems that when MPS is severe, a widespread 552 pathology may manifest like a fasciomuscular armor under the skin (i.e., "fascial 553

armoring"). For example, immunohistochemical examination of sampled fascia from	554
low back pain patients demonstrates a myofibroblast density comparable to that	555
found in "frozen shoulders" [14]. Activating many active loci simultaneously, by	556
nature, might act to sympathetically "shield" an organism from acute threats at the	557
expense of a fascial change. If tension is not released afterwards, fascia will be	558
remodeled in that state and symptoms (e.g., muscular tension) will become chronic.	559
Only, this muscular tension will not be muscular in its essence. This suggests that an	560
acute sympathetic activity can have lasting effects on the organism's fascia if not	561
treated early after the acute event.	562

People with MPS fail to relax muscles due to a mechanical reason. Myofibroblasts 563 can synthesize α -SMA fibers, which would transform fascia into a pseudo-muscular 564 contractile tissue. It is not necessarily innervated and can remain contracted for 565 years [51,83]. Since this tension is not innervated by voluntary control nor by 566 motoneurons, and despite involvement of the SNS, seeing these patients as people 567 who just "need to relax" as first line management is counterproductive. Failure to 568 address the mechanical aspect of myofascial pain is expected to lead to a 569 detrimental cycle of pain and over medicating (a cycle seen in studies addressing 570 ineffective treatments) [11,84-86]. Also, if the pain in "non-specific low back pain" 571 arises due to a fascial pathology, then calling it "non-specific" could be misleading. 572 Finally, sedentary behavior and active lifestyle are widely emphasized in public 573 health. However, much focus is dedicated to cardiovascular and metabolic aspects. 574 This review sheds light on the link between lifestyle and pain and suffering. It is 575 worth noting that the most common recommended treatment of MPS found in this 576

literature review is mechanical, including needle insertion, movement (passive or	577
active, breathwork and vibration), and massage/manipulative therapy. It helps treat	578
MPS or reduce fascial related pain [2,3,4,9,11,43,54-57].	579

Therapeutic considerations

580

Needling was found as a recurrent modality in literature. Needle treatment of TrPs581increases pressure pain threshold [49]. Three elements might explain how needling582can help treat MPS; These are (i) tensegrity mindset (ii) trigger points and satellites583(iii) myofibroblast generated tension and stress shielding.584

Since needle insertion itself seems to relieve pain [87], this may indicate needling 585 creates a focus for a mechanical tearing action on the fascia. Meaning, the tension 586 and shear stress inside fascia would pull on the weak point of fine needle insertion 587 over time, until the sum force vectors, or horizontal components, at that point is 588 eliminated or needle is removed. Cutting off tension and fascial fibers is expected to 589 cause cells to rapidly contract, and subsequently lose their stress fibres and adhesion 590 complexes [51]. If proto/myo/fibroblasts are present, as a node or a line (e.g., similar 591 to the band described in pp. 23 Travel, Simons & Simons [9]), tearing fascia would 592 affect the tensegrity structure. Mechanical stimuli can induce myofibroblasts stretch 593 activated calcium channels, and calcium is coupled to contraction in these cells 594 [60,61]. After calcium influx, MLCK activity might lead to increased contractile forces 595 and tension acutely, if they do not lose their stress fibres and adhesion complexes. If 596 needles tear the fibers, tension will decrease. Studies observe increase or decrease 597 in contractility and stiffness, and witness "needle grasp" when inserted [88-91]. 598 Myo/fibroblasts create tension in the attached matrix, and upon release of tension 599 cells undergo contraction leading to a rapid contraction of the collagen matrix [51]. 600 So, it may be that any "damage" by the needle actually allows for cutting off tensions 601 between tense nodes in the network of (myofibroblasts) TrPs and satellites, 602 mechanically inducing changes [88,91], and allowing for the returning of fascia to its 603 place. If inserted deep enough, it might also free edematous fluid, HA, or other 604 factors trapped within the layers (e.g., serotonin) [12,92,93]. This would gently 605 change the dynamics of the structure and the entropy (hidden tension) of the 606 system. Upon complete freeing of tension cells undergo apoptosis with reduction of 607 α-SMA [94]. Studies indicate needling lowers myofascial stiffness as measured by 608 shear wave elastography [95-97], suggesting a potential for a mechanical "re-609 alignment" of the fasciomusculoskeletal system and actual tensional release. 610

The more stress-shielding is present at the locus of insertion, the longer it should 611 take for relief to happen. Stretch lesions along sensory nerves should be relieved 612 too. This treatment acts like breaking the connections in a geodesic dome of the 613 tensegrity model and then allowing for new healthier connections to form by natural 614 remodeling. (The following video observations may help grasp this model [98-101]) 615 Eliminating one node is not enough in this framework, on the contrary: if done 616 improperly, it can only add tensions to other nodes in the structure and exacerbate 617 the general pathology. Starting the relaxation process away from the focus of pain 618 makes sense in this framework. It slowly and progressively begins to relax the 619 primary, secondary, tertiary etc. nodes in the satellite network, approaching the 620 highest area of unshielded tension later and collapsing the tension in a concentric 621 way. According to the biotensegrity model, the peripheries carry tension affecting 622 the focus and are equally important. Li et al. [102] state that currently available 623 needle delivery systems deform and move soft tissue and organs. This may suggest 624 that inserting a needle causes windup of connective tissue and modulation of the 625 fascial network based on internal forces. Since fascia is made not only of proteins but 626 is also composed of cells, the tensegrity dynamics will not be purely dictated by 627 mechano-physics. "Tensegrity" is an oversimplification for this model. Alignment of 628 the system should be done properly. The question is: What is properly? What is 629 proper needling? Where, in which order, depth and time, is best for which 630 symptom? Studies suggest needling affects facia at the point of insertion and at a 631 distance [91,103-105]. How fast should the fascia be released? Indeed, it would be 632 beneficial if we could monitor the mechanical state of fascia by palpation. By 633 releasing the tension properly, the tissues can return to their healthy alignment 634 without other areas exerting pulling forces. Following the "damage" of needling, the 635 fascia will regenerate via myo/fibroblasts matching the bio-mechanical state. 636 Evidence suggests that fascia regenerates within approximately 3-24 months after 637 fasciectomy/fasciotomy [106,107]. It is unlikely that tearing the fascia (if done 638 properly) will seriously compromise physiology as this would have manifested as a 639 complication after every invasive surgical operation. New extracellular fiber 640 deposition will be based on optimized structural conformation [22]. Some may say 641 inserting several needles subcutaneously sounds like a surgical intervention of the 642 fascia. A gross illustration of this framework can be found in S1 Fig 1A-D in the 643 supplementary material (S1 Fig 1A-D). 644

Examples in support of the suggested mechanism may have transpired in several	646
studies. Three findings are briefly presented as follows. A study of 37 patients who	647
were all diagnosed with plantar fasciitis and all had been treated with corticosteroid	648
injection into the calcaneal origin of the fascia [108]. All had a presumptive diagnosis	649
of plantar fascia rupture. 30% described a sudden tearing in the heel, while the rest	650
had a gradual change in symptoms. Most of the patients had relief of the original	651
heel pain, but it had been replaced by a variety of new problems, including dorsal	652
and lateral midfoot pain, swelling, foot weakness, metatarsal pain, and even	653
metatarsal fracture [108]. Symptoms tended to localize to the dorsal side of the foot	654
[108]. In all 37 patients there was a palpable diminution and footprints showing	655
flattening of involved arch, and MRI showed fascial attenuation [108]. The study's	656
author concluded that plantar fascia rupture had occurred. The majority had	657
resolution of the new symptoms within 12 months. In the rest, symptoms remained	658
[108].	659

A second study encountered the same enigma: 68% of patients with plantar fasciitis had a sudden rupture associated with a corticosteroid injection. Although it relieved the original pain, these patients developed new problems: arch or midfoot strain, lateral plantar nerve dysfunction, hammertoe deformity, and stress fracture [47]. 663

These examples might suggest there is room for a more sophisticated strategy in664treating the fascia instead of simply aiming and firing at the pain. Maybe this should665be interpreted not as an adverse event, but as a testimony that the treatment666

modality undermines the tensegrity system. Conceivably, behind this is a release of 667 fascia in an area of very high tension, causing too drastic of a change in the 668 tensegrity structure, instead of approaching this tension gradually. A sudden change 669 might shift the forces to other areas and exacerbate the imbalances [109], perhaps 670 sufficient to cause bone fracture. The mechanism by which the complications 671 resolved over a period of 12 months is expected to happen via ECM remodeling and 672 stress shielding the foot from tensegrity tension. Moreover, it was found that steroid 673 injection decreases fibromatosis, fibrosis, and myofibroblasts in adhesive capsulitis 674 [110], suggesting injection to the plantar fascia has potential to affect myofibroblast 675 generated tensegrity forces. 676

The third finding that might be interpreted under these principles, is the phenomena 677 of: "following a tooth extraction, a pain behind the ear and on the side of the face in 678 the day or so prior to facial weakness often constitute the earliest symptom of Bell's 679 palsy" (Kasper et al. 2018, p222-223) [3]. Guided with a tensegrity mindset, this may 680 suggest a relationship in the "geodesic" face: a pain develops behind the ear possibly 681 as a "reciprocal" point for tension in the jaw, which happens to be near the 682 emergence of the facial and trigeminal nerves from the skull. This is a reasonably 683 susceptible area with curved bones to serve as a focus for tension. Of course, it does 684 not necessarily mean that releasing tension from around the mastoid process is the 685 key to preventing the complication. Tensegrity domes are made of many nodes, and 686 "to change a node is to change the dome". Therefore, pain behind the ear is first and 687 foremost an indication of extreme tension, and only then pain. A tension like every 688 other myofascial tension, e.g., plantar fasciitis. However, this pain is located at a 689 dermatome of a cervical root, which is a distant nerve and is unlikely to be directly 690 injured by tooth extraction. A sudden intervention in the face probably emulates the 691 same action as a calcaneal injection. If high tension is present (for example a 692 temporomandibular tension seen in up to 25% of the population [2]) it will have the 693 same potential energy to damage structures in the face, as implied by a metatarsal 694 fracture. In the face it seems to cause a palsy of a nerve, like the foot in plantar 695 fasciitis, as discussed above. The degree of damage is modulated by the degree of 696 the hidden energy [109]. If correct, this means two possibilities present themselves: 697 either this palsy is not a Bell's palsy, or a Bell's palsy is not idiopathic. In any case, it 698 highlights the instrumental importance of gentle and progressive release of fascia in 699 a proper way. Therefore, "not feeling much" may be a good thing when needling 700 fascia. In fact, we can predict sometimes pain might worsen at first, reflecting a non-701 ideal modulation of force vectors. Less pain during treatment can also lead to more 702 compliance from patients. Research has yet to establish empirically if fascial release 703 prior to (or even after) tooth extraction, can affect the rates of this palsy. 704 Modulation of tensegrity vectors may be a factor in reported cases where (i) 705 treatment of Dupuytren's disease leads to Boutonniere deformity [111], (ii) carpal 706 tunnel release increases risk of trigger finger [112,113], (iii) treating the elbow for 707 tennis elbow requires a supposedly unrelated shoulder arthroscopic decompression 708 [114], (iv) simultaneous bilateral digital flexor rupture occur [115], or (v) spine 709 surgery leads to compartment syndrome of the foot [116]. It seems plausible since 710 fascia is a system. Fascia appears to connect the distant hip and ankle joints, not only 711 anatomically, but also mechanically, supporting the concept of myofascial 712 connectivity [18]. Most skeletal muscles of the human body are directly linked by 713

connective tissue [40]. Acute bout of stretching of the lower limbs increases the	714
maximal range of motion of the distant upper limbs and vice versa [18]. Fascia is	715
continuous from the trunk across the upper and lower limbs [18], and because of the	716
direct morphologic relation of the hamstrings and low back region, relieving tension	717
of the posterior thigh muscles could be a conceivable approach to alleviate back pain	718
[117].	719

Epilogue to part 1

In conclusion, under the framework of tensegrity, it might be logical to first needle	721
the dorsal foot and foreleg in plantar fasciitis, for example, assuming connective	722
tissue is pulling the plantar fascia (i.e., weak link in the tensegrity structure) and	723
causing pain. Therefore, aiming to primarily treat the underlying tensional	724
abnormality of fascia, and through this improving the symptoms of pain. Actually, it	725
seems a TrP with severe localized pain may not be the source of pathological tension	726
because myofibroblasts stress shield their area from tension: fascia is a living tissue	727
that pulls rather than pushes. Treating only the painful point is expected to lead to	728
an endless chase of migrating pain whose location is determined by dynamics of the	729
tensegrity structure. Tension is likely to focus more near hard and angled surfaces	730
that have sharp force-gradients; initially generating active TrPs (if a nerve is there to	731
experience this) that have yet to sufficiently stress-shield themselves with a fiber	732
web. By this rationale we may expect points to be concentrated more near areas of	733
fascia adjacent to solid or bony edges (spine, face, pelvis, chest, shoulders, knees,	734
periosteum, perineurium, etc.). Tension will be present [118,119], but pain depends	735
on the degree of sensory nerve involvement [120,121]. This understanding may put	736

MPS and fibromyalgia on the spectrum of a common mechanism, whereby a more 737 widespread pain and tenderness appears, at least in part, perhaps due to 738 "archipelagos" of stress-shielded points and taut-bands that generate and mask 739 extreme tension. If true, a severe manifestation of this might be described by some 740 as equivalent to a sort of mild to moderate chronic compartment-like syndrome of 741 the whole body. Which may explain why "MPS" can "develop" into "fibromyalgia", at 742 least in a subset of patients. A biological representation for this might be: 743 myofibroblast begin to affect the body in a generalized MPS cascade and therefore 744 transform the fascia into a fibrotic contractile tissue (perhaps with a reciprocal 745 central sensitization). Recalling that dysfunction of the posterior layer of 746 thoracolumbar fascia has been reported as a chronic compartment syndrome of the 747 paraspinal muscles [26]. 748

These conclusions may be part of the explanation to why these "functional" pain 749 syndromes are epidemiologically so closely associated with one another (as observed 750 in population studies [122,123]), why significant overlap is seen between various 751 associated pain syndromes (reflecting anatomical overlap of involved fascia), why 752 fibromyalgia tender points seem to distribute more near bone protrusions, why a 753 study finds fibromyalgia symptoms and neuropathic pain correlate with tender point 754 count (Amris et al. [121]), why chronic fatigue is a common manifestation, why 755 routine inflammatory markers can be mostly silent, why imaging modalities fail to 756 illustrate a clear familiar abnormality, why mechanically puncturing their fascia 757 recurs in literature as an empirical treatment option for them, and why fibromyalgia 758 manifests with extremely high intramuscular pressures and can be accidentally 759

resolved by invasive surgery (as will be discussed below). It can also help explain	760
histological and clinical evidence indicating a picture of widespread non-severe	761
chronic ischemia. Studies of fibromyalgia observe various organic abnormalities	762
[124-141] which might support this framework. To the best of the author's	763
knowledge, no study is found to describe the manifestation of MPS when global and	764
widespread.	765
Part 2 – Considering "fibromyalgia" as an entity involving	766
mechanical compression	767
Part 1 of the discussion focused on the theoretical model of "fascial armoring"	768
formed based on the empirical evidence found in the systematic search and scoping	769
review. A myofibroblast network generating tensegrity tension (i.e., "fascial	770
armoring"), when widespread, predicts further abnormalities. In this section	771
empirical evidence is presented in support of fibromyalgia as a global chronic	772
compartment-like syndrome driven by myofibroblast-generated-tensegrity-tension.	773
Findings from various fields including cardiovascular, metabolic, musculoskeletal,	774
integumentary, and surgical, are discussed.	775
Cardiovascular findings	776

Studies show tissue stiffness is significantly increased around TrPs [142], and blood	777
vessels near TrPs have retrograde flow in diastole, indicating a highly resistive	778
vascular bed [138]. A global compression might explain a few findings that will be	779
mentioned here briefly. Various abnormalities in fibromyalgia suggest an underlying	780

widespread organic pathology that impairs perfusion throughout the vascular 781 system. Capillary microscopy studies of fibromyalgia show fewer capillaries in the 782 nail fold and significantly more capillary dilatations and irregular formations than the 783 healthy controls [128]. The peripheral blood flow in fibromyalgia patients was much 784 less than in healthy controls [128]. This suggests that functional disturbances are 785 present in fibromyalgia patients [128]. While one study shows a decrease in 786 transcapillary permeability in fibromyalgia patients [129], few studies find 787 abnormalities in the arterial system as well [143,144]. However, studies of peripheral 788 arteries in fibromyalgia are scarce. Findings from a study of biopsies of fibromyalgia 789 cases without obvious muscle trauma indicate definite but nonspecific muscle 790 changes which are suspected to be secondary to chronic muscle spasm and ischemia 791 of unknown etiology [124]. 792

Katz et al. [145] found intramuscular pressure measures substantially higher in the 793 trapezius of patients with fibromyalgia with a mean value of 33.48 ± 5.90 mmHg. 794 Only 2 of 108 patients had muscle pressure of less than 23 mmHg. The mean 795 pressure in rheumatic disease controls was 12.23 ± 3.75 mmHg. The burden of the 796 pressure abnormality may help explain the diffuse muscle pain of fibromyalgia and 797 may be an intrinsic feature of fibromyalgia [145]. Therefore, fibromyalgia as a 798 disorder of exclusively central pain processing should be revisited [145]. Substantially 799 higher muscle pressure aligns with an analogy of "a sort of mild to moderate global 800 chronic compartment-like syndrome" which either compresses the muscles or 801 distends the muscle spindle, or both, and may explain why anxiolytics and muscle 802 relaxants do not work very effectively with this entity. At the end of arterioles, mean 803

pressure is approximately 30 mmHg, and then decreases further in capillaries and 804 venules [146]. Chronic intramuscular pressure of 33.48 ± 5.90 mmHg might reflect 805 some abnormality that ultimately affects starling forces significantly, as well as the 806 pressure gradient along arterioles, capillaries, and venules. The most widely used 807 diagnostic criteria for diagnosing chronic exertional compartment syndrome (CECS) 808 are those proposed by Pedowitz et al. for CECS of the legs [2] and include at least 809 one of the following intramuscular compartment pressure measurements: (i) pre-810 exercise pressure ≥15 mmHg (ii) 1-minute post-exercise pressure of ≥30 mmHg, or 811 (iii) 5-minute post-exercise pressure \geq 20 mmHg. Therapeutically, reduction of muscle 812 pressure may change the clinical picture substantially in fibromyalgia [145]. If 813 myofibroblasts are indeed the generator of tension, then abnormal muscle pressure 814 should be reduced by releasing the fascia, according to the "fascial armoring" model, 815 since it is currently not a psychologically generated contraction. If fascial 816 compression impedes starling forces and causes low-grade ischemia, it might be 817 biologically expected that the body will secrete factors that increase total number of 818 capillaries and venules, and factors that vasodilate veins (e.g., nitric oxide). Such a 819 biological response would lower total venule resistance via parallel resistance and re-820 establish a pressure gradient in the vessels. 821

Metabolism related findings

A microdialysis study examined interstitial concentrations of metabolic substances in
fibromyalgia [147]. Concentrations of lactate, glutamate, and pyruvate were
significantly higher in patients compared to controls [147]. A study by McIver et al.
[148] found that during resting conditions, the ethanol outflow/inflow ratio

36

(inversely related to blood flow) increases in fibromyalgia patients over time 827 compared to healthy controls (p-value <0.05). Fibromyalgia also exhibited a reduced 828 nutritive blood flow response to aerobic exercise (p-value <0.05). There was an 829 increase in dialysate lactate in response to acetylcholine in fibromyalgia [148]. A 830 recent genomic study found the presence of a C allele at the single nucleotide 831 polymorphism of mitochondria m.2352T>C was significantly associated with 832 increased risk for fibromyalgia (OR=4.6) [149]. It was linked to decreased 833 mitochondrial membrane potential under conditions where oxidative 834 phosphorylation is required. The study suggested that cellular energy metabolism 835 contributes to fibromyalgia and possibly other chronic pain conditions, indicating a 836 role of oxidative phosphorylation in pathophysiology of chronic pain [149]. A clinical 837 trial found hyperbaric oxygen therapy can lead to significant amelioration of all 838 fibromyalgia symptoms, with significant improvement in quality of life [150]. 839 Fibromyalgia has a hypomethylation DNA pattern, which is enriched in genes 840 implicated in stress response and DNA repair/free radical clearance [151]. From the 841 discussion above, the link between fibromyalgia and oxidative stress, increased 842 intramuscular pressure (that is higher than all three criteria for CECS by Pedowitz et 843 al.), and reduced blood flow measurements, is self-explanatory. 844

Muscular stiffness and the spine

845

Wachter et al. [131] quantified muscle damping, which reflects muscle tension, in	846
fibromyalgia patients, and found all patients had increased muscle damping, some in	847
both legs [131]. Mean values were more than twice that of controls and maximum	848
values more than three-fold higher [131]. The increased DNA fragmentation and	849

ultrastructural changes in muscles of fibromyalgia patients suggests it may be a 850 result of chronic contraction [125]. Wachter et al. stated increased muscle tension is 851 not mediated by extrafusal muscle fibers and that the alpha and gamma 852 motoneurons are not involved in those contractions [131]. They suggest stiffness or 853 tension may be due to sympathetic activity, however, they state this explanation 854 does not account for why increased damping is seen more often in one leg rather 855 than in both [131]. TrPs appear on ultrasound as focal hypoechoic regions and with 856 reduced vibration amplitude on vibration sono-elastography, indicating increased 857 tissue stiffness [138]. A non-symmetrical tensegrity abnormality could account for 858 why tension can be mediated not by alpha or gamma motoneurons or extrafusal 859 fibers, and at the same time unilateral. 860

Other body structures are also involved, among them are nerves. Perez-Ruiz et al. 861 [152] found high rates of carpal tunnel syndrome in fibromyalgia. Why is a nerve 862 compression syndrome found to be more common in fibromyalgia, if it does not 863 reflect some compressive abnormality? (Fascio)musculoskeletal symptoms are 864 reported often by patients: stiffness is one of the most common complaints 865 [153,154]. A survey of 2,596 fibromyalgia patients finds patients ranked the intensity 866 of their pain lower than the intensity of morning stiffness [153]. Considering central 867 sensitization as a sole mechanism raises several questions: why is morning stiffness 868 so commonly reported among fibromyalgia patients, and even ranked higher than 869 pain? Is it simply because of sensitivity, stress, and physical deconditioning? Does 870 central sensitization occur only in certain sensory tracts like pressure, 871 proprioception, and pain? There seem to be little to no reports of extreme 872

sensations of vibration, for example. Are the locations of central sensitization 873 random, or is there some sort of pattern? Painful points seem to be distributed in 874 the same topography among different individuals. However, if the localization of 875 pain and hyperalgesia is not random, why can sensitivity appear in almost any area in 876 the body? Why are these areas not correlated with the homunculus? How does pain 877 migrate? And what is special about the occiput, second costochondral junctions, 878 knee pad, and two centimeters distal to the lateral epicondyle - points used to 879 diagnose fibromyalgia (as described by Kasper et al. 2018; pp. 2637 [3])? 880

Sugawara et al. [155] suggest mechanical compression of the dorsal root ganglion 881 (DRG) by a mechanical stimulus lowers the threshold needed to evoke a response 882 and causes action potentials to be fired. Action potentials that may even persist after 883 the removal of the stimulus and high mechanical sensitivity are suggested by this (in 884 vitro) study. More in vivo and in vitro studies suggest the same [156-158]. It was 885 noted that dysfunction of the thoracolumbar fascia has been described as a chronic 886 compartment syndrome of the paraspinal muscles [26]. It is also plausible that 887 pulling would also have a similar effect on the DRG. 888

Wang et al. [159] find a bidirectional association between fibromyalgia and889gastroesophageal reflux disease (GERD). Trying to explain this without a mechanical890peripheral element seems difficult. How do current theories explain this bidirectional891linkage? It is possible GERD carries a strong overlooked psychological component,892but maybe we should give fibromyalgia more mechanical credit. This entity, if it is893what it seems, would probably affect gastroesophageal pressures and relaxations,894and mechanically compress the paraspinal and intervertebral fascia and its contents895

e.g., DRG and the sympathetic chain against a vertebral body. If compression has a	896
similar effect on the sympathetic ganglion/trunk as it does on the DRG, it might add	897
a component of sympathetic abnormalities. Some studies suggest mechanical	898
pressure on the sympathetic trunk due to osteophytes can cause various	899
abnormalities [160]. Studies suggest para-articular fibrosis in the spine can involve	900
neural structures and cause tethering and irritation of nerves [161]. A compressive	901
factor can explain decreased pressure/pain thresholds and explain why they happen	902
to be strongly associated with autonomic abnormalities. It also implies these	903
abnormalities can be illusive and reversible in certain conditions, as will be discussed	904
below. By the same rationale we might expect higher incidence of obstructive rather	905
than central sleep apnea, even after correcting for body mass index.	906

907

908

Complete resolution of fibromyalgia

Several studies point to a peculiar phenomenon: Saber et al. [162] witness high rates 909 of complete resolution of fibromyalgia following laparoscopic Roux-en-Y surgery. By 910 which mechanism does a relentless longstanding central sensitization completely 911 resolve following abdominal surgery? Could this be a result of an overlooked 912 fasciotomy? The authors of that study suggest resolution may be due to weight loss, 913 increased physical activity, and lifestyle changes. However, this idea does not align 914 with findings of Adkisson et al. [163]. They studied the effect of parathyroidectomy 915 on fibromyalgia among 76 patients diagnosed by specialist or primary care physician. 916 Findings show that 21 percent of fibromyalgia patients discontinue all fibromyalgia 917 drug medications after parathyroidectomy, and 89 percent have relief of one or 918 more fibromyalgia symptoms postoperatively. These changes occurring as early as 919 one week after neck surgery [163]. Yet, 11% of patients had no improvement in 920 symptoms at all. The authors explain the complete resolution in 21 percent by 921 suggesting a misdiagnosis, i.e., these patients actually did not have fibromyalgia in 922 the first place. However, if this was true, we might expect these individuals to cluster 923 more towards the group not diagnosed by a specialist. Surprisingly, 23 out of 76 924 were diagnosed by a rheumatologist, out of them 96% had symptom improvement, 925 and 70% were able to discontinue all medications after parathyroidectomy [163]. 926 Uncannily, 88% of those who did not experience any improvement in fibromyalgia 927 symptoms were diagnosed by a primary care physician (p-value <0.05) [163]. The 928 statistics suggest some non-random phenomenon caused a bimodal-like distribution. 929 In light of this study, it might be hypothesized fibromyalgia is related to a parathyroid 930 cause. However, a similar enigma is found with irritable bowel syndrome (IBS), a 931 functional disorder with no definite organic findings and closely associated (or 932 overlaps) with fibromyalgia. Some suggest fibromyalgia and IBS are actually the same 933 entity [154]. IBS is shown to be relieved below Rome II criteria in 80 percent of 934 patients after laparoscopic fundoplication for GERD [164]. Looking for a common 935 denominator one can hypothesize that relief is achieved due to intense pain 936 exposure and general anesthesia that resets the brain circuits, somewhat similar to 937 electroconvulsive therapy combining gate control. But it does not align with findings 938 that tonsillectomy increases risk of IBS [165], that umbilical hernia repair surgery 939 seems to predispose to IBS [166], and that patients with fibromyalgia have a higher 940 incidence of suffering IBS after appendectomies [167]. Laparoscopic 941

cholecystectomy has been shown to deeply influence fibromyalgia symptoms [132].	942
Moreover, hysterectomy, with or without oophorectomy, seems to worsen	943
fibromyalgia [168].	944

Oddly, why does the location and type of surgery seem to regulate the positive or 945 negative impact on these somatic conditions? Indeed, it was suggested in this 946 literature review that MPS/TrPs can cause chronic changes in bowel habits. Should 947 we suspect that in these associated disorders, the connecting motif is connective 948 tissue? This may imply that the location of the surgery has different effects on fascia, 949 even remotely, due to- and regulated by- tensegrity forces. The lateral raphe and 950 common tendon of the transversus abdominis are suggested to form connections 951 between, and transfer tensions between the abdomen and the paraspinal muscles 952 and sheath [14,169]. This can explain how laparoscopy might release a compression 953 on the DRG. Interestingly, this would mean the clustering of patients experiencing 954 benefit post-parathyroidectomy towards the group diagnosed by a rheumatologist, 955 and those not experiencing benefit towards the group diagnosed by primary care 956 physician, isn't due to misdiagnosis but precisely because rheumatologist really 957 identify those with fibromyalgia statistically significantly more accurately. 958

Now, what is missing from current theories about fibromyalgia? On one hand, 21st959century's best physicians and psychotherapists are not enough for fibromyalgia to960relinquish, while on the other hand, parathyroidectomy is. What do the surgeons do,961even without special intent, that we haven't tried? How to see that which is being962overlooked? It appears this entity, or the tissue that is the veil, is responsive to963surgery more than to opioids and anti-epileptics.964

According to central sensitization, is a parathyroidectomy able to fix the pain matrix?	965
And can hysterectomy impair it? What about below knee amputation?	966
	967
Multiple theories for one medical puzzle?	968
More studies indicate fibromyalgia may include also easy bruising [154,170], hair-	969
loss [154], reduced skin innervation [171], tingling, creeping or crawling sensations	970
[172], reduced fecundity or infertility [173,174], urinary urgency [164], changes in	971
bowel habits [3], decreased optic disk perfusion [127], dry eyes [172], dry mouth	972
[154], hearing difficulties [154], functional voice disorders (including muscle tension	973
dysphonia) [175], wheezing [154], seizures [154], impaired cognition [154], and	974
Raynaud's phenomenon [154,176].	975
There are several theories trying to explain fibromyalgia including: central	976
sensitization and neuroplastic pain circuits, autonomic dysfunction, neuroendocrine	977
and stress, social and psychological (including personality and cognition), and several	978
more theories. Can they be the explanation of all these manifestations? Do	979
psychosocial theories or somatization explain these? No single theory seems to fully	980
account for fibromyalgia. For example (some of the questions below were already	981
answered, others will be answered later while others remain to be answered by	982
further research):	983
	984
If it is sympathetic-parasympathetic dysregulation: why is muscle damping found to	985

be increased unilaterally more often than bilaterally, why is postural hypotension not 986

in the diagnostic criteria, and why is it strongly associated with sicca but lacks reports	987
of chronic sialorrhea? Why urinary urgency but not retention, and how to explain	988
empirical findings of autoantibodies?	989

If it is inflammatory or autoimmune: where are the standard inflammatory markers, 990 why is it so closely associated with irritable bowel syndrome of all conditions, and 991 why does it respond to tricyclic antidepressants? What do the occiput, scapula, and 992 knee possess, for example, that is absent from all interphalangeal joints and parietal 993 bones? Are bone ridges a necessary-and-not-sufficient condition for tender points? 994 What underlies the close association with acquired immunodeficiency syndrome 995 [177], and why does a study find placebo has a better outcome than steroids as a 996 treatment for fibromyalgia [178]? The reason pharmacological treatments require 997 prudence is because systemic drugs would distribute in an imbalanced tensegrity 998 structure equally throughout, which can be an inherent disadvantage in this case. 999 According to this framework, systemic steroids are expected to indiscriminately 1000 modulate the tensegrity structure, supposedly arbitrarily leading to an exacerbation 1001 or relief, depending on the structure. More specifically, the success of some 1002 pharmacological agents that target myofibroblasts will depend on the balance 1003 between pro-survival signals (e.g., mechano-transducing signals) and pro-apoptotic 1004 signals. 1005

A low-grade neuroinflammation might occur sub-clinically in fibromyalgia, but what1006drives it? The full cytokine profile of MPS and fibroblasts is not covered in this1007review, however, some studies suggest chronic myofascial pain is associated with, or1008causes, elevation of cytokines and inflammatory mediators, fibroblast growth1009

factors, serum reactive oxygen species, and neuroendocrine signaling [19,179-181]. 1010 However, not all studies find the same [181]. Fibroblast from fibromyalgia patients 1011 show a differential expression in proteins involved in the turnover of the ECM and 1012 oxidative metabolism that could explain the inflammatory status of these patients 1013 [182]. Biopsy studies of fibromyalgia patients find that, in peripheral fibroblasts, TGF-1014 β gene expression is significantly higher in fibromyalgia patients compared to 1015 controls [130]. If one accepts only alternative theories: why and how is TGF- β 1016 expression two to three-fold higher in peripheral fibroblasts of fibromyalgia patients 1017 (p-value < 0.001)? 1018

Is there any evolutionary sense for support of fibromyalgia as autoimmune? Cancer 1019 is rigid and is affected by connective tissue rigidity [16]. Suppose tissue stiffness 1020 regulated antigen presentation, somehow, as a way of the body to defend itself from 1021 pathological rigidity, what would be the implications for fibromyalgia based on 1022 tensegrity dynamics? If this is part of the explanation for autoantibodies in 1023 fibromyalgia, there is at least some evolutionary background for the autoimmunity 1024 part of it. Substrate stiffness influences phenotype and function of human antigen 1025 presenting dendritic cells and affects B-cells, macrophages, and other immune cells 1026 [183]. Myofibroblast can engulf their surroundings [184], and in certain conditions 1027 are able to present antigens via MHC class II to T lymphocytes [185-188]. A study 1028 from 1990 of 20 patients with fibromyalgia suggests the majority have anti smooth 1029 muscle antibodies [189]. Such a defensive mechanism would be successful in 1030 selection throughout generations only if it allowed for some autoimmunity, in order 1031 to target the suspicious cells. Compromising self-recognition was probably beneficial 1032 in the long term, so long as rigidity in soft tissue was a rare encounter. Therefore, if 1033

rituximab does not do the whole job, maybe some clone population keeps	1034
presenting antigens.	1035

Central sensitization is the most accepted explanation: however, there are several	1036
questions that this theory does not seem to fully explain and some empirical findings	1037
that the theory did not seem to predict. How is fibromyalgia mechanistically	1038
different from "tension-type-headache", "nonspecific-low-back-pain", "nonspecific-	1039
neck-pain", and "MPS"? What is the pathophysiological difference between "primary	1040
fibromyalgia", "secondary fibromyalgia", "secondary-concomitant fibromyalgia", and	1041
"juvenile fibromyalgia"? Is fibromyalgia the same entity or different from "chronic	1042
widespread pain"? In terms of "fascial armoring", there is no need to multiply	1043
entities, it remains myofibroblast-generated-tensegrity-tension, though, each	1044
tensegrity is different, anatomically. The fascial armoring model, intrinsically, has	1045
variations. Why does "chronic fatigue syndrome" (CFS) manifest with pain in tender	1046
points? Since fatigue is the predominant symptom rather than pain, it might indicate	1047
that deeper layers of connective tissue are more involved. How does the	1048
pathophysiology of fibromyalgia overlap with that of headaches and CFS, if searching	1049
for it only within the cranium? The boundary of an entity goes as far as the boundary	1050
of the cellular process that is behind it.	1051

Can central sensitization be resolved? If so, what is the modality and mechanism of1052action of the cure? In the long term, do opioids worsen the pathology? According to1053central sensitization, why prefer milnacipran, duloxetine, and pregabalin, but not1054venlafaxine, tramadol, or gabapentin? Is diet important? A pharmacological or1055nutritional agent that induces myofibroblasts is expected to be either ineffective or1056

harmful in the long term in fibromyalgia. From the standpoint of "fascial armoring",	1057
an antidepressant that induces myofibroblasts might have some positive side effects,	1058
e.g., improved mood.	1059

Will surgery exacerbate central sensitization, relieve it, or neither? What are tender 1060 spots and how does the topography remain conserved between individuals? These 1061 spots seem fundamental because fibromyalgia can be diagnosed based on them. 1062 Why two centimeters distal to the lateral epicondyle and not midway between the 1063 elbow and wrist? Will this topography change if there are congenital deformities in 1064 the brain/spine? What if a deformity in the elbow? Which is the constant that allows 1065 for the preservation of this point distribution? How do we know there is no 1066 peripheral organic cause for the pain if we haven't looked at tensegrity? Is "post 1067 COVID-19 syndrome" similar, different, or is it the same? If the same, according to 1068 this model, COVID-19 should induce myofibroblasts. Which comorbidities interact 1069 best, and which are the worst for fibromyalgia, based on central sensitization, 1070 theoretically? One might offer multiple sclerosis, tetraplegia, 1071 adrenomyeloneuropathy, Cushing's disease, or congenital adrenal hyperplasia. So 1072 then, why is Ehlers Danlos/hypermobility syndrome so closely related to 1073 fibromyalgia? 1074

The pathogenesis of peripheral and/or central nervous system changes in chronic1075widespread pain (CWP) is unclear, though, peripheral soft tissue changes are1076implicated [190]. Some evidence from interventions that attenuate tonic peripheral1077nociceptive impulses in patients with CWP syndromes like fibromyalgia suggest that1078overall fibromyalgia pain is dependent on peripheral input [190]. Allodynia and1079

hyperalgesia can be improved or abolished by removal of peripheral impulse input	1080
[190]. Central disinhibition is also hypothesized. However, this mechanism also	1081
depends on tonic impulse input, even if only inadequately inhibited [190]. Thus, a	1082
promising approach to understanding CWP is to determine whether abnormal	1083
activity of receptors in deep tissues is part of the manifestation and maintenance of	1084
this condition [190].	1085

Perhaps the relationship between fibromyalgia and hypermobility syndrome has to 1086 do with changes in ECM properties that induce myofibroblasts, thus initiating a 1087 widespread MPS cascade? Studies of patients with Ehler-Danlos/hypermobility 1088 syndrome find up to 70-100% have CWP and evidence supports a close association 1089 between hypermobility syndrome and fibromyalgia [191,192]. Of all associations 1090 with fibromyalgia, Ehlers-Danlos/hypermobility syndrome is one of the closest, 1091 perhaps even closer than depression. Why? Studies of hypermobility syndrome find 1092 cells express an increased transition to the myofibroblast phenotype [193,194]. A 1093 study suggests changes of collagen microarchitecture regulate myofibroblast 1094 differentiation and fibrosis independent of collagen quantity and bulk stiffness by 1095 locally modulating cellular mechanosignaling [195]. The indistinguishable phenotype 1096 of myofibroblasts identified in hypermobility spectrum disorders resembles an 1097 inflammatory-like condition, which correlates well with the systemic phenotype of 1098 patients [193]. These findings suggest that these multisystemic disorders might be 1099 part of a phenotypic continuum rather than representing distinct clinical entities 1100 [193]. According to this discussion, widespread induction of myofibroblasts suggests 1101 a possibility for generalized peripheral pain caused by generalized tensegrity tension 1102 and compression. Under this framework, the link between fibromyalgia and a variant 1103

of collagen/elastane is somewhat anticipated based on fascial biology. Even at the	1104
usual shear modulus of fascia, in this population joint laxity might allow tethered	1105
nerves to be affected more than normal. The above suggests that finding only a	1106
"normal" range of motion in the joints of a hypermobile individual is abnormal and	1107
pathological not only because it restricts their movement, but because it is a marker	1108
for a diseased fascia.	1109

Psychological and social theories: evidence for the input of	1110
psychological/psychosocial factors and stress in the pathogenesis of fibromyalgia is	1111
suggested in studies [154]. Cognitive behavioral therapy is recommended in cancer	1112
pain, but we obviously do not conclude that cancers are psychosomatic. Adverse	1113
childhood events are associated with increased risk for diabetes mellitus type 2	1114
[196], yet only a rare few define diabetes mellitus as psychosomatic. So, if	1115
fibromyalgia is caused by stress and low mood or due to childhood experiences of	1116
distress, how does it reduce skin innervation and optic disc perfusion, and why	1117
selective serotonin reuptake inhibitors (SSRIs) or anxiolytics are not the first line	1118
treatment? If traumatic memories can maintain the pain of fibromyalgia, do strokes	1119
or Alzheimer's disease relieve it? If abnormalities in cortisol levels can be enough to	1120
lead to such a clinical picture, why aren't they enough to cause even mild	1121
hyperglycemia, neutrophilia, or thrombophilia? No osteoporosis?	1122
Hyperpigmentation? And no salt craving or hyponatremia. If cortisol has a major	1123
role, why is Cushing syndrome not usually portrayed with morning stiffness and pain	1124
in 18 arbitrary points (arbitrary from a neurological point of view) that are all	1125
adjacent to bone protrusions and are also adjacent to strong muscles and fascia	1126
(shoulder and trapezius, gluteus, thigh muscles, iliotibial tract, thoracolumbar fascia,	1127

pectoralis, muscles of mastication etc.)? Is there any outstanding "fibromyalgia-ness" 1128 in either Adisson's or Cushing's disease, or in Pheochromocytoma? Endocrine 1129 entities involving these hormones are not entirely free of emotional distress either. 1130 Psycho-emotional explanations are a double bind for fibromyalgia: if muscle tensions 1131 and contractions are psychologically induced by mental stress, how are they 1132 maintained chronically with such high intramuscular pressures if patients are often 1133 fatigued? On the other hand, if habitual psychological muscle contraction is what 1134 leads to the fatigue, why can't they relax, and how do muscles contract independent 1135 of alpha and gamma motoneurons and extrafusal fibers? Would we not expect a 1136 combination of muscle relaxants and meditation to be more efficacious? What kind 1137 of an entity can be both systemic and unilateral? A sympathetic theory does not 1138 suffice, as stated by Wachter et al. [131]. S1 Fig 1E illustrates a possible solution for a 1139 systemic yet seemingly "unilateral" pathology. 1140

Is depression a causal factor, and if so, why are antidepressants not more effective? 1141 Is there a global abnormality in tryptophan's derivatives? Does physio-emotional 1142 Stress cause fibromyalgia, or does fibromyalgia cause physio-emotional Stress? At 1143 which stage, approximately, does the mechanism of this entity diverge from that of 1144 Stress, and why is it closely associated with Sjögren's syndrome? Why pass over 1145 pancreatitis? And is there a prediction for the interaction with asthma, for example? 1146 The author could not think of an evolutionary rationale in having a self-destructive 1147 infinite positive-feedback of pain in two to six percent of a species, with no 1148 peripheral organic lesion, due to history of emotional trauma, or due to any reason. 1149 These entities were designed throughout evolution, no? Life must go on and we 1150

need to move for life to move on. Cancer uses fetal genes to multiply, cystic fibrosis 1151 is part of variety and selection, allergies are immune cells being overprotective, iron 1152 deficiency can cause pica, and COVID-19 is a big accomplishment for viruses. Why 1153 would the brain amplify pain with no organic lesion? Evolution might be offended; 1154 and treating that malady with exercise is not all intuitive either. The human mind is 1155 most complex but is not most frail. Is connective tissue a non-issue? Why is the focus 1156 specifically on pressure and pain? Does psychology navigate sensitization towards 1157 predetermined sensory tracts, or is there genuine sensory input of pressure arising 1158 from the periphery and causing central neurological adaptations? If the former- why 1159 those tracts? And if the latter- what drives the force that causes pressure in the 1160 periphery? The character structure? The tensegrity structure? Myofascial tissue? 1161 Does the reader know of any entity that can sustain generalized mechanical pressure 1162 with no obvious cause? For the sake of a scientific discussion, let us include any 1163 hypothetical entity as well. 1164

If fibromyalgia carries such a strong psychological component, why did a study find 1165 an odds ratio of 2.53 and effect size of only 0.51 for anxiety disorder in fibromyalgia, 1166 while for fasciitis and muscle spasms it found odds ratios of 5.27 and 6.05, with an 1167 effect size of 0.92 and 0.99 (p-value < 0.0001), respectively [197]? Does fibromyalgia 1168 as a "functional somatic syndrome" deserve some re-evaluation, and are we to 1169 dismiss these statistics as not being empirical clues? Why did a study find fasciitis to 1170 be one of the three most associated conditions with fibromyalgia, while anxiety was 1171 not? Is there, or is there not, a problem with the fascia of fibromyalgia patients? An 1172 odds ratio and effect size approximately double that of anxiety disorder, but if the 1173 answer is yes- what is the problem? To what degree does psychology regulate 1174

fibromyalgia? How to interpret the topography, then? Is there anything we can learn 1175 from the pattern? Are the points entirely psychological, are they created in the 1176 central nervous system, or does the theory require a peripheral mechanism to fill 1177 this gap? Which is largest – the variance of fibromyalgia's prevalence between 1178 different societies, between the big five personality traits, or the variance of 1179 prevalence between collagen polymorphisms? Does "post-traumatic anxiety 1180 syndrome" predispose to fibromyalgia, or are they overlapping conditions? What 1181 sets the boundary of this entity? 'Psychology' can be infinite. Why not pica too? Is 1182 there any determinism? Does fibromyalgia originate from the head or from the 1183 body? And if it comes down to the mind- how does the collagen polymorphism make 1184 one so much more sensitive to psychological problems? What can we learn about a 1185 fascial pathology if it affects the mind, in theory? By which mechanism does a 1186 psycho-neuroplastic pain cause so much muscle spasms but no abnormal Babinski 1187 sign, no clasp knife spasticity, no paralysis, no fasciculations, no hyperreflexia, no 1188 sensory loss, no ataxia, no dystonia, no atrophy, and no clonus, and why are these 1189 spasms different? Even if this shadow hides in the subconscious or elsewhere it 1190 needs to have some way to get to the muscle. Are these spasms driven by a psycho-1191 neurological pathology of the central nervous system that contracts muscles without 1192 using extrafusal fibers or motoneurons, or that activates a unilateral sympathetic 1193 response, or should we explore unexplored rheumatological avenues? 1194 "Somatic" needs clarification: Is "fascial armoring" part of "Somatic"? There must be 1195 some pathophysiology to it because it obviously is not magic and any model that 1196

tries to tackle fibromyalgia's pain cannot be shy of "Somatic", too. To rely on "using 1197 imagination" in this case seems to be a weak attempt to simplify such a complex 1198

problem, no? Having schizophrenia seems to be different and unfortunately 1199 searching only inside cranium limits our options. (The term "inside cranium" is used 1200 because the brain is certainly not alone in it, the meninges is there, too.) When 1201 excluding magic, imagination, and schizophrenia, what are we left with? A ghost in 1202 brain, or a shadow in fascia? Science is free to choose where best to look. Gupta et 1203 al. [198] studied CWP in somatising individuals. They conclude that while a high 1204 tender point count is associated with the onset of new CWP, a low pain threshold at 1205 baseline is not [198]. With our new view of MPS it is logical, since tender point count 1206 would be a marker for a fascial tensional pathology, leading to widespread pain and 1207 a lower pain threshold later. 1208

Why and how does MPS develop into fibromyalgia? Is MPS also psychosomatic? 1209 Essentially, any answer to that would depend on our definition of "psychosomatic". 1210 If "psychosomatic" has a peripheral factor involving myofibroblasts, then, the answer 1211 is: probably yes. Therefore, this model suggests that between a treatment that 1212 focuses mostly on the brain or one that focuses mostly on the tensegrity, the one 1213 focusing also on the tensegrity should be more effective, at least in the medium to 1214 long term. In other words, a combination of cognitive behavioral therapy and 1215 exercise with any current pharmacological treatment protocol, should be less 1216 effective than, for example, a combination of movement therapy, hyperbaric oxygen 1217 chamber therapy, psychotherapy, and minimally invasive therapy (tensegrity based 1218 needling). It also suggests that concentration of myofibroblasts and α -SMA in 1219 involved connective tissue should correlate better with the Fibromyalgia Impact 1220 Questionnaires than do frequency of pain catastrophizing or severity of emotional 1221

trauma. Has the reader ever felt an itching sensation, headache, or repeated muscle	1222
twitching, with no clear reason? Was it ever psychosomatic?	1223

There are those who suggest fibromyalgia is not a real entity or that it is caused by	1224
sleep disturbances [154]. However, the relatively modest efficacy of antipsychotics	1225
and/or melatonin and/or z-drugs implies it is probably neither an imaginary	1226
hallucination nor due to lack of sleep. If it truly is only pain catastrophizing due to	1227
low psychological resilience, then animal models are probably futile, and why are	1228
women more affected than men?	1229

Noteworthy, two parallel mechanisms (or more) might be at work and are not1230necessarily incompatible with each other. Notwithstanding, if the mechanism starts1231in the fascia, and if we rarely study the fascia in fibromyalgia, how will we find the1232mechanism?1233

How is it that multiple theories, even when combined, do not seem to fully explain 1234 this entity? Is there any tissue out there that all theories have overlooked? A 1235 tensegrity model is not without its questions: (i) How are depression and Lyme 1236 disease linked, and why is there wheezing, insomnia, and small fiber neuropathy? (ii) 1237 Self-mutilation? [199] (iii) Do antidepressants affect myofibroblasts? (iv) How is the 1238 brain involved? (v) Did biopsy studies in fibromyalgia find abnormalities in peripheral 1239 myo/fibroblasts, α -SMA, or TGF- β ? (vi) What is altered if myofibroblasts have 1240 chemotaxis? (vii) If the tensegrity's state can be different in each individual, how to 1241 minimize false negative results in research and how to tailor the treatment 1242 accordingly? (viii) What if the "armor" develops in the deep fascia more than the 1243 superficial? (ix) What if an imbalanced tensegrity structure has laxity in its frame? (x) 1244

Why are obesity and menopause associated? (xi) What happens to the tensegrity1245after fasciotomies? (xii) If biology can really hide a pain condition in the tensegrity,1246what else has it hidden there? (xiii) Is having total belief in fibromyalgia a factor,1247does fear of death sustain it, and can one choose to willingly have fibromyalgia, even1248permanently?1249

Does "fascial armoring" fill in gaps regarding some of these anomalies? If affecting 1250 the trunk, a constrictive tissue in the chest might be able to impair lung function and 1251 contribute to wheezing and chest tightness. If involving a compression by the 1252 cervical fascia, it might affect salivary ducts/glands, affecting salivation. In the neck 1253 and pretracheal fascia, muscle tension dysphonia. Temporal fascia, tension like 1254 headache. Periorbital, reduced optic disc perfusion. Wrist, carpal tunnel syndrome. 1255 Hand, Raynaud's-like phenomena. Under the skin, crawling sensations. Pelvic fascia, 1256 urinary urgency. Abdomen, peristalsis. Myofibroblasts contract over hours to lock in 1257 tension in ECM [51], so, under resting conditions stiffness might be exacerbated 1258 (e.g., sleep). Abnormal ECM properties could predispose to bruising. For impaired 1259 balance: proprioceptors are present among ECM, they affect coordination [18]. 1260 Sustained ECM forces might lead to their chronic activity, which, in turn, might 1261 activate reciprocal regions in the brain chronically. Chronic activity of those 1262 presynaptic nerve terminals in the brain might cause excitotoxicity, theoretically. A 1263 link to phenomena like seizures/pseudoseizures will be suggested below when 1264 mentioning the myodural bridge. Does central sensitization lead to small fiber 1265 neuropathy or does small fiber neuropathy lead to central sensitization? And how? 1266 According to this model, the answer is: neither- small fiber pathology in fibromyalgia 1267 patients was found to be accompanied by reduced axonal diameter and some 1268

abnormalities in Schwann cells seen on electron microscopy [200]. Neurofilaments	1269
provide mechanical strength and determine axon diameter, whereas microtubule	1270
functions include intracellular transport and provision of structural rigidity [201].	1271
They were both found to exhibit appreciable changes in cytoskeletal spatial	1272
distributions within neuronal axons, under compressive loading [201]. Axonal	1273
changes under compressive loading are caliber dependent [201], neurite changes are	1274
dependent on substrate stiffness and gradient [202]. Substrate stiffness affects	1275
behavior and function of Schwann cells [203].	1276

This theoretical model can only go as far as the cellular process that is behind it, so, 1277 what happens when modulating the cellular process? Interestingly, studies suggest 1278 certain antidepressants can downregulate myofibroblasts and ACTA2 gene 1279 expression [204,205], while other antidepressants may actually enhance them [206]. 1280 It seems gp120 has a stimulatory effect on myofibroblasts as well [71,207]. We could 1281 similarly predict that the pathogen Borrelia may lead to connective tissue changes 1282 and drive a widespread myofibroblast pathology. Thus, resulting in an infectious 1283 version of fibromyalgia with or without pronounced inflammation. Borrelia and 1284 fibroblast co-cultures show a significant induction of type I collagen mRNA after 2 1285 days (p-value <0.02) and a significant upregulation of mRNA expression of TGF- β (p-1286 value <0.01) [208]. Since TGF- β is a cardinal signal for myofibroblast α -SMA 1287 synthesis, this may explain why, of all infections, Lyme disease (and not viral 1288 encephalitis or infective transverse myelitis) is strongly associated with fibromyalgia. 1289 Due to the marked similarity to fibromyalgia, such events can be expected in 1290 connective tissue in "post COVID-19 syndrome". Unudurthi et al. [209] suggest the 1291 infiltration of neutrophils, macrophages and CD4+ T lymphocytes in COVID-19 1292

patients can promote the activation of fibroblasts to myofibroblasts in heart. SARS-	1293
CoV-2 may induce the trans-differentiation of adipocytes or pulmonary	1294
lipofibroblasts into myofibroblasts, cells that play an integral part in fibrosis [210].	1295
Since ECM remodeling is an ongoing chronic process, fibromyalgia-like symptoms	1296
would arguably be a sequela of infection rather than an acute manifestation.	1297

Fascial armoring and the mind

1298

A study suggested that in fibromyalgia, a global pathology involving tryptophan	1299
might come at the expense of other serotonergic operations such as in the brain	1300
[211]. A mechanosensitive effect can trigger serotonin release from	1301
enterochromaffin or neuroendocrine cells [212,213]. Serotonin is involved in the	1302
cellular signaling of connective tissue cells [214,215]. Studies of fibromyalgia patients	1303
indicate an elevated level of serotonin in myofascial tissue and platelets, while a	1304
decreased level of tryptophan and its derivatives, serotonin and kynurenine, is	1305
observed in the blood and/or brain [92,211,216-221]. Some fibromyalgia patients are	1306
found to have decreased rate of transport of tryptophan across the blood brain	1307
barrier [211]. Theoretically, a peripheral sequestration or depletion of biogenic	1308
amine metabolites may play a role in the association between mood disorders and	1309
fibromyalgia in some individuals and might explain why antidepressants seem to	1310
have such a limited efficacy in a subset of them.	1311

Can an imbalanced tensegrity structure be associated with an imbalanced mind? It is
possible some individuals feeling persistent tension and crawling sensations might
try self-mutilation in such a way that physically releases tensegrity tension, rather
than actually attempting suicide. Consciously or unconsciously: similar to pica,

mentioned earlier. Associating pica with iron deficiency, glucosuria with diabetes,	1316
and self-harm with a tensegrity abnormality, seems to be a better choice for Nature	1317
than the other way around. Pica with "fascial armoring" would have pointed the	1318
author towards the mind. Lacerations would probably be the best first approach for	1319
this purpose and horizontal incisions might be more effective if vertical to force	1320
vectors. Unfolding this reason while using the scientific terms would be difficult for	1321
most common individuals, even for those with an extremely high body awareness; it	1322
would probably be described as: "trying to release a feeling".	1323

Compression versus a global percutaneous needle fasciotomy:1325conclusion1326

Studies show obesity induced connective tissue fibrosis is dependent on	1327
mechanosensitive signaling [222]. Fibrosis, via myofibroblasts, alters subcutaneous	1328
tissue plasticity and increases connective tissue rigidity and stiffness [222]. Thus,	1329
obesity might be associated with fibromyalgia by way of mechanically compressing	1330
fascia with higher forces. Is there any evolutionary sense? Unfortunately, obesity is	1331
one of the most "punished" conditions by nature. Does insulin-like growth factor	1332
affect central sensitization, and is weight gain from pregabalin helpful or harmful? A	1333
study in vivo suggests applying tension on skin induces myofibroblasts [74].	1334
Therefore, by this same rationale we might expect a sedentary and/or hypermobile	1335
individual that tends to wear tight clothes and accessories that mechanically	1336
compress fascia to be at higher risk for this pathology over time. It was shown the	1337

association between a higher incidence of fibromyalgia and estrogen is unlikely 1338 [162,223]. Estrogen is suggested to inhibit myofibroblast differentiation and is 1339 associated with lower fascial stiffness [224-227], and hormonal contraceptives may 1340 reduce the risk of fibromyalgia in women [228]. Some suggest fibromyalgia may be 1341 linked to menopause [229]. This could be part of the explanation to why fibromyalgia 1342 is more prevalent in certain females. Other studies show that applying a splint or 1343 mechanical tension induces myofibroblasts [80], and ponytails/hijabs/braziers 1344 appear to cause myofascial pain [230-234]. This phenomenology appears to be 1345 similar to, or the same as, the old practice of applying bandages to treat 1346 "rheumatism" patients (William Balfour 1815 [235]), meaning: modulation of the 1347 tensegrity structure and/or induction of stress shielding but failing to resolve overall 1348 tension (e.g., the case of Mrs. M. pp. 179-180 [235]). Interestingly, experimental 1349 models of restraint stress apply mechanical restraint and/or limit movements [236-1350 240]. These models seem to induce mechanical and cold allodynia, depression and 1351 anxiety like behavior, gut dysmotility, and other phenomena [236-240]. Thus, one 1352 might wonder what is the pluripotent entity that restraint stress tries to model? Is it 1353 only psychological stress? 1354

In any case, perhaps a treatment or prophylaxis that applies multiple needles in1355different areas of the tensegrity system, could be utilized as a global percutaneous1356needle fasciotomy. The theoretical end purpose for this treatment would be by1357passively inserting the needles and then allowing the network of cells to lower global1358fascial stiffness beneath the threshold necessary for myofibroblasts activity (~10-201359kPa) and slowly experience a tensional collapse. Each intrafascial (i.e., subcutaneous)1360

needling therapy would have to be adapted according to the current state of the 1361 tensegrity structure, meaning: one protocol does not fit all, and does not fit one all 1362 times. If we ignore tensegrity principles, pain might increase. Patience seems key 1363 because the longer the duration of severe disease, the slower the change should be 1364 made. Human physiology does not tolerate sudden changes well, and "the entropy 1365 must go somewhere". The myofibroblast that remain would be responsible for the 1366 relapse, at least in part. Elastography studies of fibromyalgia and MPS are scarce. 1367 Some studies found fascia of patients with myofascial pain measures statistically 1368 significantly higher on shear wave elastography, and they have increased peri-1369 muscular connective tissue thickness and ultrasound echogenicity [241,242]. It was 1370 found that needling treatment reduces pain [243-247]. Studies suggest needling 1371 significantly lowers the shear modulus of myofascial tissue as measured by 1372 elastography (p-value <0.01) [95], causes mechanical changes at the point of 1373 insertion and at a distance [91,102], causes windup of the connective tissue [105], 1374 and improves perfusion to the area [248]. Meta-analyses and systematic reviews find 1375 that needling improves pain and stiffness in people with fibromyalgia and MPS 1376 [245,246,249]. Support for this modality's capability of improving perfusion is found 1377 in a study showing infiltration of TrPs reduces symptoms of intermittent claudication 1378 [250]. Symptomatically, a person constantly exerting effort against such forces of a 1379 suffocating fascia would likely feel chronic fatigue and soreness, while accumulating 1380 nociceptive substances in muscles in a chronically tonic body, and active loci induced 1381 "energy crises". Tryptophan usage would affect melatonin as well, and symptoms of 1382 cognitive impairment mean the brain is definitely involved. With regards to active 1383 loci, it is possible the cell has its own ways to oppose this abnormality. When 1384

synaptic neuromuscular activity is maintained over time, an aggregated form of1385amyloid beta is seen to interfere with Ach release ex vivo [251]. One adopting this1386biological ethos might want to examine if amyloid beta is linked to "fascial1387armoring", because studies suggest amyloid beta, like the cytoskeletal protein tau, is1388affected by or compensates for, mechanical stress [252-256].1389

At least we might want to exclude an organic fascial cause before perceiving these 1390 cases as purely psycho-functional disorders, even if the full mechanism is still 1391 unclear. Is there enough empirical evidence to recognize MPS and fibromyalgia as 1392 honorable organic diseases, like any other? Internal medicine is used to entities that 1393 are either immune related, infectious, malignant, endocrine, metabolic, genetic, 1394 cardiovascular, neurologic, traumatic, or toxic, but not familiar with many 1395 mechanical ones. If medicine overlooked another system causing pain besides fascia, 1396 like integumentary or skeletal, it would probably lead to overlying on psychology to 1397 explain that pain. Maybe it is not some mechanism that has yet to be discovered or 1398 measured. Maybe it has been both discovered and measured yet overlooked and 1399 misinterpreted. It is difficult to explain all the empirical evidence relating to 1400 fibromyalgia (e.g., association with hypermobility syndrome, small fiber neuropathy, 1401 and the complete resolution soon after surgery) while relying on central sensitization 1402 and stress or somatization alone. Therefore, investigating a link between 1403 fibromyalgia and a peripheral mechanical process might benefit our understanding. 1404

The enthusiast of the principle of Occam's razor (i.e., minimize multiplication of1405entities) might consider seeing other functional entities that are known to be1406associated with pluripotent TrPs [2,4,12,43,257,258], as "MPS"/"fibromyalgia" that is1407

localized to certain anatomical areas; coupled with the reciprocal central nervous 1408 system changes. Purely biologically, there really is only one entity (S1 Fig 2 grossly 1409 illustrates this overlap of conditions). "Kelley's textbook of rheumatology" and others 1410 suggest functional somatic syndromes to be on a continuum of one entity with 1411 fibromyalgia [122,154,175]. Myofascial TrPs reproduce the pain pattern of 1412 fibromyalgia and are related to widespread mechanical hypersensitivity [259]. A 1413 study found that the topography of fibromyalgia tender points consists mostly of 1414 myofascial active TrPs (r=0.78, p-value <0.001) [260]. In addition, MPS and 1415 fibromyalgia are suggested to be two sides of the same coin [2,154,261]. Etymology 1416 does not necessarily reflect pathophysiology, but the term "fibromyalgia syndrome" 1417 basically carries the same meaning as "myofascial pain syndrome" but in Greek. The 1418 analysis based on this scoping review offers one mechanical aspect as a part of a 1419 common rheumapsychoneurological mechanism. 1420

1421

1422

Final note and future potential

Based on this review, it seems that fascia is an intelligent and sophisticated tissue1423network, at least like any other tissue network we know. It is shown myo/fibroblasts1424have gap junctions that can couple and directly communicate with each other (Xu et1425al. [262]) and with other types of cells (with heart [263], hair follicles [264], cancer1426cells [265], etc.) [51,266-270]. These can contract as a unit or in patterns [271,272],1427affecting the organ's functionality [53,273-280]. If this theoretical model of1428myofibroblast-generated-tensegrity-tension is verified empirically, it might be worth1429

further exploring the possibility that they can couple in vivo (directly, or indirectly 1430 through myocytes/glial cells) to neurons. Studies suggest the meninges might be 1431 coupled to the cerebral cortex to form one large network with myo/fibroblsts [281-1432 284]. The myodural bridge connects the extracranial occipital fascia with the dura 1433 [285]. Myo/fibroblasts seem to form a body-wide cellular network; They can respond 1434 to mechanical cues and exhibit spontaneous calcium oscillations and synchronized 1435 contractions [62,270-272,279,286-288], and fibroblast themselves can induce 1436 contracture through actin beta and gamma pathways [289]. The psychological 1437 significance of such electrical-mechanical patterns is hypothesized not to be 1438 negligible. We could consider the hypothetical possibility that this dynamic body-1439 wide mechanoelectrical network of cells and fibers has an overlooked interplay with 1440 the network of the human nervous system. This idea might disguise some of the 1441 pathophysiology of self-psychosomatics and potentially help us understand why a 1442 remarkable 17 percent of primary care patients are diagnosed with somatic 1443 symptom disorder (SSD) (defined in studies as at least four or more unexplained 1444 symptoms [290]), why tender point counts are predictors of CWP in somatising 1445 subjects [198], and why SSD is associated, or overlaps, with fibromyalgia. There are 1446 those who believe tensions in the body are closely linked to our emotions and 1447 personality (e.g., W. Reich and A. Lowen [291,292]). We know biology does not 1448 separate itself into different medical specialties like we do occupationally. 1449

On a spectrum of "normality" we may all have "MPS" to some extent, technically 1450 speaking. It seems to be a question of how much we have and how much it affects our 1451 life. A tradeoff is still being made, no longer by biology but by humans. Not regarding 1452 the molecular design of fascia, but it is an ongoing tradeoff between not moving and 1453 moving. As it seems to be a natural condition worsened by an un-natural lifestyle, we 1454 may say living sedentarily misses our evolutionary target (i.e., a "biological sin"). It is 1455 interesting a study by Younger et al. finds patients with myofascial pain have changes 1456 in grey matter in the hippocampus, anterior insula, and cingulate cortex, among 1457 several areas [293]: Forgetting our evolutionary purpose seems to impair our memory, 1458 while cognitive detachment from our body-awareness seems to impair our cognition, 1459 and because biogenic amine metabolites are low, the above suggests a lifestyle with 1460 scarcity of movement will rarely make us blissful. Looking through the given titles of 1461 these entities, we might find what we most want to find where we least want to look. 1462 A body that cannot move with total freedom will hold a mind that is seldom totally 1463 free of dis-ease. This aligns with the notion that the body and the mind are accepted 1464 to be one being. Just as we can say music is a "collection of noises" or a "divine 1465 melody", so may we say MPS is "pulled muscles" or a "fascinating disorder of the 1466 fascia". Assembling these conclusions and concepts to creatively connect this medical 1467 puzzle is the easier part of this not so easy effort; The major challenge now being the 1468 research needed to verify or disprove them, and moving forward with evidence on this 1469 topic while moving ourselves... 1470

Limitations

The main limitation of this scoping review is that a sole researcher evaluated the	1472
studies. It is based on other empirical studies where some are in vitro studies, as	1473
mentioned in parts of the discussion. Being a scoping review, although a broad	1474

searching strategy was applied, not every topic was searched systematically. A 1475 systematic search was done for several main key phrases, in five databases. 1476 Systematically searching for relevant side topics (i.e., topics not defined in the key 1477 phrases) was not feasible, unfortunately. For side topics, an attempt to find a reliable 1478 source of information, like a textbook or study (or both), was the strategy to gather 1479 information. In such cases an attempt to cite more than one study was made. Worth 1480 noting, no on topic studies were found when searching "fibromyalgia myofibroblast" 1481 or "fibromyalgia alpha smooth muscle actin". "Epigenetics and myofibroblasts" was 1482 not in the search. Kynurenine and the remaining 4% post-parathyroidectomy were 1483 not analyzed. The full cytokine profile and the topic of vitamin D in fibromyalgia was 1484 not discussed although a study finds vitamin D might play a role in myofibroblast 1485 attenuation or de-differentiation [294], and a meta-analysis suggests fibromyalgia is 1486 associated with a unique cytokine profile: TNF- α , IL-6, IL-8, IL-10 and eotaxin/CCL24 1487 [295], all of those found to be implicated in myofibroblast cellular signaling [296-1488 300]. 1489

Acknowledgements

1490

1494

Professor Pnina Ohanna Plaut for assisting with methodology and editing, Dr. Bronya	1491
Gorney for assisting with editing and support, Carrie Rodomar, librarian of University	1492
of Nicosia medical school, for assisting with methodology.	1493

Contributions

This work was done by the sole researcher and author of this manuscript including	1495
conception, organization, literature review, integration of information, findings	1496
analysis, manuscript preparation and writing.	1497
Conflict of interest	1498
The author declares no conflict of interests.	1499
Funding	1500
None	1501
	1502

References

1.	WHO Scientific Group on the Burden of Musculoskeletal Conditions at the	1504
Start o	of the New Millennium. (2003 : Geneva, Switzerland). (2003). The burden of	1505
muscı	uloskeletal conditions at the start of the new millenium : report of a WHO	1506
scient	ific group. Geneve : World Health Organization.	1507
https:	//apps.who.int/iris/handle/10665/42721. Accessed November 2020	1508
2.	www.uptodate.com search "myofascial pain syndrome", "pelvic pain", "tmj"	1509
acces	sed November 2020. "Trigger points" "Fibromyalgia", "differential diagnosis of	1510
fibron	nyalgia" accessed April 2021, "Chronic exertional compartment syndrome",	1511
"Chro	nic fatigue syndrome", "Diabetes Mellitus type 2 and menopause" August	1512
2021.		1513
3.	Kasper DL, Fauci, A. S., Hauser, S. L., Longo, D. L. 1., Jameson, J. L., & Loscalzo,	1514
J. Har	rison's Principles of Internal Medicine, 20e. New York; 2018. pp. 222-223, 2637-	1515
2639, 2644-2645.		1516
4.	Giamberardino MA, Affaitati G, Fabrizio A, Costantini R. Myofascial pain	1517
syndro	omes and their evaluation. Best Pract Res Clin Rheumatol. 2011;25(2):185-98.	1518
5.	Siegfried Mense DGS, I. Jon Russell. Muscle Pain: Understanding Its Nature,	1519
Diagn	Diagnosis, and Treatment. Philadelphia; 2001 pp. 1-10.	
c		
6.	Lucas N, Macaskill P, Irwig L, Moran R, Bogduk N. Reliability of physical	1521
	Lucas N, Macaskill P, Irwig L, Moran R, Bogduk N. Reliability of physical ination for diagnosis of myofascial trigger points: a systematic review of the	1521 1522
exami		
exami	ination for diagnosis of myofascial trigger points: a systematic review of the	1522

8.	Meister MR, Sutcliffe S, Ghetti C, Chu CM, Spitznagle T, Warren DK, et al.	1526
Devel	opment of a standardized, reproducible screening examination for assessment	1527
of pel	vic floor myofascial pain. Am J Obstet Gynecol. 2019;220(3):255.e1-255.e9.	1528
9.	Simons DG, Janet G. Travell, and Lois S Simons. Travell & Simons' Myofascial	1529
Pain a	nd Dysfunction: The Trigger Point Manual. 2nd ed. Baltimore; 1999. pp. xi- 87,	1530
940-9	55.	1531
10.	Wheeler AH. Myofascial pain disorders: theory to therapy. Drugs 2004; 64(1):	1532
45-62		1533
11.	Fleckenstein J, Zaps D, Rüger LJ, Lehmeyer L, Freiberg F, Lang PM, et al.	1534
Discre	epancy between prevalence and perceived effectiveness of treatment methods	1535
in my	ofascial pain syndrome: results of a cross-sectional, nationwide survey. BMC	1536
Musc	Musculoskelet Disord 2010;11: 32.	
12.	Do TP, Heldarskard GF, Kolding LT, Hvedstrup J, Schytz HW. Myofascial trigger	1538
points	points in migraine and tension-type headache. J Headache Pain. 2018;19(1):84.	
13.	Klotz SGR, Ketels G, Löwe B, Brünahl CA. Myofascial Findings and	1540
Psych	opathological Factors in Patients with Chronic Pelvic Pain Syndrome. Pain Med.	1541
2020;	21(2):e34-e44.	1542
14.	Willard FH, Vleeming A, Schuenke MD, Danneels L, Schleip R. The	1543
thora	columbar fascia: anatomy, function and clinical considerations. J Anat	1544
2012;	221(6): 507-36.	1545
15.	Atlas of Human Fascial Topography. Fascia Atlas Leipziger Universiätsverlag;	1546
2018.		1547

16.	Langevin HM, Keely P, Mao J, Hodge LM, Schleip R, Deng G, et al. Connecting	1548
(T)issu	ues: How Research in Fascia Biology Can Impact Integrative Oncology. Cancer	1549
Res. 2	016;76(21):6159-6162.	1550
17.	Barker PJ, Briggs CA. Attachments of the posterior layer of lumbar fascia.	1551
Spine	(Phila Pa 1976). 1999;24(17):1757-64.	1552
18.	Nordez A, Gross R, Andrade R, Le Sant G, Freitas S, Ellis R, et al. Non-Muscular	1553
Struct	ures Can Limit the Maximal Joint Range of Motion during Stretching. Sports	1554
Med.	2017;47(10):1925-1929.	1555
19.	Akbar M, McLean M, Garcia-Melchor E, Crowe LA, McMillan P, Fazzi UG, et al.	1556
Fibrok	plast activation and inflammation in frozen shoulder. PLoS One.	1557
2019;	14(4):e0215301.	1558
20.	Zeng YJ, Sun XP, Yang J, Wu WH, Xu XH, Yan YP. Mechanical properties of	1559
nasal	fascia and periosteum. Clin Biomech (Bristol, Avon). 2003;18(8):760-4.	1560
21.	Yahia LH, Pigeon P, DesRosiers EA. Viscoelastic properties of the human	1561
lumbo	odorsal fascia. J Biomed Eng. 1993;15(5):425-9.	1562
22.	Pavan PG, Stecco A, Stern R, Stecco C. Painful connections: densification	1563
versu	s fibrosis of fascia. Curr Pain Headache Rep 2014;18(8): 441.	1564
23.	Nelson-Wong E, Glinka M, Noguchi M, Langevin H, Badger GJ, Callaghan JP.	1565
Acute	Surgical Injury Alters the Tensile Properties of Thoracolumbar Fascia in a	1566
Porcir	ne Model. J Biomech Eng. 2018;140(10):1010121–7.	1567
24.	Kagawa E, Nimura A, Nasu H, Kato R, Akita K. Fibrous Connection Between	1568
Cervic	al Nerve and Zygapophysial Joint and Implication of the Cervical Spondylotic	1569
Radic	ulopathy: An Anatomic Cadaveric Study. Spine (Phila Pa 1976).	1570
2021;	46(13):E704-E709.	1571

25. Wertsch JJ, Melvin J. Median nerve anatomy and entrapment syndromes: a 1572 review. Arch Phys Med Rehabil. 1982;63(12):623-7. 1573 26. Konno S, Kikuchi S, Nagaosa Y. The relationship between intramuscular 1574 pressure of the paraspinal muscles and low back pain. Spine (Phila Pa 1976). 1994; 1575 19(19): 2186-9. 1576 27. McCombe D, Brown T, Slavin J, Morrison WA. The histochemical structure of 1577 the deep fascia and its structural response to surgery. J Hand Surg Br 2001;26(2): 89-1578 97. 1579 28. Marinelli L, Cacciatore I, Eusepi P, Di Biase G, Morroni G, Cirioni O, et al. 1580 Viscoelastic behaviour of hyaluronic acid formulations containing carvacrol prodrugs 1581 with antibacterial properties. Int J Pharm. 2020;582:119306. 1582 29. Matteini P, Dei L, Carretti E, Volpi N, Goti A, Pini R. Structural behavior of 1583 highly concentrated hyaluronan. Biomacromolecules 2009;10(6): 1516-22. 1584 30. Young, Barbara (Pathologist). Wheater's Functional Histology : a Text and 1585 Colour Atlas 5th edition. Edinburgh ; New York :Churchill Livingstone, 2000. pp. 1586 67,69,101. 1587 31. Vleeming A, Pool-Goudzwaard AL, Stoeckart R, van Wingerden JP, Snijders CJ. 1588 The posterior layer of the thoracolumbar fascia. Its function in load transfer from 1589 spine to legs. Spine (Phila Pa 1976). 1995;20(7):753-8. 1590 32. Jun D, Zoe M, Johnston V, O'Leary S. Physical risk factors for developing non-1591 specific neck pain in office workers: a systematic review and meta-analysis. Int Arch 1592 Occup Environ Health 2017;90(5): 373-410. 1593

33.	Sasabe R, Sakamoto J, Goto K, Honda Y, Kataoka H, Nakano J, et al. Effects of	1594
joint ir	nmobilization on changes in myofibroblasts and collagen in the rat knee	1595
contra	cture model. J Orthop Res. 2017;35(9):1998-2006.	1596
34.	Williams PE, Goldspink G. Connective tissue changes in immobilised muscle. J	1597
Anat 1	984;138 (Pt 2): 343-50.	1598
35.	Lima LV, Abner TSS, Sluka KA. Does exercise increase or decrease pain?	1599
Centra	l mechanisms underlying these two phenomena. J Physiol. 2017;	1600
595(13	3):4141-4150.	1601
36.	Caldeira P, Fonseca ST, Paulo A, Infante J, Araújo D. Linking Tensegrity to	1602
Sports	Team Collective Behaviors: Towards the Group-Tensegrity Hypothesis. Sports	1603
Med O	ppen 2020;6(1): 24.	1604
37.	Tadeo I, Berbegall AP, Escudero LM, Alvaro T, Noguera R. Biotensegrity of the	1605
extrace	ellular matrix: physiology, dynamic mechanical balance, and implications in	1606
oncology and mechanotherapy. Front Oncol 2014;4: 39.		1607
38.	Wilke J, Schleip R, Yucesoy CA, Banzer W. Not merely a protective packing	1608
organ?	A review of fascia and its force transmission capacity. J Appl Physiol (1985).	1609
2018;1	.24(1):234-244.	1610
39.	Harty J, Soffe K, O'Toole G, Stephens MM. The role of hamstring tightness in	1611
planta	r fasciitis. Foot Ankle Int. 2005;26(12):1089-92.	1612
40.	Wilke J, Krause F, Vogt L, Banzer W. What Is Evidence-Based About	1613
Myofa	scial Chains: A Systematic Review. Arch Phys Med Rehabil. 2016;97(3):454-61.	1614
41.	Zhou JP, Yu JF, Feng YN, Liu CL, Su P, Shen SH, et al. Modulation in the elastic	1615
proper	ties of gastrocnemius muscle heads in individuals with plantar fasciitis and its	1616
relationship with pain. Sci Rep 2020;10(1): 2770.		1617

42.	Liu L, Huang QM, Liu QG, Ye G, Bo CZ, Chen MJ, et al. Effectiveness of dry	1618
needli	ing for myofascial trigger points associated with neck and shoulder pain: a	1619
syster	natic review and meta-analysis. Arch Phys Med Rehabil. 2015;96(5):944-55.	1620
43.	Moldwin RM, Fariello JY. Myofascial trigger points of the pelvic floor:	1621
associ	ations with urological pain syndromes and treatment strategies including	1622
injecti	on therapy. Curr Urol Rep 2013;14(5): 409-17.	1623
44.	Konno T, Aota Y, Kuniya H, Saito T, Qu N, Hayashi S, et al. Anatomical etiology	1624
of "ps	eudo-sciatica" from superior cluneal nerve entrapment: a laboratory	1625
invest	igation. J Pain Res. 2017;10:2539-2545.	1626
45.	Crowle A, Harley C. Development of a biotensegrity focused therapy for the	1627
treatn	nent of pelvic organ prolapse: A retrospective case series. J Bodyw Mov Ther	1628
2020;24(1): 115-25.		1629
46.	Tozzi P, Bongiorno D, Vitturini C. Low back pain and kidney mobility: local	1630
osteo	pathic fascial manipulation decreases pain perception and improves renal	1631
mobil	ity. J Bodyw Mov Ther 2012;16(3): 381-91.	1632
47.	Acevedo JI, Beskin JL. Complications of plantar fascia rupture associated with	1633
cortic	osteroid injection. Foot Ankle Int 1998;19(2): 91-7.	1634
48.	Klingler W, Velders M, Hoppe K, Pedro M, Schleip R. Clinical relevance of	1635
fascia	tissue and dysfunctions. Curr Pain Headache Rep 2014;18(8): 439.	1636
49.	Hsieh YL, Kao MJ, Kuan TS, Chen SM, Chen JT, Hong CZ. Dry needling to a key	1637
myofa	scial trigger point may reduce the irritability of satellite MTrPs. Am J Phys Med	1638
Rehab	oil. 2007;86(5):397-403.	1639
50.	Quintner JL, Cohen ML. Referred pain of peripheral nerve origin: an	1640
alternative to the "myofascial pain" construct. Clin J Pain 1994;10(3): 243-51.		1641

51.	Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and	1642
mech	ano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002;	1643
3(5): 3	349-63.	1644
52.	Stempien-Otero A, Kim DH, Davis J. Molecular networks underlying	1645
myofi	broblast fate and fibrosis. J Mol Cell Cardiol 2016;97: 153-61.	1646
53.	Miragoli M, Salvarani N, Rohr S. Myofibroblasts induce ectopic activity in	1647
cardia	c tissue. Circ Res. 2007;101(8):755-8	1648
54.	Urits I, Charipova K, Gress K, Schaaf AL, Gupta S, Kiernan HC, et al. Treatment	1649
and m	anagement of myofascial pain syndrome. Best Pract Res Clin Anaesthesiol.	1650
2020;	34(3):427-448.	1651
55.	Dommerholt J, Hooks T, Chou LW, Finnegan M. A critical overview of the	1652
currer	nt myofascial pain literature - January 2018. J Bodyw Mov Ther. 2018;	1653
22(1):	22(1):184-191.	
56.	Arguisuelas MD, Lisón JF, Sánchez-Zuriaga D, Martínez-Hurtado I, Doménech-	1655
Ferná	ndez J. Effects of Myofascial Release in Nonspecific Chronic Low Back Pain: A	1656
Rando	omized Clinical Trial. Spine (Phila Pa 1976). 2017;42(9):627-634.	1657
57.	Dommerholt J, Thorp JN, Chou LW, Hooks T. A critical overview of the current	1658
myofa	ascial pain literature - January 2020. J Bodyw Mov Ther 2020;24(2): 213-24.	1659
58.	Chen JT, Chung KC, Hou CR, Kuan TS, Chen SM, Hong CZ. Inhibitory effect of	1660
dry ne	edling on the spontaneous electrical activity recorded from myofascial trigger	1661
spots	of rabbit skeletal muscle. Am J Phys Med Rehabil 2001;80(10): 729-35.	1662
59.	Hughes EJ, McDermott K, Funk MF. Evaluation of hyaluronan content in areas	1663
of der	nsification compared to adjacent areas of fascia. J Bodyw Mov Ther 2019;23(2):	1664
324-8		1665

60.	Castella LF, Buscemi L, Godbout C, Meister JJ, Hinz B. A new lock-step	1666
mecha	nism of matrix remodelling based on subcellular contractile events. J Cell Sci.	1667
2010;1	L23(Pt 10):1751-60.	1668
61.	Arora PD, Bibby KJ, McCulloch CA. Slow oscillations of free intracellular	1669
calciur	n ion concentration in human fibroblasts responding to mechanical stretch. J	1670
Cell Ph	nysiol 1994;161(2): 187-200.	1671
62.	Langevin HM, Cornbrooks CJ, Taatjes DJ. Fibroblasts form a body-wide	1672
cellula	r network. Histochem Cell Biol. 2004;122(1):7-15.	1673
63.	Lembong J, Sabass B, Sun B, Rogers ME, Stone HA. Mechanics regulates ATP-	1674
stimula	ated collective calcium response in fibroblast cells. J R Soc Interface.	1675
2015;1	12(108):20150140.	1676
64.	Wolfson B, Zhang Y, Gernapudi R, Duru N, Yao Y, Lo PK, et al. A High-Fat Diet	1677
Promo	tes Mammary Gland Myofibroblast Differentiation through MicroRNA 140	1678
Downr	Downregulation. Mol Cell Biol. 2017;37(4):e00461-16.	
65.	Witt W, Buttner P, Jannasch A, Matschke K, Waldow T. Reversal of	1680
myofik	problastic activation by polyunsaturated fatty acids in valvular interstitial cells	1681
from a	ortic valves. Role of RhoA/G-actin/MRTF signalling. J Mol Cell Cardiol 2014;74:	1682
127-38	3.	1683
66.	Yu Q, Wang T, Zhou X, Wu J, Chen X, Liu Y, et al. Wld(S) reduces paraquat-	1684
induce	ed cytotoxicity via SIRT1 in non-neuronal cells by attenuating the depletion of	1685
NAD. F	PLoS One 2011;6(7): e21770.	1686
67.	Tai W, Deng S, Wu W, Li Z, Lei W, Wang Y, et al. Rapamycin attenuates the	1687
paraqu	uat-induced pulmonary fibrosis through activating Nrf2 pathway. J Cell Physiol	1688
2020;235(2): 1759-68.		1689

68. Barbe MF, Hilliard BA, Amin M, Harris MY, Hobson LJ, Cruz GE, et al. Blocking 1690 CTGF/CCN2 reverses neural fibrosis and sensorimotor declines in a rat model of 1691 overuse-induced median mononeuropathy. J Orthop Res. 2020;38(11):2396-2408. 1692 69. Chen Y, Abraham DJ, Shi-Wen X, Pearson JD, Black CM, Lyons Kmet al. CCN2 1693 (connective tissue growth factor) promotes fibroblast adhesion to fibronectin. Mol 1694 Biol Cell. 2004;15(12):5635-46. 1695 70. Simms RW, Zerbini CA, Ferrante N, Anthony J, Felson DT, Craven DE. 1696 Fibromyalgia syndrome in patients infected with human immunodeficiency virus. The 1697 Boston City Hospital Clinical AIDS Team. Am J Med 1992;92(4): 368-74. 1698 Hong F, Saiman Y, Si C, Mosoian A, Bansal MB. X4 Human immunodeficiency 71. 1699 virus type 1 gp120 promotes human hepatic stellate cell activation and collagen I 1700 expression through interactions with CXCR4. PLoS One. 2012;7(3):e33659. 1701 72. Chen TC, Chang SW, Wang TY. Moxifloxacin modifies corneal fibroblast-to-1702 myofibroblast differentiation. Br J Pharmacol 2013;168(6): 1341-54. 1703 73. Ganjizadeh-Zavareh S, Sodhi M, Spangehl T, Carleton B, Etminan M. Oral 1704 fluoroquinolones and risk of fibromyalgia. Br J Clin Pharmacol 2019;85(1): 236-9. 1705 74. Squier CA. The effect of stretching on formation of myofibroblasts in mouse 1706 skin. Cell Tissue Res 1981;220(2): 325-35. 1707 75. Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B. Focal adhesion size 1708 controls tension-dependent recruitment of alpha-smooth muscle actin to stress 1709 fibers. J Cell Biol 2006;172(2): 259-68. 1710 76. Dolphens M, Vansteelandt S, Cagnie B, Vleeming A, Nijs J, Vanderstraeten G, 1711 Danneels L. Multivariable modeling of factors associated with spinal pain in young 1712 adolescence. Eur Spine J. 2016;25(9):2809-21. 1713

77.	Kaergaard A, Andersen JH. Musculoskeletal disorders of the neck and	1714
should	ders in female sewing machine operators: prevalence, incidence, and	1715
progn	osis. Occup Environ Med 2000;57(8): 528-34.	1716
78.	Chen JC, Dennerlein JT, Chang CC, Chang WR, Christiani DC. Seat inclination,	1717
use of	f lumbar support and low-back pain of taxi drivers. Scand J Work Environ	1718
Healt	n. 2005;31(4):258-65.	1719
79.	Kalichman L, Lachman H, Freilich N. Long-term impact of ankle sprains on	1720
postu	ral control and fascial densification. J Bodyw Mov Ther 2016;20(4): 914-9.	1721
80.	Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G. Mechanical	1722
tensic	on controls granulation tissue contractile activity and myofibroblast	1723
differ	differentiation. Am J Pathol 2001;159(3): 1009-20.	
81.	Burton AR, Brown R, Macefield VG. Selective activation of muscle and skin	1725
nocice	eptors does not trigger exaggerated sympathetic responses in spinal-injured	1726
subje	subjects. Spinal Cord. 2008;46(10):660-5.	
82.	Amoroso Borges BL, Bortolazzo GL, Neto HP. Effects of spinal manipulation	1728
and m	nyofascial techniques on heart rate variability: A systematic review. J Bodyw	1729
Mov 1	Ther 2018;22(1): 203-8.	1730
83.	Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmoulière A, Varga J, et al.	1731
Recen	t developments in myofibroblast biology: paradigms for connective tissue	1732
remo	deling. Am J Pathol 2012;180(4): 1340-55.	1733
84.	Goldenberg DL, Clauw DJ, Palmer RE, Clair AG. Opioid Use in Fibromyalgia: A	1734
Cautionary Tale. Mayo Clin Proc. 2016;91(5):640-8.		1735

85.	Niraj G, Alva S. Opioid Reduction and Long-Term Outcomes in Abdominal	1736
Myofa	Myofascial Pain Syndrome (AMPS): A 6-Year Longitudinal Prospective Audit of 207	
Patier	nts. Pain Physician. 2020;23(5):E441-E450.	1738
86.	Rico-Villademoros F, Postigo-Martin P, Garcia-Leiva JM, Ordoñez-Carrasco JL,	1739
Caland	dre EP. Patterns of pharmacologic and non-pharmacologic treatment,	1740
treatn	nent satisfaction and perceived tolerability in patients with fibromyalgia: a	1741
patier	nts' survey. Clin Exp Rheumatol 2020;38 Suppl 123(1): 72-8.	1742
87.	Frost FA, Jessen B, Siggaard-Andersen J. A control, double-blind comparison	1743
of me	pivacaine injection versus saline injection for myofascial pain. Lancet	1744
1980;	1(8167): 499-500.	1745
88.	Langevin HM, Churchill DL, Cipolla MJ. Mechanical signaling through	1746
connective tissue: a mechanism for the therapeutic effect of acupuncture. FASEB J.		1747
2001;15(12):2275-82.		1748
89.	Langevin HM, Churchill DL, Fox JR, Badger GJ, Garra BS, Krag MH.	1749
Biomechanical response to acupuncture needling in humans. J Appl Physiol (1985)		1750
2001;	91(6): 2471-8.	1751
90.	Tomasek JJ, Haaksma CJ, Eddy RJ, Vaughan MB. Fibroblast contraction occurs	1752
on rel	ease of tension in attached collagen lattices: dependency on an organized actin	1753
cytosk	celeton and serum. Anat Rec 1992;232(3): 359-68.	1754
91.	Fox JR, Gray W, Koptiuch C, Badger GJ, Langevin HM. Anisotropic tissue	1755
motio	n induced by acupuncture needling along intermuscular connective tissue	1756
planes. J Altern Complement Med. 2014;20(4):290-4.		1757

92.	Ernberg M, Hedenberg-Magnusson B, Alstergren P, Kopp S. The level of	1758
seroto	onin in the superficial masseter muscle in relation to local pain and allodynia.	1759
Life So	ci 1999;65(3): 313-25.	1760
93.	Moraska AF, Hickner RC, Kohrt WM, Brewer A. Changes in blood flow and	1761
cellula	ar metabolism at a myofascial trigger point with trigger point release (ischemic	1762
comp	ression): a proof-of-principle pilot study. Arch Phys Med Rehabil.	1763
2013;	94(1):196-200.	1764
94.	Kural MH, Billiar KL. Myofibroblast persistence with real-time changes in	1765
bound	dary stiffness. Acta Biomater 2016;32: 223-30.	1766
95.	Sánchez-Infante J, Bravo-Sánchez A, Jiménez F, Abián-Vicén J. Effects of Dry	1767
Need	ing on Muscle Stiffness in Latent Myofascial Trigger Points: A Randomized	1768
Controlled Trial. J Pain. 2021;S1526-5900(21)00024-9		1769
96.	Maher RM, Hayes DM, Shinohara M. Quantification of dry needling and	1770
postu	re effects on myofascial trigger points using ultrasound shear-wave	1771
elastography. Arch Phys Med Rehabil. 2013;94(11):2146-50.		1772
97.	Luan S, Zhu ZM, Ruan JL, Lin CN, Ke SJ, Xin WJ, et al. Randomized Trial on	1773
Comp	arison of the Efficacy of Extracorporeal Shock Wave Therapy and Dry Needling	1774
in My	ofascial Trigger Points. Am J Phys Med Rehabil 2019;98(8): 677-84.	1775
98.	https://www.youtube.com/watch?v=uzy8-	1776
wQzQ	MY&t=3s&ab_channel=RonelleWood	1777
Micro	scopic view of the dynamic fiber network. Force vectors travel according to	1778
the complex architecture.		1779

99.	1780
https://www.youtube.com/watch?v=cqHtEtZ9mRQ&t=177s&ab_channel=MedFreel	1781
ancers	1782
2:59-3:09 top left – fascia tears without diathermy touching it under low forces, or	1783
manipulation in areas adjacent to it.	1784
100. https://www.youtube.com/watch?v=3u0hjs53IMU&ab_channel=JeffreyChua	1785
Needles vibrate when inserted. Some seem to be moved by horizontal force	1786
vectors. Patterns of vibration change as a function of time. It seems some groups	1787
of needles vibrate together. Overall a complex dynamic behavior is observed.	1788
101. https://www.youtube.com/watch?v=eW0lvOVKDxE&ab_channel=UKyOrtho	1789
102. Li ADR, Putra KB, Chen L, Montgomery JS, Shih A. Mosquito proboscis-	1790
inspired needle insertion to reduce tissue deformation and organ displacement. Sci	1791
Rep. 2020;10(1):12248.	
103. Li ADR, Liu Y, Plott J, Chen L, Montgomery JS, Shih A. Multi-Bevel Needle	1793
Design Enabling Accurate Insertion in Biopsy for Cancer Diagnosis. IEEE Trans Biomed	1794
Eng. 2021;68(5):1477-1486.	1795
104. Langevin HM, Konofagou EE, Badger GJ, Churchill DL, Fox JR, Ophir J, Garra	1796
BS. Tissue displacements during acupuncture using ultrasound elastography	1797
techniques. Ultrasound Med Biol. 2004;30(9):1173-83.	1798
105. Langevin HM, Churchill DL, Wu J, Badger GJ, Yandow JA, Fox JR, et al.	1799
Evidence of connective tissue involvement in acupuncture. FASEB J. 2002;16(8):872-	1800
4.	1801

106.	Soreide E, Murad MH, Denbeigh JM, Lewallen EA, Dudakovic A, Nordsletten L,	1802
et al. Tr	reatment of Dupuytren's contracture: a systematic review. Bone Joint J	1803
2018;10	00-В(9): 1138-45.	1804
107.	Moog P, Buchner L, Cerny MK, Schmauss D, Megerle K, Erne H. Analysis of	1805
recurre	nce and complications after percutaneous needle fasciotomy in Dupuytren's	1806
disease	. Arch Orthop Trauma Surg 2019;139(10): 1471-7.	1807
108.	Sellman JR. Plantar fascia rupture associated with corticosteroid injection.	1808
Foot An	nkle Int 1994;15(7): 376-81.	1809
109.	Wu L. Nonlinear finite element analysis for musculoskeletal biomechanics of	1810
medial	and lateral plantar longitudinal arch of Virtual Chinese Human after plantar	1811
ligamer	ntous structure failures. Clin Biomech (Bristol, Avon). 2007;22(2):221-9.	1812
110.	Hettrich CM, DiCarlo EF, Faryniarz D, Vadasdi KB, Williams R, Hannafin JA. The	1813
effect o	of myofibroblasts and corticosteroid injections in adhesive capsulitis. J	1814
Shoulder Elbow Surg. 2016;25(8):1274-9.		1815
111.	Sanjuan-Cervero R, Carrera-Hueso FJ, Vazquez-Ferreiro P, Gomez-Herrero D.	1816
Adverse	e Effects of Collagenase in the Treatment of Dupuytren Disease: A Systematic	1817
Review	. BioDrugs 2017;31(2): 105-15.	1818
112.	Lin FY, Manrique OJ, Lin CL, Cheng HT. Incidence of trigger digits following	1819
carpal t	unnel release: A nationwide, population-based retrospective cohort study.	1820
Medicir	ne (Baltimore). 2017;96(27):e7355.	1821
113.	Acar MA, Kütahya H, Güleç A, Elmadağ M, Karalezli N, Ogun TC. Triggering of	1822
the Digi	its After Carpal Tunnel Surgery. Ann Plast Surg. 2015;75(4):393-7.	1823
114.	Mishra AK, Skrepnik NV, Edwards SG, Jones GL, Sampson S, Vermillion DA, et	1824
al. Effic	acy of platelet-rich plasma for chronic tennis elbow: a double-blind,	1825

prospective, multicenter, randomized controlled trial of 230 patients. Am J Sports	1826
Med 2014;42(2): 463-71.	
115. Gottlieb NL, Riskin WG. Complications of local corticosteroid injections. JAMA	1828
1980;243(15): 1547-8.	1829
116. Stotts AK, Carroll KL, Schafer PG, Santora SD, Branigan TD. Medial	1830
compartment syndrome of the foot: an unusual complication of spine surgery. Spine	1831
(Phila Pa 1976) 2003;28(6): E118-20.	1832
117. Mierau D, Cassidy JD, Yong-Hing K. Low-back pain and straight leg raising in	1833
children and adolescents. Spine (Phila Pa 1976). 1989;14(5):526-8.	1834
118. Vassaux M, Milan JL. Stem cell mechanical behaviour modelling: substrate's	1835
curvature influence during adhesion. Biomech Model Mechanobiol.	1836
2017;16(4):1295-1308.	
119. Hindman B, Ma Q. Carbon nanotubes and crystalline silica induce matrix	1838
remodeling and contraction by stimulating myofibroblast transformation in a three-	1839
dimensional culture of human pulmonary fibroblasts: role of dimension and rigidity.	1840
Arch Toxicol. 2018;92(11):3291-3305.	1841
120. Amris K, Jespersen A, Bliddal H. Self-reported somatosensory symptoms of	1842
neuropathic pain in fibromyalgia and chronic widespread pain correlate with tender	1843
point count and pressure-pain thresholds. Pain 2010;151(3): 664-9.	1844
121. Bordoni B, Bordoni G. Reflections on osteopathic fascia treatment in the	1845
peripheral nervous system. J Pain Res 2015;8: 735-40.	1846
122. Petersen MW, Schröder A, Jørgensen T, Ørnbøl E, Meinertz Dantoft T, Eliasen	1847
M, et al. Irritable bowel, chronic widespread pain, chronic fatigue and related	1848

syndromes are prevalent and highly overlapping in the general population: DanFunD.	
Sci Rep 2020;10(1): 3273.	
123. Creed F. A review of the incidence and risk factors for fibromyalgia and	1851
chronic widespread pain in population-based studies. Pain 2020;161(6): 1169-76.	1852
124. Kalyan-Raman UP, Kalyan-Raman K, Yunus MB, Masi AT. Muscle pathology in	1853
primary fibromyalgia syndrome: a light microscopic, histochemical and	1854
ultrastructural study. J Rheumatol 1984;11(6): 808-13.	1855
125. Sprott H, Salemi S, Gay RE, Bradley LA, Alarcón GS, Oh SJ, et al. Increased DNA	1856
fragmentation and ultrastructural changes in fibromyalgic muscle fibres. Ann Rheum	1857
Dis 2004;63(3): 245-51.	1858
126. Elvin A, Siösteen AK, Nilsson A, Kosek E. Decreased muscle blood flow in	1859
fibromyalgia patients during standardised muscle exercise: a contrast media	1860
enhanced colour Doppler study. Eur J Pain. 2006;10(2):137-44.	
127. Zdebik N, Zdebik A, Boguslawska J, Przezdziecka-Dolyk J, Turno-Krecicka A.	1862
Fibromyalgia syndrome and the eye-A review. Surv Ophthalmol 2021;66(1): 132-7.	1863
128. Morf S, Amann-Vesti B, Forster A, Franzeck UK, Koppensteiner R, Uebelhart	1864
D, et al. Microcirculation abnormalities in patients with fibromyalgia - measured by	1865
capillary microscopy and laser fluxmetry. Arthritis Res Ther 2005;7(2): R209-16.	1866
129. Grassi W, Core P, Carlino G, Salaffi F, Cervini C. Capillary permeability in	1867
fibromyalgia. J Rheumatol 1994;21(7): 1328-31.	1868
130. Evdokimov D, Kreß L, Dinkel P, Frank J, Sommer C, Üçeyler N. Pain-associated	1869
Mediators and Axon Pathfinders in Fibromyalgia Skin Cells. J Rheumatol.	1870
2020;47(1):140-148.	

131.	Wachter KC, Kaeser HE, Gühring H, Ettlin TM, Mennet P, Müller W. Muscle	1872
damp	ing measured with a modified pendulum test in patients with fibromyalgia,	1873
lumba	ago, and cervical syndrome. Spine (Phila Pa 1976). 1996;21(18):2137-42.	1874
132.	Costantini R, Affaitati G, Massimini F, Tana C, Innocenti P, Giamberardino MA.	1875
Lapar	oscopic Cholecystectomy for Gallbladder Calculosis in Fibromyalgia Patients:	1876
Impa	ct on Musculoskeletal Pain, Somatic Hyperalgesia and Central Sensitization.	1877
PLoS	One. 2016;11(4):e0153408.	1878
133.	Shang Y, Gurley K, Symons B, Long D, Srikuea R, Crofford LJ, et al. Noninvasive	1879
optica	al characterization of muscle blood flow, oxygenation, and metabolism in	1880
wome	en with fibromyalgia. Arthritis Res Ther. 2012;14(6):R236.	1881
134.	Bengtsson A, Henriksson KG, Larsson J. Muscle biopsy in primary	1882
fibror	nyalgia. Light-microscopical and histochemical findings. Scand J Rheumatol.	1883
1986;15(1):1-6.		1884
135.	Chen WT, Yu CH, Sun CW. Altered near-infrared spectroscopy response to	1885
breat	h-holding in patients with fibromyalgia. J Biophotonics.	1886
2019;	12(1):e201800142.	1887
136.	Bengtsson A, Henriksson KG, Larsson J. Reduced high-energy phosphate	1888
levels	in the painful muscles of patients with primary fibromyalgia. Arthritis Rheum	1889
1986;	29(7): 817-21.	1890
137.		
	Ciregia F, Giacomelli C, Giusti L, et al. Putative salivary biomarkers useful to	1891
differ	entiate patients with fibromyalgia. J Proteomics 2019;190: 44-54.	1891 1892
differ 138.		
138.	entiate patients with fibromyalgia. J Proteomics 2019;190: 44-54.	1892

139. Misc	ono S, Dietrich M, Piccirillo JF. The Puzzle of Medically Unexplained	1896
Symptoms-	A Holistic View of the Patient With Laryngeal Symptoms. JAMA	1897
Otolaryngol	Head Neck Surg. 2020;146(6):550-551.	1898
140. Mae	kawa K, Clark GT, Kuboki T. Intramuscular hypoperfusion, adrenergic	1899
receptors, a	nd chronic muscle pain. J Pain 2002;3(4): 251-60.	1900
141. Gold	AR, Dipalo F, Gold MS, Broderick J. Inspiratory airflow dynamics during	1901
sleep in wo	men with fibromyalgia. Sleep. 2004;27(3):459-66.	1902
142. Grat	oowski PJ, Slane LC, Thelen DG, Obermire T, Lee KS. Evidence of	1903
Generalized	Muscle Stiffness in the Presence of Latent Trigger Points Within	1904
Infraspinatu	is. Arch Phys Med Rehabil. 2018;99(11):2257-2262.	1905
143. Cho	KI, Lee JH, Kim SM, Lee HG, Kim TI. Assessment of endothelial function in	1906
patients wit	h fibromyalgiacardiac ultrasound study. Clin Rheumatol. 2011;	1907
30(5):647-5	4.	1908
144. Triai	ntafyllias K, Stortz M, de Blasi M, Leistner C, Weinmann-Menke J,	1909
Schwarting	A. Increased aortic stiffness in patients with fibromyalgia: results of a	1910
prospective	study on carotid-femoral pulse wave velocity. Clin Exp Rheumatol.	1911
2019;37 Sup	opl 116(1):114-115.	1912
145. Katz	RS, Leavitt F, Small AK, Small BJ. Intramuscular Pressure is Almost Three	1913
Times Highe	er in Fibromyalgia Patients: A Possible Mechanism for Understanding the	1914
Muscle Pair	and Tenderness. J Rheumatol. 2020:jrheum.191068.	1915
146. Cost	anzo, L. S. (2018). Physiology (Sixth edition.). Philadelphia, PA: Elsevier.	1916
pp. 128,129		1917

147.	Gerdle B, Söderberg K, Salvador Puigvert L, Rosendal L, Larsson B. Increased	1918
inters	titial concentrations of pyruvate and lactate in the trapezius muscle of patients	1919
with f	ibromyalgia: a microdialysis study. J Rehabil Med. 2010;42(7):679-87.	1920
148.	McIver KL, Evans C, Kraus RM, Ispas L, Sciotti VM, Hickner RC. NO-mediated	1921
altera	tions in skeletal muscle nutritive blood flow and lactate metabolism in	1922
fibror	nyalgia. Pain. 2006;120(1-2):161-169.	1923
149.	van Tilburg MAL, Parisien M, Boles RG, Drury GL, Smith-Voudouris J, Verma V,	1924
et al.	A genetic polymorphism that is associated with mitochondrial energy	1925
metal	bolism increases risk of fibromyalgia. Pain. 2020;161(12):2860-2871.	1926
150.	Efrati S, Golan H, Bechor Y, Faran Y, Daphna-Tekoah S, Sekler G, et al.	1927
Нурен	rbaric oxygen therapy can diminish fibromyalgia syndromeprospective clinical	1928
trial. I	PLoS One. 2015;10(5):e0127012	1929
151.	Ciampi de Andrade D, Maschietto M, Galhardoni R, Gouveia G, Chile T,	1930
Victor	rino Krepischi AC, et al. Epigenetics insights into chronic pain: DNA	1931
hypor	methylation in fibromyalgia-a controlled pilot-study. Pain. 2017;158(8):1473-	1932
1480.		1933
152.	Perez-Ruiz F, Calabozo M, Alonso-Ruiz A, Herrero A, Ruiz-Lucea E, Otermin I.	1934
High p	prevalence of undetected carpal tunnel syndrome in patients with fibromyalgia	1935
syndr	ome. J Rheumatol. 1995;22(3):501-4.	1936
153.	Bennett RM, Jones J, Turk DC, Russell IJ, Matallana L. An internet survey of	1937
2,596	people with fibromyalgia. BMC Musculoskelet Disord. 2007; 8:27.	1938
154.	Firestein GS, Kelley WN. Kelley's textbook of rheumatology. 9th ed.	1939
Philac	delphia, PA: Elsevier/Saunders; 2013. pp. 351, 730, 733-750.	1940

155.	Sugawara O, Atsuta Y, Iwahara T, Muramoto T, Watakabe M, Takemitsu Y.	1941
The ef	fects of mechanical compression and hypoxia on nerve root and dorsal root	1942
gangli	a. An analysis of ectopic firing using an in vitro model. Spine (Phila Pa 1976).	1943
1996;	21(18):2089-94.	1944
156.	Song XJ, Hu SJ, Greenquist KW, Zhang JM, LaMotte RH. Mechanical and	1945
therm	al hyperalgesia and ectopic neuronal discharge after chronic compression of	1946
dorsa	root ganglia. J Neurophysiol. 1999;82(6):3347-58.	1947
157.	Gotoh H, Takahashi A. Mechanical stimuli induce intracellular calcium	1948
respo	nse in a subpopulation of cultured rat sensory neurons. Neuroscience.	1949
1999;	92(4):1323-9.	1950
158.	Gladman SJ, Ward RE, Michael-Titus AT, Knight MM, Priestley JV. The effect	1951
of me	chanical strain or hypoxia on cell death in subpopulations of rat dorsal root	1952
gangli	on neurons in vitro. Neuroscience. 2010;171(2):577-87.	1953
159.	Wang JC, Sung FC, Men M, Wang KA, Lin CL, Kao CH. Bidirectional association	1954
betwe	en fibromyalgia and gastroesophageal reflux disease: two population-based	1955
retros	pective cohort analysis. Pain. 2017;158(10):1971-1978	1956
160.	Nathan H. Osteophytes of the spine compressing the sympathetic trunk and	1957
spland	chnic nerves in the thorax. Spine (Phila Pa 1976). 1987;12(6):527-32	1958
161.	Weinberg H, Nathan H, Magora F, Robin GC, Aviad I. Arthritis of the first	1959
costo	vertebral joint as a cause of thoracic outlet syndrome. Clin Orthop Relat Res.	1960
1972;	86:159-63.	1961
162.	Saber AA, Boros MJ, Mancl T, Elgamal MH, Song S, Wisadrattanapong T. The	1962
effect	of laparoscopic Roux-en-Y gastric bypass on fibromyalgia. Obes Surg	1963
2008;	18(6): 652-5.	1964

163.	Adkisson CD, Yip L, Armstrong MJ, Stang MT, Carty SE, McCoy KL.	1965
Fibro	myalgia symptoms and medication requirements respond to	1966
parat	hyroidectomy. Surgery. 2014;156(6):1614-20; discussion 1620-1.	1967
164.	Raftopoulos Y, Papasavas P, Landreneau R, et al. Clinical outcome of	1968
laparo	oscopic antireflux surgery for patients with irritable bowel syndrome. Surg	1969
Endos	sc. 2004;18(4):655-9.	1970
165.	Wu MC, Ma KS, Wang YH, Wei JC. Impact of tonsillectomy on irritable bowel	1971
syndr	ome: A nationwide population-based cohort study. PLoS One.	1972
2020;	15(9):e0238242.	1973
166.	Rosen JM, Adams PN, Saps M. Umbilical hernia repair increases the rate of	1974
functi	ional gastrointestinal disorders in children. J Pediatr. 2013; 163(4):1065-8.	1975
167.	Yang CY, Wu MC, Lin MC, Wei JC. Risk of irritable bowel syndrome in patients	1976
who u	underwent appendectomy: A nationwide population-based cohort study.	1977
EClini	calMedicine. 2020;23:100383.	1978
168.	Vincent A, Whipple MO, Luedtke CA, Oh TH, Sood R, Smith RL, et al. Pain and	1979
other	symptom severity in women with fibromyalgia and a previous hysterectomy. J	1980
Pain F	Res. 2011;4:325-9.	1981
169.	Vleeming A, Schuenke MD, Danneels L, Willard FH. The functional coupling of	1982
the d	eep abdominal and paraspinal muscles: the effects of simulated paraspinal	1983
musc	le contraction on force transfer to the middle and posterior layer of the	1984
thora	columbar fascia. J Anat. 2014;225(4):447-62.	1985
170.	Wolfe F, Rasker JJ, Häuser W. Hearing loss in fibromyalgia? Somatic sensory	1986
and n	on-sensory symptoms in patients with fibromyalgia and other rheumatic	1987
disor	ders. Clin Exp Rheumatol. 2012;30(6 Suppl 74):88-93	1988

171.	Evdokimov D, Frank J, Klitsch A, Unterecker S, Warrings B, Serra J, et al.	1989
Reduc	tion of skin innervation is associated with a severe fibromyalgia phenotype.	1990
Ann N	eurol. 2019;86(4):504-516.	1991
172.	https://www.uptodate.com/contents/clinical-manifestations-and-diagnosis-	1992
<u>of-fibr</u>	omyalgia-in-	1993
<u>adults</u>	?search=fibrommyalgia&source=search result&selectedTitle=1~150&usage ty	1994
pe=de	fault&display rank=1 By Don L Goldenberg, accessed March 2021.	1995
173.	Raphael KG, Marbach JJ. Comorbid fibromyalgia accounts for reduced	1996
fecun	dity in women with myofascial face pain. Clin J Pain 2000;16(1): 29-36.	1997
174.	Mancuso AC, Summers KM, Mengeling MA, Torner JC, Ryan GL, Sadler AG.	1998
Inferti	lity and Health-Related Quality of Life in United States Women Veterans. J	1999
Wome	ens Health (Larchmt) 2020;29(3): 412-9.	2000
175.	Piersiala K, Akst LM, Hillel AT, Best SR. Chronic Pain Syndromes and Their	2001
Laryn	geal Manifestations. JAMA Otolaryngol Head Neck Surg. 2020;146(6):543-549.	2002
176.	Vaeroy H, Helle R, Forre O, Kass E, Terenius L. Elevated CSF levels of	2003
substa	ance P and high incidence of Raynaud phenomenon in patients with	2004
fibron	nyalgia: new features for diagnosis. Pain 1988;32(1): 21-6.	2005
177.	Simms RW, Zerbini CA, Ferrante N, Anthony J, Felson DT, Craven DE.	2006
Fibror	nyalgia syndrome in patients infected with human immunodeficiency virus. The	2007
Bosto	n City Hospital Clinical AIDS Team. Am J Med. 1992;92(4):368-74.	2008
178.	Clark S, Tindall E, Bennett RM. A double blind crossover trial of prednisone	2009
versus	placebo in the treatment of fibrositis. J Rheumatol. 1985;12(5):980-3. PMID:	2010
39108	36.	2011

179.	Basi DL, Velly AM, Schiffman EL, Lenton PA, Besspiata DA, Rankin AM, et al.	2012
Huma	in temporomandibular joint and myofascial pain biochemical profiles: a case-	2013
contro	ol study. J Oral Rehabil. 2012;39(5):326-37.	2014
180.	Grosman-Rimon L, Parkinson W, Upadhye S, Clarke H, Katz J, Flannery J, et al.	2015
Circul	ating biomarkers in acute myofascial pain: A case-control study. Medicine	2016
(Baltiı	more) 2016;95(37): e4650.	2017
181.	Niddam DM, Lee SH, Su YT, Chan RC. Brain structural changes in patients with	2018
chron	ic myofascial pain. Eur J Pain. 2017;21(1):148-158.	2019
182.	Ramírez-Tejero JA, Martínez-Lara E, Peinado MÁ, Del Moral ML, Siles E.	2020
Hydro	exytyrosol as a Promising Ally in the Treatment of Fibromyalgia. Nutrients.	2021
2020;	12(8):2386.	2022
183.	Mennens SFB, Bolomini-Vittori M, Weiden J, Joosten B, Cambi A, van den	2023
Dries	K. Substrate stiffness influences phenotype and function of human antigen-	2024
prese	nting dendritic cells. Sci Rep. 2017;7(1):17511.	2025
184.	Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac	2026
myofi	broblast engulfment of dead cells facilitates recovery after myocardial	2027
infarc	tion. J Clin Invest. 2017;127(1):383-401.	2028
185.	Saada JI, Pinchuk IV, Barrera CA, Adegboyega PA, Suarez G, Mifflin RC, et al.	2029
Subep	pithelial myofibroblasts are novel nonprofessional APCs in the human colonic	2030
muco	sa. J Immunol. 2006;177(9):5968-79.	2031
186.	Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, et al.	2032
Cross	-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals	2033
Antig	en-Presenting Cancer-Associated Fibroblasts. Cancer Discov. 2019;9(8):1102-	2034
1123.		2035

187.	Fang M, Xia J, Wu X, Kong H, Wang H, Xie W, et al. Adenosine signaling	2036
inhibit	s CIITA-mediated MHC class II transactivation in lung fibroblast cells. Eur J	2037
Immu	nol. 2013;43(8):2162-73.	2038
188.	Boots AM, Wimmers-Bertens AJ, Rijnders AW. Antigen-presenting capacity of	2039
rheum	natoid synovial fibroblasts. Immunology. 1994;82(2):268-74.	2040
189.	Jacobsen S, Høyer-Madsen M, Danneskiold-Samsøe B, Wiik A. Screening for	2041
autoar	ntibodies in patients with primary fibromyalgia syndrome and a matched	2042
contro	ol group. APMIS. 1990;98(7):655-8.	2043
190.	Staud R. Peripheral pain mechanisms in chronic widespread pain. Best Pract	2044
Res Cli	in Rheumatol. 2011;25(2):155-64.	2045
191.	Sacheti A, Szemere J, Bernstein B, Tafas T, Schechter N, Tsipouras P. Chronic	2046
pain is	a manifestation of the Ehlers-Danlos syndrome. J Pain Symptom Manage.	2047
1997;1	14(2):88-93.	2048
192.	Acasuso-Díaz M, Collantes-Estévez E. Joint hypermobility in patients with	2049
fibrom	nyalgia syndrome. Arthritis Care Res. 1998;11(1):39-42.	2050
193.	Zoppi N, Chiarelli N, Binetti S, Ritelli M, Colombi M. Dermal fibroblast-to-	2051
myofil	problast transition sustained by αv ß3 integrin-ILK-Snail1/Slug signaling is a	2052
comm	on feature for hypermobile Ehlers-Danlos syndrome and hypermobility	2053
spectr	um disorders. Biochim Biophys Acta Mol Basis Dis. 2018;1864(4 Pt A):1010-	2054
1023.		2055
194.	Chiarelli N, Zoppi N, Ritelli M, Venturini M, Capitanio D, Gelfi C, et al.	2056
Biolog	ical insights in the pathogenesis of hypermobile Ehlers-Danlos syndrome from	2057
protec	ome profiling of patients' dermal myofibroblasts. Biochim Biophys Acta Mol	2058
Basis [Dis 2021; 1867(4): 166051.	2059

195.	Seo BR, Chen X, Ling L, Song YH, Shimpi AA, Choi S, et al. Collagen	2060
micro	architecture mechanically controls myofibroblast differentiation. Proc Natl	2061
Acad	Sci U S A. 2020;117(21):11387-11398.	2062
196.	Lown EA, Lui CK, Karriker-Jaffe K, Mulia N, Williams E, Ye Y, et al. Adverse	2063
childh	nood events and risk of diabetes onset in the 1979 National longitudinal survey	2064
of you	uth cohort. BMC Public Health. 2019;19(1):1007.	2065
197.	Gostine M, Davis F, Roberts BA, Risko R, Asmus M, Cappelleri JC, et al. Clinical	2066
Chara	cteristics of Fibromyalgia in a Chronic Pain Population. Pain Pract.	2067
2018;	18(1):67-78.	2068
198.	Gupta A, McBeth J, Macfarlane GJ, Morriss R, Dickens C, Ray D, et al. Pressure	2069
pain t	hresholds and tender point counts as predictors of new chronic widespread	2070
pain i	n somatising subjects. Ann Rheum Dis. 2007; 66(4):517-21.	2071
199.	McHugh J. Increased risk of self-harm in fibromyalgia. Nat Rev Rheumatol.	2072
2020;	16(8):408.	2073
200.	Clauw DJ. What is the meaning of "small fiber neuropathy" in fibromyalgia?	2074
Pain.	2015 Nov;156(11):2115-2116.	2075
201.	Fournier AJ, Hogan JD, Rajbhandari L, Shrestha S, Venkatesan A, Ramesh KT.	2076
Chan	ges in Neurofilament and Microtubule Distribution following Focal Axon	2077
Comp	ression. PLoS One. 2015;10(6):e0131617.	2078
202.	Kayal C, Moeendarbary E, Shipley RJ, Phillips JB. Mechanical Response of	2079
Neural Cells to Physiologically Relevant Stiffness Gradients. Adv Healthc Mater.		2080
2020;9(8):e1901036.		2081

203.	Gu Y, Ji Y, Zhao Y, Liu Y, Ding F, Gu X, et al. The influence of substrate stiffness	2082
on the	e behavior and functions of Schwann cells in culture. Biomaterials.	2083
2012;	33(28):6672-81.	2084
204.	Chen JY, Newcomb B, Zhou C, Pondick JV, Ghoshal S, York SR, et al. Tricyclic	2085
Antid	epressants Promote Ceramide Accumulation to Regulate Collagen Production in	2086
Huma	n Hepatic Stellate Cells. Sci Rep. 2017;7:44867	2087
205.	Morrissey JJ. Pleiotropic effects of amitriptyline ameliorate renal fibrosis.	2088
Kidne	y Int. 2009;75(6):583-4	2089
206.	Olianas MC, Dedoni S, Onali P. Antidepressants induce profibrotic responses	2090
via th	e lysophosphatidic acid receptor LPA1. Eur J Pharmacol. 2020;873:172963.	2091
207.	Bruno R, Galastri S, Sacchi P, Cima S, Caligiuri A, DeFranco R, et al. gp120	2092
modu	lates the biology of human hepatic stellate cells: a link between HIV infection	2093
and liv	ver fibrogenesis. Gut. 2010;59(4):513-20.	2094
208.	Aberer E, Surtov-Pudar M, Wilfinger D, Deutsch A, Leitinger G, Schaider H. Co-	2095
cultur	e of human fibroblasts and Borrelia burgdorferi enhances collagen and growth	2096
factor	mRNA. Arch Dermatol Res. 2018;310(2):117-126.	2097
209.	Unudurthi SD, Luthra P, Bose RJC, McCarthy JR, Kontaridis MI. Cardiac	2098
inflam	nmation in COVID-19: Lessons from heart failure. Life Sci. 2020;260:118482.	2099
210.	Kruglikov IL, Scherer PE. The Role of Adipocytes and Adipocyte-Like Cells in	2100
the Se	everity of COVID-19 Infections. Obesity (Silver Spring). 2020;28(7):1187-1190.	2101
211.	Russell IJ, Vaeroy H, Javors M, Nyberg F. Cerebrospinal fluid biogenic amine	2102
metal	polites in fibromyalgia/fibrositis syndrome and rheumatoid arthritis. Arthritis	2103
Rheum 1992;35(5): 550-6.		2104

212.	Alcaino C, Knutson KR, Treichel AJ, Yildiz G, Strege PR, Linden DR, et al. A	2105
popula	ation of gut epithelial enterochromaffin cells is mechanosensitive and requires	2106
Piezo2	2 to convert force into serotonin release. Proc Natl Acad Sci U S A.	2107
2018;:	115(32):E7632-E7641.	2108
213.	Pan J, Copland I, Post M, Yeger H, Cutz E. Mechanical stretch-induced	2109
seroto	onin release from pulmonary neuroendocrine cells: implications for lung	2110
develo	opment. Am J Physiol Lung Cell Mol Physiol. 2006;290(1):L185-93.	2111
214.	Dolivo DM, Larson SA, Dominko T. Tryptophan metabolites kynurenine and	2112
seroto	onin regulate fibroblast activation and fibrosis. Cell Mol Life Sci 2018;75(20):	2113
3663-8	81.	2114
215.	Stunes AK, Reseland JE, Hauso O, Kidd M, Tømmerås K, Waldum HL, et al.	2115
Adipo	cytes express a functional system for serotonin synthesis, reuptake and	2116
recept	tor activation. Diabetes Obes Metab 2011;13(6): 551-8.	2117
216.	Jaschko G, Hepp U, Berkhoff M, Schmet M, Michel BA, Gay S, et al. Serum	2118
seroto	onin levels are not useful in diagnosing fibromyalgia. Ann Rheum Dis.	2119
2007;(66(9):1267-8	2120
217.	Legangneux E, Mora JJ, Spreux-Varoquaux O, Thorin I, Herrou M, Alvado G, et	2121
al. Cer	rebrospinal fluid biogenic amine metabolites, plasma-rich platelet serotonin	2122
and [3	BH]imipramine reuptake in the primary fibromyalgia syndrome. Rheumatology	2123
(Oxfor	rd). 2001;40(3):290-6.	2124
218.	Russell IJ, Michalek JE, Vipraio GA, Fletcher EM, Javors MA, Bowden CA.	2125
Platel	et 3H-imipramine uptake receptor density and serum serotonin levels in	2126
patien	nts with fibromyalgia/fibrositis syndrome. J Rheumatol. 1992;19(1):104-9.	2127
PMID:	: 1313504.	2128

219.	Groven N, Reitan SK, Fors EA, Guzey IC. Kynurenine metabolites and ratios	2129
differ	between Chronic Fatigue Syndrome, Fibromyalgia, and healthy controls.	2130
Psych	oneuroendocrinology. 2021;131:105287.	2131
220.	Russell IJ, Vipraio GA, Morgan WW, Bowden CL. Is there a metabolic basis for	2132
the fil	prositis syndrome? Am J Med. 1986;81(3A):50-4	2133
221.	Yunus MB, Dailey JW, Aldag JC, Masi AT, Jobe PC. Plasma tryptophan and	2134
other	amino acids in primary fibromyalgia: a controlled study. J Rheumatol 1992;	2135
19(1):	90-4.	2136
222.	Marcelin G, Silveira ALM, Martins LB, Ferreira AV, Clément K. Deciphering the	2137
cellula	ar interplays underlying obesity-induced adipose tissue fibrosis. J Clin Invest.	2138
2019;	129(10):4032-4040.	2139
223.	Okifuji A, Turk DC. Sex hormones and pain in regularly menstruating women	2140
with f	ibromyalgia syndrome. J Pain 2006;7(11): 851-9.	2141
224.	Wu M, Han M, Li J, Xu X, Li T, Que L, et al. 17beta-estradiol inhibits	2142
angio	tensin II-induced cardiac myofibroblast differentiation. Eur J Pharmacol.	2143
2009;	616(1-3):155-9.	2144
225.	Ilg MM, Stafford SJ, Mateus M, Bustin SA, Carpenter MJ, Muneer A, et al.	2145
Phosp	hodiesterase Type 5 Inhibitors and Selective Estrogen Receptor Modulators	2146
Can P	revent But Not Reverse Myofibroblast Transformation in Peyronie's Disease. J	2147
Sex N	led. 2020;17(10):1848-1864.	2148
226.	Carthy JM, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin CH, et al.	2149
Tamo	xifen Inhibits TGF- β -Mediated Activation of Myofibroblasts by Blocking Non-	2150
Smad	Signaling Through ERK1/2. J Cell Physiol. 2015;230(12):3084-92.	2151

227.	Jiang HS, Zhu LL, Zhang Z, Chen H, Chen Y, Dai YT. Estradiol attenuates the	2152
TGF-β	1-induced conversion of primary TAFs into myofibroblasts and inhibits collagen	2153
produ	ction and myofibroblast contraction by modulating the Smad and Rho/ROCK	2154
signal	ing pathways. Int J Mol Med. 2015;36(3):801-7.	2155
228.	Tu CH, Lin CL, Yang ST, Shen WC, Chen YH. Hormonal Contraceptive	2156
Treat	ment May Reduce the Risk of Fibromyalgia in Women with Dysmenorrhea: A	2157
Cohor	t Study. J Pers Med. 2020;10(4):280.	2158
229.	Blümel JE, Palacios S, Legorreta D, Vallejo MS, Sarra S. Is fibromyalgia part of	2159
the cli	imacteric syndrome? Maturitas. 2012;73(2):87-93.	2160
230.	Ramirez-Moreno JM, Ceberino D, Gonzalez Plata A, Rebollo B, Macias Sedas	2161
P, Har	iramani R, et al. Mask-associated 'de novo' headache in healthcare workers	2162
durin	g the COVID-19 pandemic. Occup Environ Med. 2020;oemed-2020-106956.	2163
231.	Lim EC, Seet RC, Lee KH, Wilder-Smith EP, Chuah BY, Ong BK. Headaches and	2164
the N	95 face-mask amongst healthcare providers. Acta Neurol Scand. 2006;	2165
113(3):199-202.	2166
232.	Blau JN. Ponytail headache: a pure extracranial headache. Headache 2004;	2167
44(5):	411-3.	2168
233.	Ansari HN, Solomon GD. Hijab (headscarf) headache. Headache 2015;55(3):	2169
437-8		2170
234.	Lane A. Bra strap headache. Med J Aust. 1983;1(4):155.	2171
235.	Balfour W. Observations on the Pathology and Cure of Rheumatism. Edinb	2172
Med S	Surg J. 1815;11(42):168-187.	2173
236.	Bardin L, Malfetes N, Newman-Tancredi A, Depoortere R. Chronic restraint	2174
stress	induces mechanical and cold allodynia, and enhances inflammatory pain in rat:	2175

Relevance to human stress-associated painful pathologies. Behav Brain Res 2009;	2176
205(2): 360-6.	
237. Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H.	2178
Chronic restraint stress causes anxiety- and depression-like behaviors,	2179
downregulates glucocorticoid receptor expression, and attenuates glutamate release	2180
induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog	2181
Neuropsychopharmacol Biol Psychiatry 2012;39(1): 112-9.	2182
238. Farhin S, Wong A, Delungahawatta T, Amin JY, Bienenstock J, Buck R, et al.	2183
Restraint stress induced gut dysmotility is diminished by a milk oligosaccharide (2'-	2184
fucosyllactose) in vitro. PLoS One 2019;14(4): e0215151.	2185
239. Sugama S, Sekiyama K, Kodama T, Takamatsu Y, Takenouchi T, Hashimoto M,	2186
et al. Chronic restraint stress triggers dopaminergic and noradrenergic	2187
neurodegeneration: Possible role of chronic stress in the onset of Parkinson's	2188
disease. Brain Behav Immun 2016;51: 39-46.	
240. Spyrka J, Hess G. Repeated Neck Restraint Stress Bidirectionally Modulates	2190
Excitatory Transmission in the Dentate Gyrus and Performance in a Hippocampus-	2191
dependent Memory Task. Neuroscience 2018;379: 32-44.	2192
241. Langevin HM, Stevens-Tuttle D, Fox JR, Badger GJ, Bouffard NA, Krag MH, et	2193
al. Ultrasound evidence of altered lumbar connective tissue structure in human	2194
subjects with chronic low back pain. BMC Musculoskelet Disord. 2009;10:151.	2195
242. Taş S, Korkusuz F, Erden Z. Neck Muscle Stiffness in Participants With and	2196
Without Chronic Neck Pain: A Shear-Wave Elastography Study. J Manipulative	2197
Physiol Ther. 2018;41(7):580-588.	2198

243.	Castro Sánchez AM, García López H, Fernández Sánchez M, Pérez Mármol JM,	2199
Aguila	r-Ferrándiz ME, Luque Suárez A, et al. Improvement in clinical outcomes after	2200
dry ne	edling versus myofascial release on pain pressure thresholds, quality of life,	2201
fatigu	e, pain intensity, quality of sleep, anxiety, and depression in patients with	2202
fibron	nyalgia syndrome. Disabil Rehabil. 2019;41(19):2235-2246.	2203
244.	Sarmiento-Hernández I, Pérez-Marín MLÁ, Nunez-Nagy S, Pecos-Martín D,	2204
Galleg	o-Izquierdo T, Sosa-Reina MD. Effectiveness of Invasive Techniques in Patients	2205
with F	ibromyalgia: Systematic Review and Meta-Analysis. Pain Med.	2206
2020;2	21(12):3499-3511.	2207
245.	Deare JC, Zheng Z, Xue CC, Liu JP, Shang J, Scott SW, et al. Acupuncture for	2208
treatir	ng fibromyalgia. Cochrane Database Syst Rev. 2013; 2013(5):CD007070.	2209
246.	Zhang XC, Chen H, Xu WT, Song YY, Gu YH, Ni GX. Acupuncture therapy for	2210
fibromyalgia: a systematic review and meta-analysis of randomized controlled trials.		2211
J Pain	J Pain Res. 2019;12:527-542.	
247.	Liu L, Huang QM, Liu QG, Thitham N, Li LH, Ma YT, et al. Evidence for Dry	2213
Needl	ing in the Management of Myofascial Trigger Points Associated With Low Back	2214
Pain: /	A Systematic Review and Meta-Analysis. Arch Phys Med Rehabil.	2215
2018;9	99(1):144-152.e2.	2216
248.	Dong Z, Shun-Yue L, Shu-You W, Hui-Min M. Evaluation of influence of	2217
acupu	ncture and electro-acupuncture for blood perfusion of stomach by laser	2218
Doppler blood perfusion imaging. Evid Based Complement Alternat Med. 2011;		2219
2011:969231.		2220

249.	Li X, Wang R, Xing X, Shi X, Tian J, Zhang J, et al Acupuncture for Myofascial	2221
Pain S	yndrome: A Network Meta-Analysis of 33 Randomized Controlled Trials. Pain	2222
Physic	cian. 2017;20(6):E883-E902.	2223
250.	Dorigo B, Bartoli V, Grisillo D, Beconi D. Fibrositic myofascial pain in	2224
intern	nittent claudication. Effect of anesthetic block of trigger points on exercise	2225
tolera	ince. Pain. 1979;6(2):183-190.	2226
251.	Tomàs M, Garcia N, Santafé MM, Lanuza M, Tomàs J. Protein kinase C	2227
involv	rement in the acetylcholine release reduction induced by amyloid-beta(25-35)	2228
aggre	gates on neuromuscular synapses. J Alzheimers Dis. 2009;18(4):877-84.	2229
252.	Levy Nogueira M, Hamraz M, Abolhassani M, Bigan E, Lafitte O, Steyaert JM,	2230
et al.	Mechanical stress increases brain amyloid β , tau, and α -synuclein	2231
conce	ntrations in wild-type mice. Alzheimers Dement. 2018;14(4):444-453.	2232
253.	Drabik D, Chodaczek G, Kraszewski S. Effect of Amyloid- eta Monomers on Lipid	2233
Meml	brane Mechanical Parameters-Potential Implications for Mechanically Driven	2234
Neuro	odegeneration in Alzheimer's Disease. Int J Mol Sci. 2020;22(1):18.	2235
254.	Kellermayer MS, Grama L, Karsai A, Nagy A, Kahn A, Datki ZL, et al. Reversible	2236
mech	anical unzipping of amyloid beta-fibrils. J Biol Chem. 2005;280(9):8464-70.	2237
255.	Bigot M, Chauveau F, Amaz C, Sinkus R, Beuf O, Lambert SA. The apparent	2238
mech	anical effect of isolated amyloid- eta and $lpha$ -synuclein aggregates revealed by	2239
multi-frequency MRE. NMR Biomed. 2020;33(1):e4174.		2240
256.	Chiasseu M, Cueva Vargas JL, Destroismaisons L, Vande Velde C, Leclerc N, Di	2241
Polo A	A. Tau Accumulation, Altered Phosphorylation, and Missorting Promote	2242
Neuro	odegeneration in Glaucoma. J Neurosci. 2016;36(21):5785-98.	2243

257.	Conti PC, Costa YM, Goncalves DA, Svensson P. Headaches and myofascial	2244
tempo	promandibular disorders: overlapping entities, separate managements? J Oral	2245
Rehat	bil 2016;43(9): 702-15.	2246
258.	Castro-Sanchez AM, Garcia-Lopez H, Mataran-Penarrocha GA, Fernandez-	2247
Sanch	ez M, Fernandez-Sola C, Granero-Molina J, et al. Effects of Dry Needling on	2248
Spinal	Mobility and Trigger Points in Patients with Fibromyalgia Syndrome. Pain	2249
Physic	cian. 2017;20(2):37-52.	2250
259.	Alonso-Blanco C, Fernández-de-las-Peñas C, Morales-Cabezas M, Zarco-	2251
More	no P, Ge HY, Florez-García M. Multiple active myofascial trigger points	2252
repro	duce the overall spontaneous pain pattern in women with fibromyalgia and are	2253
relate	d to widespread mechanical hypersensitivity. Clin J Pain. 2011;27(5):405-13.	2254
260	Ge HY, Wang Y, Danneskiold-Samsøe B, Graven-Nielsen T, Arendt-Nielsen L.	2255
The p	redetermined sites of examination for tender points in fibromyalgia syndrome	2256
are fro	equently associated with myofascial trigger points. J Pain. 2010;11(7):644-51.	2257
261.	Bourgaize S, Janjua I, Murnaghan K, Mior S, Srbely J, Newton G. Fibromyalgia	2258
and m	nyofascial pain syndrome: Two sides of the same coin? A scoping review to	2259
deteri	mine the lexicon of the current diagnostic criteria. Musculoskeletal Care.	2260
2019;	17(1):3-12.	2261
262.	Xu Y, Hu J, Yilmaz DE, Bachmann S. Connexin43 is differentially distributed	2262
withir	renal vasculature and mediates profibrotic differentiation in medullary	2263
fibrob	lasts. Am J Physiol Renal Physiol. 2021;320(1):F17-F30.	2264
263.	Miragoli M, Gaudesius G, Rohr S. Electrotonic modulation of cardiac impulse	2265
condu	iction by myofibroblasts. Circ Res. 2006;98(6):801-10.	2266

264. Iguchi M, Hara M, Manome H, Kobayasi H, Tagami H, Aiba S. Commu	nication 2267
network in the follicular papilla and connective tissue sheath through gap ju	nctions 2268
in human hair follicles. Exp Dermatol. 2003;12(3):283-8.	2269
265. Luo M, Luo Y, Mao N, Huang G, Teng C, Wang H, et al. Cancer-Associa	ated 2270
Fibroblasts Accelerate Malignant Progression of Non-Small Cell Lung Cancer	via 2271
Connexin 43-Formed Unidirectional Gap Junctional Intercellular Communica	tion. Cell 2272
Physiol Biochem. 2018;51(1):315-336.	2273
266. Gabbiani G, Chaponnier C, Hüttner I. Cytoplasmic filaments and gap j	unctions 2274
in epithelial cells and myofibroblasts during wound healing. J Cell Biol.	2275
1978;76(3):561-8.	2276
267. Spanakis SG, Petridou S, Masur SK. Functional gap junctions in cornea	al 2277
fibroblasts and myofibroblasts. Invest Ophthalmol Vis Sci. 1998;39(8):1320-8	
268. Woodward TL, Sia MA, Blaschuk OW, Turner JD, Laird DW. Deficient	2279
epithelial-fibroblast heterocellular gap junction communication can be over	come by 2280
co-culture with an intermediate cell type but not by E-cadherin transgene	2281
expression. J Cell Sci. 1998;111 (Pt 23):3529-39.	2282
269. Neuhaus J, Gonsior A, Cheng S, Stolzenburg JU, Berger FP. Mechanos	ensitivity 2283
Is a Characteristic Feature of Cultured Suburothelial Interstitial Cells of the H	luman 2284
Bladder. Int J Mol Sci. 2020;21(15):5474.	
270. Lembong J, Sabass B, Sun B, Rogers ME, Stone HA. Mechanics regulat	tes ATP- 2286
stimulated collective calcium response in fibroblast cells. J R Soc Interface.	2287
2015;12(108):20150140.	

271.	Ikeda Y, Fry C, Hayashi F, Stolz D, Griffiths D, Kanai A. Role of gap junctions in	2289
spont	aneous activity of the rat bladder. Am J Physiol Renal Physiol.	2290
2007;	293(4):F1018-25.	2291
272.	Neuhaus J, Pfeiffer F, Wolburg H, Horn LC, Dorschner W. Alterations in	2292
conne	exin expression in the bladder of patients with urge symptoms. BJU Int.	2293
2005;	96(4):670-6.	2294
273.	Askar SF, Bingen BO, Swildens J, Ypey DL, van der Laarse A, Atsma DE, et al.	2295
Conne	exin43 silencing in myofibroblasts prevents arrhythmias in myocardial cultures:	2296
role o	f maximal diastolic potential. Cardiovasc Res. 2012;93(3):434-44.	2297
274.	Zlochiver S, Muñoz V, Vikstrom KL, Taffet SM, Berenfeld O, Jalife J.	2298
Electr	otonic myofibroblast-to-myocyte coupling increases propensity to reentrant	2299
arrhy	thmias in two-dimensional cardiac monolayers. Biophys J. 2008;95(9):4469-80	2300
275.	Paw M, Borek I, Wnuk D, Ryszawy D, Piwowarczyk K, Kmiotek K, et al.	2301
Conne	exin43 Controls the Myofibroblastic Differentiation of Bronchial Fibroblasts	2302
from Patients with Asthma. Am J Respir Cell Mol Biol. 2017;57(1):100-110.		2303
276.	Nagaraju CK, Dries E, Gilbert G, Abdesselem M, Wang N, Amoni M, et al.	2304
Myofi	broblast modulation of cardiac myocyte structure and function. Sci Rep.	2305
2019;	9(1):8879.	2306
277.	Daniel EE, Yazbi AE, Mannarino M, Galante G, Boddy G, Livergant J, et al. Do	2307
gap ju	inctions play a role in nerve transmissions as well as pacing in mouse intestine?	2308
Am J Physiol Gastrointest Liver Physiol. 2007;292(3):G734-45.		2309
278.	Mewe M, Bauer CK, Schwarz JR, Middendorff R. Mechanisms regulating	2310
spont	aneous contractions in the bovine epididymal duct. Biol Reprod.	2311
2006;	75(4):651-9.	2312

279.	Grand T, Salvarani N, Jousset F, Rohr S. Aggravation of cardiac myofibroblast	2313
arrhy	thmogeneicity by mechanical stress. Cardiovasc Res 2014;104(3): 489-500.	2314
280.	Nguyen TP, Xie Y, Garfinkel A, Qu Z, Weiss JN. Arrhythmogenic consequences	2315
of my	ofibroblast-myocyte coupling. Cardiovasc Res 2012;93(2): 242-51.	2316
281.	Mercier F, Hatton GI. Connexin 26 and basic fibroblast growth factor are	2317
expre	essed primarily in the subpial and subependymal layers in adult brain	2318
paren	nchyma: roles in stem cell proliferation and morphological plasticity? J Comp	2319
Neuro	ol. 2001;431(1):88-104.	2320
282.	Grafstein B, Liu S, Cotrina ML, Goldman SA, Nedergaard M. Meningeal cells	2321
can co	ommunicate with astrocytes by calcium signaling. Ann Neurol. 2000;47(1):18-	2322
25.		2323
283.	Mercier F, Hatton GI. Immunocytochemical basis for a meningeo-glial	2324
network. J Comp Neurol. 2000;420(4):445-65.		2325
284.	Grafstein B, Liu S, Cotrina ML, Goldman SA, Nedergaard M. Meningeal cells	2326
can co	ommunicate with astrocytes by calcium signaling. Ann Neurol. 2000;47(1):18-	2327
25.		2328
285.	Zheng N, Yuan XY, Chi YY, Liu P, Wang B, Sui JY, et al. The universal existence	2329
of my	vodural bridge in mammals: an indication of a necessary function. Sci Rep.	2330
2017;	;7(1):8248	2331
286.	Follonier L, Schaub S, Meister JJ, Hinz B. Myofibroblast communication is	2332
contr	olled by intercellular mechanical coupling. J Cell Sci. 2008;121(Pt 20):3305-16.	2333
287.	Camelliti P, Green CR, LeGrice I, Kohl P. Fibroblast network in rabbit sinoatrial	2334
node:	structural and functional identification of homogeneous and heterogeneous	2335
cell coupling. Circ Res. 2004;94(6):828-35.		2336

288.	Murata K, Hirata A, Ohta K, Enaida H, Nakamura KI. Morphometric analysis in	2337
mouse	e scleral fibroblasts using focused ion beam/scanning electron microscopy. Sci	2338
Rep. 2	019;9(1):6329.	2339
289.	Ibrahim MM, Chen L, Bond JE, Medina MA, Ren L, Kokosis G, et al.	2340
Myofi	broblasts contribute to but are not necessary for wound contraction. Lab	2341
Invest	. 2015;95(12):1429-38.	2342
290.	https://www.uptodate.com/contents/somatic-symptom-disorder-	2343
epide	miology-and-clinical-	2344
presei	ntation?search=somatic%20symptom%20disorder&source=search_result&sele	2345
ctedTi	tle=1~28&usage_type=default&display_rank=1#H3058265287	2346
By Jan	nes L. Levenson, Accessed January 2021	2347
291.	C. Gilbert. Breathing: the legacy of Wilhelm Reich. J. Bodyw. Mov. Ther. 1999;	2348
3:97-1	.06.	2349
292.	Alexander Lowen, Leslie Lowen. The Way to Vibrant Health: A Manual of	2350
Bioen	ergetic Exercises. New York; Harper & Row 1977.	2351
293.	Younger JW, Shen YF, Goddard G, Mackey SC. Chronic myofascial	2352
tempo	promandibular pain is associated with neural abnormalities in the trigeminal	2353
and lir	nbic systems. Pain. 2010;149(2):222-228.	2354
294.	Sari E, Oztay F, Tasci AE. Vitamin D modulates E-cadherin turnover by	2355
regula	ting TGF- β and Wnt signalings during EMT-mediated myofibroblast	2356
differe	entiation in A459 cells. J Steroid Biochem Mol Biol. 2020;202:105723.	2357
295.	O'Mahony LF, Srivastava A, Mehta P, Ciurtin C. Is fibromyalgia associated with	2358
a uniq	ue cytokine profile? A systematic review and meta-analysis. Rheumatology	2359
(Oxfor	rd). 2021;60(6):2602-2614.	2360

296. Hou J, Ma T, Cao H, Chen Y, Wang C, Chen X, et al. TNF-α-induced NF-κB	2361
activation promotes myofibroblast differentiation of LR-MSCs and exacerbates	2362
bleomycin-induced pulmonary fibrosis. J Cell Physiol. 2018;233(3):2409-2419.	
297. Wang JH, Zhao L, Pan X, Chen NN, Chen J, Gong QL, et al. Hypoxia-stimulated	2364
cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF- β 1	2365
signaling pathway. Lab Invest. 2016;96(8):839-52.	2366
298. Yang L, Herrera J, Gilbertsen A, Xia H, Smith K, Benyumov A, et al. IL-8	2367
mediates idiopathic pulmonary fibrosis mesenchymal progenitor cell fibrogenicity.	2368
Am J Physiol Lung Cell Mol Physiol. 2018;314(1):L127-L136.	2369
299. Shi JH, Guan H, Shi S, Cai WX, Bai XZ, Hu XL, et al. Protection against TGF-β1-	2370
induced fibrosis effects of IL-10 on dermal fibroblasts and its potential therapeutics	
for the reduction of skin scarring. Arch Dermatol Res. 2013;305(4):341-52.	
300. Mor A, Segal Salto M, Katav A, Barashi N, Edelshtein V, Manetti M, et al.	2373
Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and	
pulmonary fibrosis. Ann Rheum Dis. 2019;78(9):1260-1268.	
	2376
	2377
Supporting information	2378
Fig 1. Flowchart of scoping review.	2379
S1 File. Supplementary material.	2380
S1 Fig 1A. Illustration of needling in fascial tensegrity framework. A) Illustration to	2381
assist the reader in imagining a healthy geodesic dome connected by spandex sheets	2382
(fascia).	2383

With permission from PACIFIC DOMES Inc. <u>www.eventdome.wordpress.com/</u>	2384
Reprinted from https://eventdome.files.wordpress.com/2010/07/bm-multi-	2385
colored.jpg, under a CC BY license, with permission from Sequoia Miller from Pacific	2386
Domes Inc., original copyright.	2387
S1 Fig 1B. Illustration of needling in fascial tensegrity framework. B) Normal external	2388
strain applied will tense the fascia and distribute the tension through the network of	2389
nodes.	2390
With permission from Dome guys international <u>www.domeguys.com</u>	2391
Reprinted from https://domeguys.com/home/burning-man-2012-domeguys-	2392
international-kcj34/ under a CC BY license, with permission from Russell Phillips,	2393
President DomeGuys International LLC, original copyright 2021	2394
S1 Fig 1C. Illustration of needling in fascial tensegrity framework. C) Chronic over-	2395
strain causes pathological changes in fascia or changes of myofibroblast and smooth	2396
muscle fibers inside the fascia. The fascia fails to distribute forces properly and keep	2397
the integrity of the structure. Structures on the dome and inside the dome are	2398
affected.	2399
With permission from Erowid.org. Reprinted	2400
from https://www.erowid.org/culture/burningman/show_image.php?i=1999_burningm	2401
an/1999_bm_thunderdome3.jpg under a CC BY license, with permission from original	2402
copyright 2021.	2403
S1 Fig 1D. Illustration of needling in fascial tensegrity framework. D) After 're-setting'	2404
the system with needling or other techniques: "regeneration and growth of new	2405
connections over time should be determined by natural forces and pullies" [22]. New	2406
areas in the fascia serve as points of focus for changes and realignment. Structures can	2407

relax and return to the minimum energy state. Fascia is always subjected to 2408 remodeling pressures and responds to the local mechanical state. However, if spatial 2409 deposition of fibers is altered with respect to physiological conditions, the rebuilding 2410 will be pathological [22] Mobilization encourages correct healing in order to avoid 2411 formation of fibrosis [22]. 2412 Taken by Jim Bourg, with permission from REUTERS News Agency. Reprinted from 2413 Jim Bourg photo published in https://www.theatlantic.com/photo/2013/09/photos-2414 of-burning-man-2013/100584/#img06, with permission from Marc Glanville 2415 REUTERS News Agency, original copyright 2021. 2416 S1 Fig 1E. Illustration of needling in fascial tensegrity framework. E) A pathological 2417 entity in the form of a tensegrity abnormality, it is both systemic and asymmetrical or 2418 seemingly "unilateral". With permission from, and taken by, Aaron Neilson-Belman 2419 AaronNeilsonBelman.com 2420 Reprinted from https://hippievanman.com/preview/burning-man-2011/ under a CC 2421 BY license, with permission from Aaron Neilson-Belman, original copyright 2013-2422 2020 2423 S1 Fig 2. Overlap of conditions in the domain of common medicine. Not all 2424 connections are represented in this scheme. The term "Healthy" is open to 2425 interpretation. MPS- myofascial pain syndrome (i.e., fascial armoring). 2426 2427

Methods

2433 2434

2431

2432

During the process of the review, certain topics rose that not were not sufficiently covered in 2435 the literature found through the systematic search. Therefore, further literature (through 2436 searches that were not systematic) was gathered for these topics. These topics were: 2437 myofibroblasts contractions and generation of tension, neurology of myofascial pain, myofascial 2438 pain and movement, fascial properties, searching pubmed for the term "unexplained", etc. 2439

Using "ovid" engine to search EMBASE yielded 0 results for the phrase "fascia tension pain"	2440
(whereas 127 items were found on PUBMED) therefore a broader search was performed in	2441
this database using only two word combinations: "fascia tension" (yielded 10 results) and	2442
"fascia pain" yielded 15 results (N=25 combined)	2443
A search on COCHRANE was not done for the phrases "fascia tension pain" and "fascia	2444
stiffness pain" as the reviewer sought for controlled trials for myofascial pain syndrome, more	2445
than 150 items from COCHRANE oriented for MPS sufficed for this purpose.	2446
Searches for "sympathetic activity induced by pain" and "Spinal mobilization sympathetic	2447
nervous system" was expanded for a search in all fields from inception only in databases	2448
where no results were found in title/abstract.	2449
For "myofascial pain syndrome" the search was done on Cochrane but was limited to the title	2450
field only as it was too broad. This yielded 138 results.	2451
Information gathered was summarized in excel document and a long word document	2452
containing key information from items. The word document evolved into the article, over time.	2453
	2454

Needling

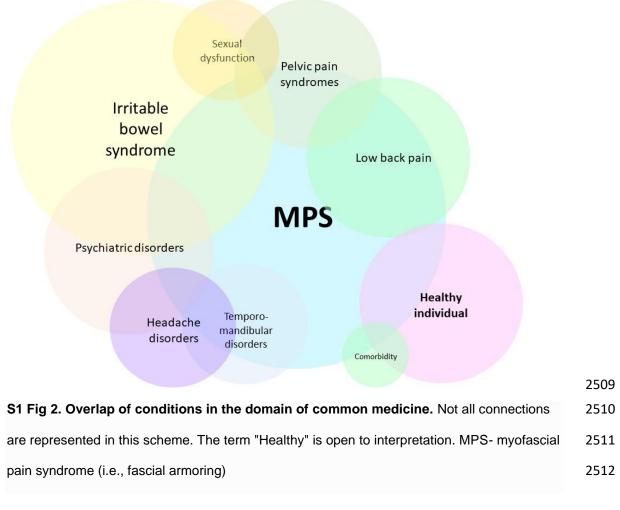
To grasp the framework of needling, the reader may try and imagine a geodesic dome	2456
connected not by straight solid bars, but imagine it connected by extremely thin sheets of	2457
spandex/elastane. Each sheet can change its spring constant. Then imagine continuously	2458
applying external forces to this dome from different directions.	2459
Insertion of needles in many "scattered" points while at rest will allow the system to realign	2460
appropriately and accordingly to the inherent internal forces or pullies [22], eg, the skeleton.	2461
Now the reader may imagine this dome only in the shape of a human, and it can move.	2462

S1 Fig. 1. Illustration of needling in fascial tensegrity framework.

A) Illustration to assist the reader in imagining a healthy geodesic dome connected by	2466
spandex sheets (fascia).	2467
With permission from PACIFIC DOMES Inc. <u>www.eventdome.wordpress.com/</u>	2468
Reprinted from https://eventdome.files.wordpress.com/2010/07/bm-multi-colored.jpg, under a	2469
CC BY license, with permission from Sequoia Miller from Pacific Domes Inc., original	2470
copyright.	2471
	2472

B) Normal external strain applied will tense the fascia and distribute the tension through the	2474
network of nodes.	2475
With permission from Dome guys international <u>www.domeguys.com</u>	2476
Reprinted from https://domeguys.com/home/burning-man-2012-domeguys-international-kcj	2477
34/ under a CC BY license, with permission from Russell Phillips, President DomeGuys	2478
International LLC, original copyright 2021	2479
	2480

C) Chronic over-strain causes pathological changes in fascia or changes of myofibroblast and	2482
smooth muscle fibers inside the fascia. The fascia fails to distribute forces properly and keep	2483
the integrity of the structure. Structures on the dome and inside the dome are affected.	2484
With permission from Erowid.org	2485
(https://www.erowid.org/general/about/about_copyrights.shtml). Reprinted	2486
from https://www.erowid.org/culture/burningman/show_image.php?i=1999_burningman/1999_	2487
bm_thunderdome3.jpg under a CC BY license, with permission from original	2488



D) After 're-setting' the system with needling or other techniques: "regeneration and growth of new connections over time should be determined by natural forces and pullies" [22]. New 2491 areas in the fascia serve as points of focus for changes and realignment. Structures can relax 2492 and return to the minimum energy state. Fascia is always subjected to remodeling pressures 2493 and responds to the local mechanical state. However, if spatial deposition of fibers is altered 2494 with respect to physiological conditions, the rebuilding will be pathological [22] Mobilization 2495 encourages correct healing in order to avoid formation of fibrosis [22].

Taken by Jim Bourg, with permission from REUTERS News Agency. Reprinted from Jim	2497
Bourg photo published in https://www.theatlantic.com/photo/2013/09/photos-of-burning-man-	2498
2013/100584/#img06, with permission from Marc Glanville REUTERS News Agency, original	2499
copyright 2021.	2500

E) A pathological entity in the form of a tensegrity abnormality, it is both systemic and	2502
asymmetrical or seemingly "unilateral".	2503
With permission from, and taken by, Aaron Neilson-Belman AaronNeilsonBelman.com	2504
Reprinted from https://hippievanman.com/preview/burning-man-2011/ under a CC BY license,	2505
with permission from Aaron Neilson-Belman, original copyright 2013-2020	2506
	2507

