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Abbreviations 23 

COVID-19 Coronavirus disease 19 

CRP C-reactive protein 

HTN Hypertension 

IHD Ischemic heart disease 

KEGG Kyoto Encyclopedia of Genes and Genomes 

LC Liquid chromatography 

LC-MS Liquid chromatography mass spectrometry 

LOOCV Leave-one-out cross validation 

MS Mass spectrometry  

MS/MS or MS2 Tandem mass spectrometry 

NPA Negative percent agreement 

PCA Principal components analysis 

PCR Polymerase chain reaction 

PLS-DA Partial least squares-discriminant analysis 

PPA Positive percent agreement 

QC Quality control 

RT-PCR Reverse transcription polymerase chain reaction 

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 

T2DM Type 2 diabetes mellitus 

VIP Variable importance in projection 
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ABSTRACT 25 

Background 26 

The COVID-19 pandemic is likely to represent an ongoing global health issue given 27 

the potential for vaccine escape and the low likelihood of eliminating all reservoirs of 28 

the disease. Whilst diagnostic testing has progressed at pace, there is an unmet 29 

clinical need to develop tests that are prognostic, to triage the high volumes of patients 30 

arriving in hospital settings. Recent research has shown that serum metabolomics has 31 

potential for prognosis of disease progression. 1 In a hospital setting, collection of 32 

saliva samples is more convenient for both staff and patients, and therefore offers an 33 

alternative sampling matrix to serum. We demonstrate here for the first time that saliva 34 

metabolomics can reveal COVID-19 severity. 35 

Methods 36 

88 saliva samples were collected from hospitalised patients with clinical suspicion of 37 

COVID-19, alongside clinical metadata. COVID-19 diagnosis was confirmed using RT-38 

PCR testing. COVID severity was classified using clinical descriptors first proposed by 39 

SR Knight et al. Metabolites were extracted from saliva samples and analysed using 40 

liquid chromatography mass spectrometry. 41 

Results 42 

In this work, positive percent agreement of 1.00 between a PLS-DA metabolomics 43 

model and the clinical diagnosis of COVID severity was achieved. The negative 44 

percent agreement with the clinical severity diagnosis was also 1.00, for overall 45 

percent agreement of 1.00. 46 

Conclusions 47 
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This research demonstrates that liquid chromatography-mass spectrometry can 48 

identify salivary biomarkers capable of separating high severity COVID-19 patients 49 

from low severity COVID-19 patients in a small cohort study. 50 

  51 
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1. Introduction 52 

The SARS-CoV-2 pandemic has caused a sustained threat to global health since the 53 

discovery of the virus in 2019. 2 Whilst great strides have been made in both treatment 54 

and vaccination development, 3,4 the disease has inflicted multiple waves of infection 55 

throughout the world during 2020 and into 2021. 5,6 COVID-19 has higher fatality rates 56 

than seasonal influenza, 7 and in addition, new variants are constantly evolving with 57 

the potential for either reduced vaccine effectiveness or altered lethality. 8 As a 58 

consequence, there is a continuing need both for better understanding of the impact 59 

of COVID-19 on the host metabolism as well as for prognostic tests that can be used 60 

to triage the high volumes of patients arriving in hospital settings. 61 

Nasopharyngeal swabs followed by polymerase chain reaction (PCR) have been 62 

adopted worldwide for SARS-CoV-2 detection. However, supply chains for swabs 63 

rapidly collapsed amongst exponential increases in demand for testing, highlighting 64 

the urgency for alternative sample types and testing approaches. Furthermore, whilst 65 

PCR tests are easily deployable and highly selective for the virus, these approaches 66 

yield no prognostic information and cannot easily be delivered for rapid turnaround at 67 

the point of care, for example during a hospital admissions process. In contrast, tests 68 

based on mass spectrometry can be provided in minutes, with mass spectrometry 69 

instrumentation typically available in hospital pathology laboratories. Prognostic tests, 70 

whilst challenging due to the varied phenotypes that may present themselves, 9 could 71 

be used to manage demand for hospitalisation and treatment, especially should 72 

vaccine escape lead to future waves of COVID-19 infection. 73 

Metabolic biomarkers in serum have been identified that carry prognostic information, 74 

10,11 but sampling blood is invasive. Our experience in collecting and analysing patient 75 
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samples is that saliva samples are significantly easier to collect and handle than blood. 76 

Blood collection requires trained phlebotomists, causes discomfort to patients and 77 

must be spun soon after collection to preserve the metabolome. In contrast, a saliva 78 

sample can be donated quickly and painlessly by a patient. Saliva is itself a carrier of 79 

the coronavirus, 12 and has been proposed as a gold standard for SARS-CoV-2 80 

detection. 13,14 It additionally offers information via its own characteristic metabolites. 81 

15 To date, saliva as a biofluid for metabolism analysis has been used for breast, 82 

pancreatic and also oral cancers. 16,17 Here we explore the potential of saliva 83 

metabolomics to distinguish between severe and mild COVID-19 infection, with a view 84 

to providing a prognostic test that can be used to triage hospital patients, for example 85 

to identify patients who would benefit from immunomodulating drugs such as 86 

Tocilizumab. 18 87 

This work took place as part of the wider efforts of the COVID-19 International Mass 88 

Spectrometry (MS) Coalition. 19,20 This consortium aims to provide molecular level 89 

information on SARS-CoV-2 in infected humans, in order to better understand, 90 

diagnose and treat cases of COVID-19 infection. Data related to this work will be 91 

stored and fully accessible on the MS Coalition open repository. The website URL is 92 

https://covid19-msc.org/ 93 

2. Materials and Methods 94 

2.1 Participant recruitment and ethics 95 

Ethical approval for this project (IRAS project ID 155921) was obtained via the NHS 96 

Health Research Authority (REC reference: 14/LO/1221). 88 participants were 97 

recruited at NHS Frimley NHS Foundation Trust hospitals by researchers from the 98 

University of Surrey. Participants were identified by clinical staff to ensure that they 99 
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had the capacity to consent to the study, and were asked to sign an Informed Consent 100 

Form; those that did not have this capacity or who did not sign the form were not 101 

sampled. Consenting participants were categorised by the hospital as either “query 102 

COVID” (meaning there was clinical suspicion of COVID-19 infection) or “COVID 103 

positive” (meaning that a positive COVID test result had been recorded during their 104 

admission). All participants were provided with a Patient Information Sheet explaining 105 

the goals of the study. 106 

Inclusion for participants was determined by reverse transcription polymerase chain 107 

reaction (RT-PCR) results; participants with an inconclusive RT-PCR test (clinically 108 

positive only and/or inconclusive test result, n=6) or where the time lag between initial 109 

RT-PCR test and sampling exceeded fourteen days were excluded (n=7). These 110 

additional exclusion criteria reduced the participant population from 88 to 75. 111 

2.2 Sample collection, extraction and instrumental analysis  112 

Patients were sampled immediately upon recruitment to the study in two waves, one 113 

between May and August 2020 and the second between October and November 2020. 114 

The range in time between symptom onset and saliva sampling ranged from 1 day to 115 

> 1 month, an inevitable consequence of collecting samples in a pandemic situation. 116 

Each participant provided a sample of saliva by spitting directly into a falcon tube which 117 

was placed on ice immediately after collection. Samples were transferred on ice from 118 

the hospital to the University of Surrey by courier within 4 hours of collection, to 119 

minimise changes to salivary metabolites. 21 Once received at University of Surrey, 120 

the samples were stored at minus 80 °C until analysis.  121 

Alongside saliva collection, metadata for all participants was also collected covering 122 

inter alia sex, age, comorbidities (based on whether the participant was receiving 123 
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treatment), the results and dates of COVID PCR tests, bilateral chest X-Ray changes, 124 

smoking status, drug regimen, and whether and when the participant presented with 125 

clinical symptoms of COVID-19. Values for lymphocytes, CRP and eosinophils were 126 

also taken; values obtained within five days of the saliva sampling were recorded. 127 

Each participant was attributed a “severity score” in relation to their fitness 128 

observations at the time of hospital admission using the metadata collected. This score 129 

used the “mortality scoring” approach of SR Knight et al. 8 adapted to disregard age, 130 

sex at birth and comorbidities, and ranged from 0 to 6; patients scoring 0 to 3 were 131 

attributed low severity and patients scoring 4 to 6 were attributed high severity. 132 

Sample preparation and processing followed the guidelines set out by the COVID-19 133 

Mass Spectrometry Coalition. 22 Saliva samples were separated into aliquots: 50 µL 134 

of saliva was added to 200 µL of ice-cold isopropanol to precipitate protein, and this 135 

also had the advantage of deactivating the virus to allow transfer into a lower biological 136 

safety level laboratory. The samples were agitated for one hour, sonicated three times 137 

for 30 seconds, with resting on ice for 30 seconds between each sonication. Each 138 

sample was then left to stand on ice for 30 minutes then centrifuged for 10 minutes at 139 

10 000 g. The supernatant was removed and the precipitated protein pellet reserved 140 

for future analysis. The supernatant then underwent centrifugal filtration (0.22 µm 141 

cellulose acetate) for five minutes at 10,000 g, and the filtered supernatant was then 142 

dried under nitrogen and stored at minus 80 °C. 143 

Samples were reconstituted on the day of analysis in 100 µL water:methanol (95:5) 144 

with 0.1% formic acid by volume. 10 µL of each sample was set aside for combination 145 

into a pooled QC. The samples were analysed over a period of eleven days. Each day 146 

consisted of a run incorporating blank injections (n=2), field blank injections (n=3), 147 

pooled QC injections (n=6, 3 at the start and finish), as well as QCs to measure 148 
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instrumental and extraction variation (n=7 and 3 respectively), and 10 participant 149 

samples, randomised for positive/negative, with 3 repeat analyses for each. 150 

2.3 Materials and chemicals 151 

The materials and solvents utilised in this study were as follows: 2 mL microcentrifuge 152 

tubes (Eppendorf, UK), 0.22 µm cellulose acetate sterile Spin-X centrifuge tube filters 153 

(Corning incorporated, USA), 200 µL micropipette tips (Starlab, UK) and QsertTM clear 154 

glass insert LC vials (Supelco, UK). LC-MS grade 2-propanol was used as an 155 

inactivation solvent. OptimaTM LC-MS grade methanol and water were used as 156 

reconstitution solvents and mobile phases. LC-MS grade formic acid was added to the 157 

mobile phase solvents at 0.1% (v/v). Solvents were purchased from Fisher Scientific, 158 

UK. 159 

2.4 Instrumentation and operating conditions 160 

Analysis of samples was carried out using a UltiMate 3000 UHPLC equipped with a 161 

binary solvent manager, column compartment and autosampler, coupled to a Q 162 

Exactive™ Plus Hybrid Quadrupole-Orbitrap™ mass spectrometer (Thermo Fisher 163 

Scientific, UK) at the University of Surrey‘s Ion Beam Centre. Chromatographic 164 

separation was performed on a Waters ACQUITY UPLC BEH C18 column (1.7 µm, 165 

2.1 mm x 100 mm) operated at 55 ºC with a flow rate of 0.3 ml min-1. 166 

Mobile phase A was water: methanol (v/v 95:5) with 0.1% formic acid, whilst mobile 167 

phase B was methanol:water (v/v, 95:5)  with 0.1% formic acid (v/v). An injection 168 

volume of 5 µL was used. The initial solvent mixture was 2% B for one minute, 169 

increasing to 98% B over 16 minutes and held at this level for four minutes. The 170 

gradient was finally reduced back to 2% B and held for two minutes to allow for column 171 

equilibration. Analysis on the Q-Exactive Plus mass spectrometer was performed with 172 
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a scan range of m/z 100 to 1 000, and 5 ppm mass accuracy. MS/MS validation of 173 

features was carried out on Pooled QC samples using data dependent acquisition 174 

mode and normalised collision energies of 30 and 35 (arbitrary units). Operating 175 

conditions are summarised in Table S1 (Supplementary Material). 176 

2.5 Data processing 177 

LC-MS outputs (.raw files) were pre-processed for alignment and peak identification 178 

using Compound Discoverer version 3.1 and Freestyle 1.6 (Thermo Fisher Scientific, 179 

UK). Peak picking was set to a mass tolerance ±5 ppm, and alignment to a retention 180 

time window of 120 seconds. Missing values were imputed using a K-nearest 181 

neighbour approach. 23 Features identified by mass spectrometry were initially 182 

annotated using accurate mass match with reference to external databases (KEGG, 183 

Human Metabolome Database, DrugBank, LipidMaps and BioCyc), and then 184 

validation was performed using data dependent MS/MS analysis. This process yielded 185 

an initial peak:area matrix with 10,700 discrete features. Two criteria were used for 186 

inclusion in the final analysis: only those features with identities validated by MS/MS 187 

were used, reducing the number of features to 1,874, and 1,514 features that were 188 

present in less than 30% of participant samples were excluded. This left 360 features 189 

that were used in the analysis. Normalisation was performed using EigenMS in 190 

NOREVA for each dataset analysed, 24,25 i.e. independently for the diagnostic 191 

population (COVID-19 positive versus negative) and prognostic population (COVID-192 

19 positive: high severity versus low severity). 193 

2.6 Statistical Analysis 194 

PCA analyses were conducted in SIMCA (Sartorius Stedim Biotech, France). PLS-DA 195 

and additional machine learning was conducted in R Studio Version 1.3.959 and 196 
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MetaboAnalyst. 26,27 Leave-one-out cross-validation was used for model validation test 197 

accuracy, sensitivity and specificity; variable importance in projection (VIP) scores 198 

were used to assess feature significance alongside p-values and effect sizes (fold 199 

count). Batch effects were assessed by PCA analysis of both collection batches 200 

(waves one and two) and also instrument and extraction batching by day (Figures S1 201 

and S2, Supplementary Material), showing no clustering by batches. KEGG pathway 202 

analysis was performed using MetaboAnalyst.  203 

In prognostic analysis, given the lack of a “gold standard” reference test for whether 204 

COVID-19 is likely to be high severity or low severity (as this depends on clinical 205 

judgement), positive percent agreement (PPA) between the generated model and a 206 

high severity clinical diagnosis was used in preference to sensitivity, which measures 207 

the detection of positive instances of a disease relative to a ground truth value. 208 

Similarly, negative percent agreement (NPA) between the model and a high severity 209 

clinical diagnosis was used in preference to specificity, which measures the absence 210 

of a disease relative to a ground truth value. In diagnostic analysis, given that RT-PCR 211 

tests were available to establish a ground truth, sensitivity and specificity values were 212 

calculated alongside diagnostic accuracy. 213 

3. RESULTS 214 

3.1 Population metadata overview 215 

The study population analysed in this work included 75 participants, comprising 47 216 

participants presenting with a positive COVID-19 RT-PCR test and 28 participants 217 

presenting without. Of the positive participants, 10 were classed as presenting with 218 

high severity COVID-19, 34 were classed as presenting with low severity COVID-19, 219 
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and 3 lacked sufficient clinical information for severity scoring. A summary of the 220 

metadata is shown in Table 1. 221 

Table 1: Summary of clinical characteristics by participant cohort 222 

Parameters 
Covid-19 

Low 
severity 

Covid-19 
High 

severity 

p-value 
High vs 

Low 
Severity 

Covid-19 
Negative 

p-value 
Pos vs 

Neg 

n 34 10  28  

Age (mean, standard deviation; years) 59.7 ± 18.4 63.1 ± 12.7 0.61 61.6 ± 21.9 0.74 

Male / Female (n) 16 / 18 8 / 2 0.083 16 / 12 0.26 

Treated for Hypertension (n) 6 6 .041 12 0.21 

Treated for High Cholesterol (n) 2 0 1.00 6 .05 

Treated for Type 2 Diabetes Mellitus (n) 5 3 0.39 10 0.29 

Treated for Ischemic Heart Disease (n) 1 2 0.149 7 0.09 

Current Smoker (n) 1 0 1.00 0 NA 

Ex-Smoker (n) 12 5 0.71 8 0.46 

Medical Acute Dependency admission 
(n) 

10 6 0.26 4 0.06 

Intensive Care Unit admission (n) 0 0 N/A 0 NA 

Survived Admission (n) 34 8 0.048 27 1.00 

Lymphocytes (mean, standard 
deviation; cells / μL)  

0.8 ± 0.5 0.9 ± 0.7 0.77 1.0 ± 0.5 0.302 

C-Reactive Protein (mean, standard 
deviation; mg / L)  

115.4 ± 
84.9 

170.0 ± 
83.4 

0.075 
127.3 ± 
104.7 

0.80 

Eosinophils (mean, standard deviation; 
100 / μL)  

0.1 ± 0.1 0.0 ± 0.0 0.018 0.3 ± 0.4 0.002 

Bilateral Chest X-Ray changes (n) 15 8 0.26 3 0.0009 

Continuous Positive Airway Pressure 
(n) 

1 1 0.442 3 0.36 

O2 required (n) 9 4 0.69 8 1.00 

 223 

In this study all participants were recruited in a hospital setting with at least potential 224 

suspicion of COVID-19 infection; controls were age matched and had similar profiles 225 

in terms of gender, oxygen requirements and survival rates. Significantly more COVID-226 

19 positive patients had bilateral chest X-ray changes (p-value 0.0009) and higher 227 

levels of eosinophils (p-value 0.002), in agreement with literature observations, 10 but 228 

not for C-reactive protein (CRP, p-value 0.80). Type 2 diabetes mellitus (T2DM) was 229 

more prevalent in the COVID-19 negative population than the positive population, 230 

being observed in 36% of COVID-19 negatives versus 30% of high severity COVID-231 
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19 patients and 15% of low severity COVID-19 patients, and a similar observation of 232 

greater comorbidity being seen in the negative population was also true for ischemic 233 

heart disease (IHD) and hypertension (HTN). The greater preponderance of 234 

underlying comorbidities within the negative population represents a confounding 235 

factor. 236 

Within the COVID-19 positive cohort, comorbidities were again age matched, but the 237 

high severity grouping had more males (80% male for high severity versus 47% for 238 

low severity) and had a statistically significant difference in proportion presenting with 239 

hypertension (p-value 0.04) and a statistically significant decrease in eosinophil levels 240 

(p-value 0.02). CRP was increased by a 1.5x fold count in high severity participants 241 

versus low (p-value 0.08). There was no statistically significant increase in CRP for 242 

low severity versus COVID-19 negative participants, but this may reflect changes to 243 

the inflammatory response caused by interventions reducing CRP levels in cases of 244 

mild COVID-19. 245 

3.2 Overview of features identified by Liquid Chromatography Mass 246 

Spectrometry (LC-MS) 247 

360 features with MS/MS validation were identified as being present in 30% or more 248 

of participant samples. Of these 360 features, 37 were identified as related to medical 249 

interventions or food and were excluded, leaving 323 for statistical analysis. Of the 250 

323, 38 were annotated by m/z value, 171 were annotated by formula (elemental 251 

composition), and 114 were annotated as metabolites. 252 

3.3  Analysis of cohorts by multivariate techniques 253 

Initially separation of COVID-19 positive versus negative participants was tested, as 254 

well as separation of COVID-19 high severity and low severity. As shown in Figure 1A, 255 
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separation for diagnostic purposes showed no clear separation by visual inspection 256 

and delivered R2Y of 0.78 and Q2Y of 0.18. Leave-one-out cross-validation (LOOCV) 257 

provided sensitivity of 0.74 (95% confidence interval of 0.60 - 0.86) and specificity of 258 

0.75 (0.55 - 0.89), which was considered insufficient to justify further investigation. The 259 

most significantly dysregulated identified metabolites (measured by p-value) between 260 

positive and negative COVID-19 status are listed in table S2 (Supplementary Material).  261 

Figure 1B shows separation for COVID-19 high severity participants versus low 262 

severity participants. The optimal separation was found using 5 components. Using 263 

leave-one-out cross validation, PPA for COVID-19 high severity was 1.00 (95% 264 

confidence interval of 0.69 - 1.00) and NPA was 1.00 (0.90 - 1.00), for overall percent 265 

agreement with the clinical diagnosis of 1.00 (0.92 - 1.00).  266 

 267 

Figure 1:  Saliva metabolomics analysis for COVID-19 diagnosis and prognosis via 268 

LC-MS, showing: 269 

 A PLS-DA plot for 75 participants, COVID-19 positive / negative 270 

 B PLS-DA plot for 44 participants, high severity / low severity 271 
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 C LOOCV confusion matrix, COVID-19 positive / negative 272 

 D LOOCV confusion matrix, high severity / low severity 273 

 274 

A volcano plot is shown in Figure 2. The most significantly dysregulated identified 275 

metabolites (measured by p-value) are shown as boxplots in Figure 3 below and a 276 

complete list of metabolites showing statistically significant differences between high 277 

and low COVID severity populations is shown in table S3 (Supplementary Material). 278 

Amino acids are highlighted as this class of metabolites was the most dysregulated 279 

between high and low severity of the identified features. 280 

 281 

Figure 2: Volcano plot of statistical significance versus effect size for MS/MS validated 282 

features separating participants presenting with high severity versus low severity 283 

COVID-19 284 
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 285 

Figure 3:  Boxplots of features down regulated with Covid-19 severity 286 

[corresponding p-values: 0.066 ; 0.004 ; 0.051] 287 

  288 

MS/MS spectra for the significant features presented in Figure 3 are additionally 289 

shown in Figures S3 to S5 (Supplementary Material). 290 

The normalised prognostic dataset was also processed for pathway analysis to 291 

explore changes in metabolic pathways relating to COVID-19 (Figure S6). No 292 

pathways met the criteria for both meaningful impact and statistical significance, 293 

possibly due to the number features identified in each pathway being notably smaller 294 

than typically achieved in serum or plasma, consistent with saliva being a filtrate and 295 

in general featuring lower metabolic concentrations. 28  296 
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Whilst no fully independent prognostic validation set was available, it was decided to 298 

project the PLS-DA model obtained for high severity versus low severity participants 299 

on to COVID-19 negative participants. Given that these participants should not show 300 

features associated with high severity COVID-19, this was considered to offer 301 

additional information. The confusion matrix for the results of the projection is shown 302 

in Table 2 below. 303 

Table 2: Confusion matrix for PLS-DA model projected on to COVID-19 negative 304 

participants 305 

 COVID-19 negative participants 

PLS-DA model result: High Severity 1 

PLS-DA model result: Low Severity 27 

 306 

4. Discussion 307 

Whilst age and recruitment venue were well matched (all participants were recruited 308 

in a hospital setting including controls), a number of variables within the metadata 309 

illustrate the natural difficulties in experimental design experienced during a pandemic. 310 

Age ranges of participants were large, a wide range of comorbidities were present, 311 

and the time between symptom onset and saliva sampling ranged from 1 day to > 1 312 

month. Participant recruitment of the most severely affected was limited by ethics 313 

approval only covering patients who could give informed consent, thereby precluding 314 

the participation of patients with the highest COVID severity. Furthermore, given the 315 

small n in this pilot study, precision was necessarily low and confidence intervals wide.  316 

In this study, saliva samples were provided under conditions that could be practically 317 

achieved in a hospital pandemic setting, albeit this meant no scope for abstinence 318 

from food and / or drink before saliva sampling, and no prior rinsing of the mouth, 319 
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leading to potential confounding factors. Separation of COVID-19 positive COVID-19 320 

versus negative participants was limited, possibly due to COVID-19 negative 321 

participants also being hospitalised and in poor health, perhaps having similar 322 

inflammatory responses to some COVID-19 positive participants. In spite of this, 323 

superior differentiation by multivariate analysis was achieved in relation to COVID-19 324 

severity. PLS-DA showed separation of High Severity COVID-19 positive participants 325 

from Low Severity COVID-19 positive participants, with PPA and NPA of 100% by 326 

LOOCV. Furthermore, whilst not a true independent validation set, projecting the PLS-327 

DA model on to COVID-19 negative participants, i.e. the controls, showed that the 328 

model classified them with 97% consistency as “low risk”, i.e. that the features 329 

associated with high severity were present neither in low severity nor in COVID-19 330 

negative participants. 331 

A number of identified metabolites showed statistically significant differences between 332 

the high and low severity participants. Both valine (p-value 0.02, fold-count 0.48) and 333 

leucine (p-value 0.04, fold-count 0.67) showed statistically significant changes 334 

between high and low severity. As shown in Figure 3, amino acids constituted the 335 

class of metabolites seeing the most change between high and low severity, similar to 336 

literature observations of changes in either amino acids or ratios of amino acids, albeit 337 

specific amino acids commonly cited in the literature (for example kynurenine, arginine 338 

or ratios thereof) 1,29,30 did not feature in the saliva analysis presented here. It should 339 

be noted, however, that the correlation of metabolites between saliva and blood has 340 

previously been found to be weak or in some cases non-existent, 31,32 and the same 341 

may be true for the saliva and blood of individuals testing positive for COVID-19. Direct 342 

analysis of paired blood samples would be required to draw any definitive conclusion 343 

on differential dysregulation of metabolites between serum and saliva. 344 
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5. Conclusion 345 

In this work a number of features have been identified for the first time that may 346 

differentiate the saliva of those presenting with high severity and low severity COVID-347 

19. We believe that saliva has potential to add to understanding of the progression 348 

and severity of COVID-19. In addition, saliva may be collected less invasively than 349 

other biofluids, and mass spectrometry techniques have the advantage of being often 350 

located within hospitals, making MS-based techniques useful in a clinical setting. 351 

Consequently, we view saliva as a worthy biofluid for consideration for prognostic 352 

testing. 353 
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Supplementary Material 386 

Table S1: Operating conditions of the mass spectrometer used in this research. 387 

Parameter Operating condition 

Spray voltage 3.5 kV 

Capillary temperature 275 °C 

S-lens RF level 50 

Sheath gas flow rate 40 

Aux gas flow rate 0 

Scan range 100 m/z to 1 000 m/z 

Resolution 70 000 

Polarity Positive 

AGC target 106 

Maximum inject time 200 

MS/MS Parameter Operating condition 

Mode Full Scan MS / dd-MS2 with inclusion 

lists 

Resolution 35 000 at m/z 200 

Loop Count 6 

Intensity threshold 5 * 104 

Collision energy 30 and 35 

Dynamic Exclusion 5 seconds 

 388 

 389 

 390 
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 391 

 392 

Figure S1: Principal Component Analysis of each patient sample (circles) and batch 393 

QC’s (squares), coloured according to extraction batch, showing no significant 394 

clustering of patient samples according to extraction batch  (square: QC ; circle: 395 

patients) 396 
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 397 

Figure S2: Principal Component Analysis of each patient sample and run QC, 398 

showing low levels of QC variation according to position in the run sequence  399 

Table S2: Features distinctive between COVID-19 positive and negative  400 

Feature Fold Count p-value 

C25 H36 N6 O6 0.52 0.0121 

DL-Phenylalanine 1.39 0.0164 

C7 H10 N6 O2 1.35 0.0179 

2-linoleoyl-sn-glycero-3-phosphoethanolamine 1.85 0.0180 

C39 H71 N2 O16 P3 0.81 0.0226 

DC2810000 1.60 0.0231 

179.8965 2.09 0.0251 

1-Hexadecanoylpyrrolidine 1.84 0.0287 

Taurine 1.44 0.0292 

2707 1.19 0.0363 

148.0048 0.70 0.0379 

C47 H84 N9 O13 P3 0.73 0.0415 

C22 H36 N8 O9 1.39 0.0439 
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3721 1.70 0.0443 

butyl acrylate 1.62 0.0470 

C2 H3 N3 O2 P2 1.25 0.0501 

 401 

Table S3: Features distinctive between COVID-19 high severity and low severity  402 

Feature Fold Count p-value 

C44 H74 N8 O16 0.50 0.0000 

C39 H67 N7 O15 0.55 0.0003 

C29 H56 N7 O11 P 0.57 0.0013 

C42 H72 N8 O17 0.54 0.0038 

C49 H81 N9 O17 0.61 0.0148 

C37 H67 N6 O12 P3 0.51 0.0160 

C47 H84 N9 O13 P3 0.66 0.0178 

Valine 0.48 0.0198 

C6 H13 N2 O6 P 1.92 0.0237 

C9 H21 N O6 2.17 0.0241 

C17 H22 N4 O8 1.98 0.0247 

C8 H12 O5 P2 2.34 0.0254 

C2 H8 O5 P2 1.41 0.0258 

C60 H86 N10 O9 P2 0.65 0.0270 

C32 H48 N8 O9 0.47 0.0289 

Lys-phe 0.48 0.0367 

N-{3-[(4-Acetamidobutyl)amino]propyl}acetamide 0.59 0.0382 

Leucine 0.67 0.0405 

C42 H71 N7 O15 0.44 0.0453 

273.86553 1.29 0.0475 

 403 
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 404 

Figure S3: MS/MS spectra of proline 405 

 406 

Figure S4: MS/MS spectra of valine 407 

 408 

Figure S5: MS/MS spectra of phenylalanine 409 

 410 
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 411 

Figure S6: Pathways analysis of metabolites : high severity versus low severity 412 

 413 
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