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Abstract

I examine the dynamics of con�rmed case (and death) growth rates conditional on di�erent levels of

severity in implemented NPIs, the mobility of citizens and other non restrictive policies. To account for

the endogeneity of many of these variables, and the possibility of correlated latent (unobservable) country

characteristics, I estimate a four structural model of the evolution of case growth rates, death growth rates,

average changes in mobility and the determination of the severity of NPIs. There are strongly decreasing

returns to the stringency of NPIs, especially for extreme lockdowns, as no signi�cant improvement in

the main outcome measures is found beyond NPIs corresponding to a Stringency Index range of 51�60

for cases and 41�50 for deaths. A non-restrictive policy of extensive and open testing has half of the

impact on pandemic dynamics as the optimal NPIs, with none of the associated social and economic

costs resulting from the latter. Decreases in mobility were found to increase, rather than decrease case

growth rates, consistent with arguments that within-household transmission�resulting from spending

more time at residences due to mobility restrictions�may outweigh the bene�ts of reduced community

transmission. Vaccinations led to a fall in case and death growth rates, however the e�ect size must

be re-evaluated when more data becomes available. Governments conditioned policy choice on recent

pandemic dynamics, and were found to de-escalate the associated stringency of implemented NPIs more

cautiously than in their escalation, i.e., policy mixes exhibited signi�cant hysteresis. Finally, at least 90%

of the maximum e�ectiveness of NPIs can be achieved by policies with an average Stringency index of 31�

40, without restricting internal movement or imposing stay at home measures, and only recommending

(not enforcing) closures on workplaces and schools, accompanied by public informational campaigns.

Consequently, the positive e�ects on case and death growth rates of voluntary behavioral changes in

response to beliefs about the severity of the pandemic, generally trumped those arising from mandatory

behavioral restrictions. The exception being more stringent mandatory restrictions on gatherings and

international movement, which were found to be e�ective. The �ndings suggest that further work should

be directed at re-evaluating the e�ectiveness of NPIs, particularly towards empirically determining the

optimal policy mix and associated stringency of individual NPIs.

Keywords: COVID-19 & SARS-CoV-2, non-pharmaceutical interventions, case and death growth

rates, simultaneous structural equations, contact tracing, vaccination
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Introduction

The ancient Greek dictum �pan metron ariston� asserts that moderation is best, implying that extreme

measures, regardless of which end of the spectrum they are located, are unlikely to be the best policy. With

regards to the SARS�CoV-2 pandemic, the one extreme, of no intervention and restrictions was ruled out

by most governments early on. The other extreme, of severe restrictions and even complete lockdowns,

has not proven to be a bête noire for many governments. Severe lockdowns were imposed during the �rst

wave of the pandemic, when uncertainty regarding the transmission and mortality of Covid-19 was maximal.

Such an approach can be justi�ed as a maxmin reaction in the face of uncertain events, minimizing the

worst possible outcome. As we learn more about Covid-19 and uncertainty is reduced, better estimates of

both the probability distribution and magnitude of possible outcomes can be inferred, allowing for a more

nuanced approach aligned with an expected value calculation of costs and bene�ts. However, severe NPIs

remain in place in many countries even during the second and third waves, despite the fact that we are now

arguably more informed. This can be seen in the evolution of the stringency of government-imposed NPIs

(the Stringency Index, SI, on a scale from 0 to 100) plotted in Figure 1, which includes the median SI value

across countries and the 10th and 90th percentiles. Median SI peaked during the �rst wave in the month of

April, reaching a maximum of 84. The median SI then trended slowly downwards and leveled o� to a range

of 55�60, whilst slowly trending up again as subsequent waves led to a resurgence of the pandemic. As of

April 2021, while NPIs had not reached the peak levels of the �rst wave, the median SI across countries at

the last datapoint (14/4/2021) was still relatively high, 64 (10th perc.=31, 90th=81). Another important

observation is that after the peak in April 2020, governments have followed increasingly heterogeneous NPIs

as the di�erence in the 10th and 90th percentiles increased from roughly 30 SI points to oscillating around

50 points since late 2020.

The aim of this study is to exploit this divergence in government responses for improved identi�cation of

the e�ects of the strictness of implemented NPIs on the pandemic dynamics. I will extend earlier work based

on limited data from the �rst wave (Haug et al. 2020; Islam et al. 2020; Brauner et al. 2021; Bo et al. 2021)

and also deal with certain econometric issues with prior analyses. Does the accumulated data from over a

year support the continued imposition of stringent NPIs? I will test the whole spectrum of Covid policies

in terms of varying degrees of severity to determine whether metron is indeed ariston. If so, it is crucial

that we know where exactly the metron lies within the spectrum of policy responses because restrictions and

lockdowns have an immense e�ect on economic and psychological well being, translating into negative health

outcomes in the future (Miles, Stedman and Heald 2020; Susskind and Vines 2020; Altman 2020). The latter

are of course di�cult to quantify, leading to a propensity to focus instead solely on the positive, immediate

e�ects of NPIs. However, tradeo�s are everywhere and we ignore them at our peril�open debates allowing

the free exchange of ideas are of paramount importance (e.g., Melnick and Ioannidis 2020).

Tradeo�s in Covid-19 research Tradeo�s also exist in the choice of pandemic research methodologies,

both in terms of the type of model and the data it is estimated on. For example, models may be estimated

on data at the national or subnational level. Working at the level of the latter has the bene�t of better

controlling for country infection dynamics and avoiding possible issues arising from di�erences in pandemic

accounting standards across countries (May 2020). Since data at the national level is broader in terms of

country coverage than sub-national data, analyses at the level of the former may carry more external validity

and will be less likely to fall prey to over�tting due to small sample noise. Finally, the tradeo� between

aggregated (assuming homogeneity or pooled) or disaggregated (individual) modeling depends strongly on
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Figure 1: The time evolution of the Stringency Index across countries

the amount and quality of the data.

The impact of policy interventions can be examined under the prism of three types of di�erent models with

their own set of tradeo�s: a) detailed models of epidemiological processes such as SIR-based models (Visscher

2020; Dehning et al. 2020; Davies et al. 2020), b) agent based modeling of transmission in a population (e.g.,

Aleta et al. 2020) and c) reduced form models that abstract away from these epidemiological processes and

agent interactions at the micro-level, by using simple econometric models based on empirical data, rather than

inference of complex epidemiological parameters. Epidemiological models, while desirable as they directly

model the underlying mechanisms, are prone to over�tting in the presence of scant or low-quality, noisy

data, leading to non-robustness (see Chin et al. 2020; Soltesz et al. 2020) since they require estimates of key

parameters that are highly uncertain, and whose impact may reverberate signi�cantly in highly non-linear,

exponential growth models. No single approach dominates the rest, especially at the current stage of our

understanding of the pandemic. Di�erent approaches must be simultaneously pursued whilst acknowledging

the limitations and advantages of each in an attempt to consolidate the �ndings.

As the literature on Covid-19 is burgeoning, I brie�y survey the most similar studies, primarily those

employing reduced-form equations. Early discourse was heavily in�uenced by the epidemiological modeling

of the Imperial College COVID-19 Response Team (Flaxman et al. 2020), which concluded that lockdowns

were a crucial and necessary strategy for the subduement of the pandemic. Sub-national data from six

countries revealed that while not all speci�c NPIs have a signi�cant impact, overall the implementation of

NPIs signi�cantly reduced infections (Hsiang et al. 2020), without however, explicitly accounting for how
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restrictive individual NPIs were. Dichotomizing the range of NPIs into less-restrictive (e.g., social distancing,

discouragement of international and domestic travel, and large gatherings bans) and more-restrictive (e.g.,

stay-at-home and business closure orders) reveals no evidence of additional gains associated with the latter in

ten countries at the subnational level (Bendavid et al. 2021). Similarly, stringent lockdowns in 24 European

countries over the �rst half of 2020 did not signi�cantly improve pandemic dynamics over less stringent

lockdowns (Bjørnskov 2021). This was con�rmed using data from 108 countries until May, 2020, (Bonardi

et al. 2020) with the implication that NPIs may have a signalling e�ect leading to voluntary behavioral

changes by citizens. Less stringent NPIs already provide a strong enough signal, so that there is nothing

to gain from more stringent NPIs. The importance of voluntary behavioral changes is exempli�ed by the

signi�cant changes in mobility found to occur earlier than mandatory restrictions on movement (Abouk and

Heydari 2021; Farboodi, Jarosch and Shimer 2020), and by the fact that mobility did not return to previous

levels after the easing of lockdown restrictions (Gapen et al. 2020; Allcott et al. 2020).

I seek to combine the advantages of reduced-form approaches, whilst alleviating some of the drawbacks

in their implementations to date. Speci�cally, earlier studies: a) eschewed behavioral components and

agents' incentives, b) estimated a single regression disavowing variable endogeneity, and c) were estimated

on datasets from the �rst few months of the pandemic without the bene�t of the currently accumulated data

covering other developments such as newer variants.

The importance of behavioral models Models can be classi�ed according to whether they are beha-

vioral or not, i.e., are the behavioral responses of citizens and governments allowed to vary endogenously

or are they assumed to be �xed? Agent-based models are by construct behavioral, however standard SIR

models are not, and reduced-form work typically estimates single-equation regressions of e�ects of various

NPI variables on either the con�rmed case (and or death) growth rate or mobility data, thereby implicitly

assuming exogeneity of these variables. However, it reasonable to believe that mobility is dependent on the

severity of the NPIs in place, i.e., it may mediate the impact of NPIs on Covid-19 dynamics. Furthermore,

NPI stringency may also be endogenous if governments base their policy decisions on recent epidemiological

data and trends, e.g., infection growth. Consequently beyond modeling only SARS-CoV-2 dynamics, agents'

adaptive reactions to the situation merit attention: those of citizens (Cowling et al. 2020) (through mobility,

precautionary and voluntary measures and other behavioral responses) and those of governments through

the choice and timing of policies.

Beyond the foundational use of behavior in agent-based models, behavioral components can be introduced

both to epidemiological and reduced form models. The former is signi�cantly more common than the

latter, which I will pursue in this study. The incorporation of behavioral components in SIR models leads

to very di�erent long-run predictions than models based on standard non-behavioral SIRs (Kermack and

McKendrick 1927). A common �nding is that the system tends to an equilibrium reproduction rate of

1 (Gans 2020), sometimes with oscillations if behavioral components operate with lags (Cochrane 2020;

Atkeson 2021). These studies highlight the importance of modeling the evolution of behavioral responses, as

they can lead to important qualitative, not just quantitative, changes in pandemic dynamics. The canonical

behavioral response depends on the perceived risk of infection and severity; e.g., consumers' behavioral

changes in shopping habits were predominantly of their own volition rather than through the imposition of

legal restrictions (Goolsbee and Syverson 2021). Behavioral incentives can have a stabilizing e�ect on the

infection growth rate, as the higher it is, the more likely citizens are to react by adjusting their behavior to

decrease the chances of infection. However, it is important to also bear in mind that individual behavior
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may become more reckless as risks are mitigated�see the risk-compensation literature (Peltzman 1975). For

example, as the pandemic starts to wane, citizens may adopt more risky practices, thereby slowing down

the decrease in the infection rate. Similarly, extensive testing and vaccinations may elicit adverse behavioral

responses if citizens believe they are less likely to contract Covid-19 and infect others.

The importance of beliefs and expectations Importantly, there may be latent (unobservable) vari-

ables, such as culture (Laliotis and Minos 2020), at the country-level that jointly in�uence key variables

that are typically assumed to be exogenously determined instead. For example, low social capital and trust

in government may a�ect case growth rates directly and indirectly, through other explanatory variables.

Suppose that low-trust countries also tend to have inadequate public health systems. This will have a dir-

ect impact on case and mortality growth due to inadequate health care, but also an indirect e�ect. The

government, knowing that the health system is weak (e.g., scarce intensive care units), may impose more

stringent NPIs compared to countries with better health systems, in a attempt to prevent them from �lling to

capacity. Expectations and beliefs of citizens and governments can further introduce endogeneity. Low trust

between citizens and government institutions may lead citizens to underestimate the severity of the situation

as presented by governments, and the government, expecting this, may act to impose stricter restrictions in

anticipation of the weaker behavioral response by its citizens.

Simultaneously modeling endogeneity and unobservable variables, behavioral incentives and

beliefs Acknowledging that con�rmed case and death growth, mobility and government policies are endo-

genous requires a system of four equations to fully model these interactions and avoid biases resulting from

simpler regressions that implicitly impose exogeneity. I complement the literature by employing econometric

procedures, namely structural multi-equation modeling including unobservable or latent variables and their

e�ects, to improve upon the external validity of prior analyses. Such a system of equations can be viewed

through the lens of game theory, that is, the modeling of di�erent agents, who react to each others strategies

and expectations thereof. I propose, an admittedly rudimentary, model of the adaptive interactions of these

three agents.1 My approach complements existing studies by investigating a large number of countries,

with the associated bene�ts of pooling estimates for robustness, but other disadvantages such as the as-

sumption of homogeneity across countries and the need to focus on aggregated measures of key endogenous

variables�rather than their individual components (Haug et al. 2020)�to avoid a computationally-intractable

and unidenti�able system of equations. A central question is whether there are decreasing returns to the

e�ectiveness of NPIs with severity, and if so, to estimate the approximately optimal severity of government

policies. This remains a critical question not only for future pandemics, but also because NPIs may be

valuable even during the vaccination phase (Rella et al. 2021).

Methods

National-level data from 132 countries covering the time period from 15th February 2020 to 14th April

2021 was compiled, extending previous analyses to data including the appearance and spread of the B.1.1.7

and B.1.351 variants detected late 2020, and the more recently discovered variants such as P.1. Con�rmed

case and death counts, vaccinations, and tests, were download from the Covid-19 Data Hub (Guidotti and

1Unfortunately, while very interesting, a more rigorous game-theoretic analysis would require signi�cantly more data to
e�ectively infer or observe expectations of agents and the multitude of ways to react to said information.
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Ardia 2020), which also included the implementation of NPIs�a composite score or Stringency Index�sourced

originally from the Oxford COVID-19 Government Response Tracker (Hale et al. 2021). Mobility data from

the Google Community Mobility Report (Google 2020) was merged with the data�le from the aforementioned

database.

The growth in con�rmed cases (deaths) was calculated as the log di�erence in the cumulative con�rmed

cases (deaths) for two consecutive days multiplied by 100 (i.e., they can be interpreted as approximate

percentage growth rates). The summary statistics for growth in con�rmed cases are: # of obs. 53,279,

mean=2.74%, stdev.=8.87% and for deaths: # of obs. 49,366, mean=1.997%, stdev.=6.84%. To allow for

a non-linear relationship between the Stringency Index and case/death growth, a semi-parametric approach

was implemented by subdividing the SI (ranging continuously from 0 to 100) into a baseline of no restrictions

(0) and the deciles (1�10, 11�20, ..., 91�100). The set of (non-restrictive) policies that we examine are: the

testing policy (TP) variable, which takes on three levels (l) of 0 (no testing) through to 3 (open testing),

contact tracing (CT) policy takes on levels of 0 through 2, the proportion of the population tested per day

(TPop) and the cumulative percentage of the number of vaccinations compared to the country's population

(V)�this can be greater than 100% due to some vaccines requiring more than one dose.

I address the issues identi�ed above by simultaneously estimating four generalized structural equations to

model the complex inter-relationships between variables�see Figure 2 for a graphical representation of the

causal structure and equations 1�4. The dependent variables for each equation are: (eq. 1) the growth rate of

con�rmed cases (Ċ), (eq. 2) the growth rate of con�rmed deaths (Ḋ), (eq. 3) the seven-day moving-average

of mobility Mi,t and (eq. 4) the ordered categorical variable Sl
i,t derived from the stringency index.

Equations 1�4 below completely de�ne the econometric model. It incorporates lagged relationships

between the case (and death) growth rates, and other variables arising from the approximate delay in

symptom onset and case con�rmation and the timing of exposure to the virus (Rothan and Byrareddy

2020). The lags for the growth rate in deaths are longer than those for cases (by 14 days) to re�ect the fact

that on average deaths occur at a much later time after infection, e.g., due to deaths occurring after lengthy

hospitalization in intensive care units. The exact determination of the lags is not critical, as there is a high

degree of autocorrelation of the key lagged variables. To simplify the model, all lags and moving-averages

were multiples of 7 days to remove the e�ects of systematic daily variations.

The 7-day moving average of the percentage change in mobility (compared to the pre-Covid baseline for

each country) is denoted by Mi,t�this was constructed by an equal-weighting of three individual variables

separately measuring mobility towards groceries and pharmacies, transit stations and workplaces. Since this

variable is normalized at a di�erent baseline per country, additional random e�ects at the country level were

not implemented in equation 3, in contrast to all other equations.
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Figure 2: A 4-equation structural model of Covid-19 dynamics
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In eq. 4, SI li,t is an ordered variable of the stringency index ranging in levels from 0 to 10, in equation

1 it enters as a set of dummy variables. An indicator function captures government hysteresis or path-

dependence I
[
Ċi,t−7 − Ċi,t−14

]
,which is equal to 1 if the case growth rate has been increasing or zero if

it has been decreasing. If the estimated coe�cient δ2 > 0 then this means that for the same level of case

growth, governments will on average be more likely to impose more stringent NPIs if the case growth trend

is negative than if it were positive.

The initial date used in the estimation varied by country as it was to set to the �rst day with a con�rmed

case. Any missing datapoints for the con�rmed cases and deaths, number of tests and vaccinations at time

t were set equal to the value at time t − 1; note, this was done on the raw data of these variables, which

were coded as cumulative sums until time t. Country-level unobservable characteristics were modeled using

unique random e�ects λe
i for equations e =1, 2 and 4, allowing for covariance between all the random e�ects

to capture the joint impact of unobservable country characteristics. Fixed-e�ects for the day of week are

denoted by W l
t .

Possible hysteresis, or path-dependence, in governments' determination of the level of NPI stringency is

also modeled, conditional on whether the case growth rate has recently been declining or increasing. The

hypothesis is that governments are slower at scaling back stringent NPIs as the pandemic threat recedes

than they are in implementing them during outbreaks. Fixed-e�ects accounted for the possible in�uence of

the day of the week on case and death rates. Cluster-robust standard errors were employed to account for

heteroskedasticity and within-panel dependence of errors. Of course, the usual disclaimers hold regarding

the use of observational data and the causal assumptions embedded in the chosen structural equations and

variable relationships.

Results

Detailed regression results can be found in Tables 2 and 3, below I present the main estimates graphically.

Highly correlated latent (unobservable variables) in�uence both government policy and con-

�rmed case/death growth rates The estimated covariances (and associated correlation) between the

country-level latent variables in equations 1, 2 and 4 are all positive and signi�cantly di�erent from zero at

the 0.001% level: ρλ,12=0.98 [95% CI: 0.95,1.00], ρλ,14=0.66 [0.54,0.79], ρλ,24=0.68 [0.56,0.80]. This validates

our hypothesis that there exist signi�cant unobservable variables that may simultaneously in�uence case and

death rates, but also government responses to the pandemic in terms of the severity of restrictions. Ignoring

these relationships by estimating a single regression of case or death growth rates, as is commonly done in

the literature, would have led to biased estimates.

Adaptive expectations of the risk of infection impact non-residential mobility Beyond the e�ect

of NPIs, citizens react to increases in the 7-day lag in the growth rates of con�rmed cases by reducing

mobility. This is consistent with a theory of citizens forming adaptive expectations about the severity of

the pandemic at any point in time and the risk of contraction based on the data. The impact of the daily

growth in con�rmed cases is γ̂2 = −0.214 [-0.255,-0.174]. Putting the e�ect size into perspective, an increase

in the case rate of 1% point, would result on average in a relatively weak 0.21% point reduction in mobility

compared to the baseline.
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Figure 3: Impact of policy Stringency index on the percentage change in non-residential mobility (γ1,l)

The indirect links between NPIs and con�rmed cases/deaths The indirect links consist of two

components in each case, (SI → M) and (M → Ċ), (SI → M) and (M → Ḋ). The following results will

establish that both indirect components are signi�cantly di�erent from zero. Consequently, non-residential

mobility acts as the mediator in this relationship between NPI stringency and case/death growth rates. First

I report the evidence regarding the SI → M component that is common to both instances and then the

second component.

Higher NPI severity restricts non-residential mobility Non-residential mobility is clearly im-

pacted by the SI (see the estimates in Table 2 and Figure 3 below), as the null hypothesis that all SI dummy

variables are equal to zero is rejected (χ2 (10) = 428.38, p < 0.0001). Furthermore, it is monotonically

decreasing in the ten SI ranges.

Lower non-residential mobility increases case and death growth rates The theoretical motiv-

ation behind restricting mobility through lockdown measures is that its reduction will lead to a fall in the

number of social interactions, with the hope that this will reduce transmission and infection. However, a

reduction in non-residential mobility must, by de�nition, be mirrored by an increase in the time spent within

residences�indeed, they are highly negatively correlated in the Google mobility data; the median correlation

within panels is -0.89. Consequently, reductions in non-residential mobility may have a detrimental e�ect

on case/death growth as although transmission outside the home may be reduced, within-household trans-

mission may be enhanced as people spend increasingly more time within the con�nes of a closed space with

others (Sun et al. 2021). Since the two e�ects work in opposite directions, whether restricting non-residential

mobility reduces case/death growth or not must be resolved empirically. Our �nding that the coe�cient of

Mi,t−7 is signi�cantly negative for cases, β̂c
1 = −0.0417 ([−0.0578,−0.0256] , p < 0.001) and similarly Mi,t−21

for deaths β̂d
1 = −0.0162 ([−0.03,−0.002] , p = 0.025), supports the hypothesis that the bene�ts of reduced

non-residential mobility are more than outweighed by the detrimental e�ects of increased within-household

transmission (conditioning on the stringency of government policies). The e�ect size is moderate, as a 10%

point decrease in mobility leads to an increase in 0.4% points of the case growth rate.

The direct link between SI and case/death growth rates Turning to the direct e�ect of the strin-

gency index of restrictions on case growth rates, the hypothesis that the set of βc
2,l estimates are all equal
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Figure 4: Total e�ect of the level of the Stringency Index

(a) Con�rmed case growth rate
(
βc
2,l + γ1,l × βc

1

)
(b) Death growth rate

(
βd
2,l + γ1,l × βd

1

)

to zero is rejected (χ2 (10) = 137.28, p < 0.0001). Furthermore, there is evidence of a nonlinear relationship,

with strongly decreasing returns to the e�ectiveness of restrictions with increasing severity (see Table 2, and

note that the conclusions are similar for death growth rates).

The total e�ect of NPI stringency on case/death growths and the optimal level of SI The

total e�ect of NPI stringency on case growth can be computed by adding the direct β2,l and indirect paths

γ1,l × β1 for each stringency level of l. This combined e�ect of SI on Ċi,t and Ḋi,t is documented in Table 4

and presented graphically below in Figure 4.

The maximum impact of SI on case growth is observed for the SI range of 61�70. We test the di�erence

in e�ectiveness of all other levels against the most e�ective range 61�70, correcting for multiple comparisons

using the Sidak correction.2 There is no di�erence in e�ectiveness for the ranges 51�60 and 71�80 (see Table

5 for the test statistics); the ranges (81�90, 91�100) are signi�cantly less e�ective than the range of 61�70.

Consequently, there are no further gains to be achieved beyond the SI range of 51�60. The socially optimal

SI range, however, must account not only for the positive e�ects of NPIs, but also for the signi�cant economic

and other health-related costs that result from restrictions (for example, see Miles, Stedman and Heald 2020;

Susskind and Vines 2020; Altman 2020). While this would require a full cost-bene�t analysis (Rowthorn

and Maciejowski 2020; Appleby 2020) that is beyond the scope of this paper, we can derive the approximate

upper bound of the socially optimal level of the SI with a single assumption about the cost pro�le of di�erent

SI levels. Namely, I only assume that the costs are monotonically increasing in the SI level. Consequently,

without the need to quantify costs, I conclude that the upper bound of the socially optimal SI level, SI* is

51�60, i.e., the minimum SI range that is not signi�cantly di�erent from the maximum e�ect at 61�70.

While the quanti�cation of the exact costs is an important endeavour, it is fraught with many di�culties,

such as converting non-economic outcomes into monetary terms and would require many assumptions about

highly uncertain possible e�ects, many in the distant future. By contrast, this upper-bound on SI* is

extremely robust, albeit less informative. The above derivation of SI* is based on statistical signi�cance,

however it is possible that lower SIs may be statistically signi�cantly di�erent from SI*, but that the di�erence

2Note, if anything this underestimates the possible range of non-signi�cantly di�erent SI ranges, as it ignores the uncertainty
associated with whether the range 61�70 is truly the most e�ective range.
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in the e�ect size is practically of little importance. Indeed, the ratio of the e�ect sizes of an SI range of 31�40

relative to the average of the 51�80 range, is 91% [85%, 97%]. The relative e�ectiveness of the even laxer

21�30 range is 72% [57%, 86%]. If the costs of NPIs increase quickly with NPI stringency, it is conceivable

that moderately severe policy responses in the 30�40 SI range (and possibly, even 21�30 SI) may in fact

be close to the socially optimal SI* (arising from a full cost-bene�t analysis), as it already achieves 91%

e�ectiveness without accounting for costs.

Similarly, the maximum e�ectiveness on death growth rates is also observed for an SI range of 61�70.

We test the di�erence in e�ectiveness of all other levels against this range. There is no signi�cant increase

in e�ectiveness for levels beyond 41�50 (see Table 7). In terms of the e�ect size relative to the average of the

41�90 range, an SI range of 31�40 achieves 93% [87%, 98%] of the e�ectiveness of the former and the laxer

21�30 range achieves 73% [58%, 88%].

Finally, while the SI index aggregates various individual NPI policies, examining the median values of

the individual policies in the dataset for each SI range can be informative�see Table 1. Note, that for the

31�40 SI range, which achieves at least 90% of the maximum impact, the median policies do not include

any level of restriction on transport and internal movement, and no stay-home restrictions. Furthermore,

only recommendations for closing schools and workplaces and cancellation of public events were issued, i.e.,

these were not mandatory. The only stringent individual policies typically arising in the 31�40 SI range

were quarantining high-risk cases from international travel and restrictions on gatherings of 100-1000 people;

however, these two policies are not re�ective of citizens' everyday behavior. Consequently, voluntary�rather

than mandatory�behavioral changes are more important drivers of the impact of NPIs on case (and death

growth).3 This is consistent with other studies that also conclude that the �attening of NPI e�ectiveness with

increasing stringency re�ects a relatively stronger voluntary rather than mandatory component to behavioral

changes (e.g., Allcott et al. 2020; Bjørnskov 2021; Bonardi et al. 2020; Bendavid et al. 2021).

Whence arises this voluntary behavioral change? As we showed above, part of it is from citizens' ex-

pectations of the risk of infection and severity as captured by γ̂2 in equation 3, whose e�ect size, however,

was found to be relatively small. The rest, and majority of the voluntary behavioral change, is likely due

to the signalling value of policy decisions, i.e., citizens can also use information about the stringency of the

government measures to infer the severity of the pandemic. This implies that recommendations by govern-

ments, for SI ranges of up to 40, were heeded by citizens, who signi�cantly changed their behavior in ways

beyond those captured by mobility in eq. 3, e.g., preventative measures such as diligent hand washing and

mask-wearing, e�ective self-isolation when infected et cetera.

Extensive public testing signi�cantly reduces case and death growth, contact tracing does

not Figure 5 presents the estimated coe�cients and associated 95% con�dence intervals�see Table 2 for

detailed regression results. All three levels of the testing regime are jointly signi�cantly di�erent from zero

(χ2 (3) = 66.03, p < 0.0001), leading to progressively greater declines in case growth as testing becomes more

extensive (robust to multiple comparison Sidak corrections).4 Note, that the most extensive testing policy

has an impact of -7.39 [-9.926,-4.854], which is 51% [27%,76%] of that of the most impactful SI range (61�70).

3I infer that the restriction on gatherings of 100-1000 people is not the main driver of mandatory behavioral change for the
following reason. The median level of restrictions on gatherings for the immediately less stringent range, 21�30, is zero, i.e.,
no restrictions whatsoever. Yet the mean estimate of NPI impact for the 31�40 range is -12.945 compared to -10.173 for the
21�30 range�some of this di�erence will also be due to other policies that are stricter on average in the former compared to
the latter.

4That is, comparing the baseline of no testing to the �rst level (χ2 (1) = 12.42, p = 0.0013), the �rst to the second level
(χ2 (1) = 38.55, p < 0001) and the second to the third level (χ2 (1) = 7.83, p = 0.0153).
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Figure 5: Estimated coe�cients across levels of testing policy and contact tracing

(a) Con�rmed case growth rate
(
βc
3,l, β

c
4,l

)
(b) Death growth rate

(
βd
3,l, β

d
4,l

)

Similarly, testing policy signi�cantly reduces the death growth rate (χ2 (3) = 42.81, p < 0.0001). Apart from

the monetary costs associated with implementing a testing regime it does not impose other negative social

externalities, in contrast to lockdowns. Coupled with the signi�cant impact on Covid-19 dynamics, this

renders extensive testing a desirable tool.

Contact tracing of any level does not have a signi�cant impact on con�rmed case growth (χ2 (2) =

1.93, p = 0.38) or death growth (χ2 (2) = 1.31, p = 0.52). One should keep in mind that contact tracing

may still be e�ective if the number of daily new cases is small, when e�cient tracing is more manageable.

However, there remain important challenges to scaling contact tracing (Chowdhury et al. 2020; Quilty et al.

2021; Kretzschmar et al. 2020) that could hinder its e�ectiveness during signi�cant outbreaks.

The proportion of the population tested daily does not signi�cantly a�ect cases and deaths

While both estimates are negative, as expected, increasing the proportion of daily tests does not signi�c-

antly reduce the case growth, β̂5 = −0.18 [−0.403,−0.035, p = 0.1], nor the growth rate in deaths, -0.126

[−0.315, 0.063, p = 0.191]. Note, that an earlier analysis with datapoints till the end of January 2021 only,

revealed a statistically signi�cant impact. The inclusion of di�erent levels of the ordinal testing policy vari-

able may partially capture this e�ect, as they will be correlated to some degree with the proportion tested,

i.e., extensive testing as coded in the ordinal variable would likely imply more testing. Finally, this may

be the result of implicitly assuming exogeneity, however testing may also be endogenously determined as

governments are likely to step up testing during phases with higher transmission.

Vaccination reduces case and death growth rates Despite few datapoints where vaccination was

already well underway, each 1% point increase in the cumulative vaccination % results in a reduction of

the case growth of -0.017% points [−0.032,−0.002, p = 0.022] and in the death growth rate -0.0187% points

[−0.035,−0.002, p = 0.026]. Note that the median (non-zero) cumulative vaccination % across countries is

only 2.6% and the 10th and 90th percentiles are 0.07% and 19.8%, respectively. Consequently, these relatively

low estimates should not be assumed to extrapolate for higher vaccination levels, especially since this is likely

to be a nonlinear relationship in reality, i.e., the e�ect of vaccinations will increase at an accelerating rate

as it approaches the herd immunity level.
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Government policy is endogenous and exhibits hysteresis Government policy is strongly endogen-

ous, in contrast to the common implicit assumption of exogeneity. The seven-day lagged con�rmed growth

rate coe�cient δ̂1 = 0.048 [0.035, 0.061, p < 0.0001] is positively related to NPI severity. Furthermore, I �nd

signi�cant hysteresis in the de-escalation of NPIs, that is for the same case growth, NPIs are signi�cantly more

stringent if the case growth has been falling recently, than the opposite: δ̂2 = 0.531 [0.453, 0.609, p < 0.0001].

Discussion

A four-equation structural model of multiple agents (SARS-CoV-2 virus, citizens and government) capturing

the basic dynamics of their endogenous evolution revealed the following. Recall that the Stringency Index

of NPIs ranges from 0 (no measures taken) to a maximum of 100. For con�rmed case growth rates, there

were no signi�cant gains to be had beyond an SI range of 51�60; moreover, 91% of this e�ect size can be

achieved with an SI range of 31�40. For death growth rates, no signi�cant gains were to be achieved beyond

an SI range of 41�50 and 93% of this e�ect size can be accomplished with an SI range of 31�40. An open

testing policy has approximately half the bene�ts of the optimal NPIs without incurring the societal costs

associated with long-term restrictions. Furthermore, the �nding that decreases in non-residential mobility,

and therefore increases in its complement, time spent at residences, increase the growth rate of con�rmed

cases and deaths is aligned with contact tracing analyses of heightened transmission risk within a household,

compared to the wider community (Sun et al. 2021) and earlier work concluding that shelter-in-place orders

did not reduce Covid-19 infection and mortality rates (Berry et al. 2021).

Interpretation and implications for policy What implications does this have for policy? I report

in Table 1 the median values of the individual NPI constituents of the SI index for these upper bounds

on the socially optimal level of NPI stringency for both con�rmed cases (51�60) and deaths (41�50), and

the range of 31�40, which is near-optimal. Note, that there is signi�cant heterogeneity across individual

NPIs in terms of their severity. The most severe implemented restrictions are those on gatherings and

international movement. At the other extreme, regarding transport and internal movements, no restrictions

or recommendations were made in these three SI ranges. Stay-home restrictions and recommendations

are also absent with the exception of a recommendation to stay home associated with the 51�60 range.

Moderately severe restrictions are typically implemented for schools and workplaces, that is, the optimal

upper bound for con�rmed cases enforces partial closing (targeted, not across the board) whereas that for

death rates and the near-optimal SI range (31�40) call only for recommendations to work from home.

These �ndings are generally aligned with studies �nding that more severe restrictions were not sig-

ni�cantly more e�ective than less restrictive policies (Bendavid et al. 2021; Haug et al. 2020; Bjørnskov

2021; Bonardi et al. 2020). However, they stand in contrast to others that concluded that strict lockdowns

were e�ective (Flaxman et al. 2020; Islam et al. 2020), whilst di�ering in some policy interventions such

as school and workplace closures, but agreeing on others such as mass gathering restrictions (Islam et al.

2020). Di�erences with these studies may arise due to their more limited time-series and/or the lack of

explicit behavioral modeling of citizens' reactions to the pandemic. The majority of the e�ect of NPIs on

case and death growth rates could be attributed to voluntary behavioral changes rather than mandatory,

government-imposed imperatives. Note also, that the 31�40 range typically includes a coordinated public

informational campaign aimed at in�uencing voluntary behavior. This highlights the importance of modeling

the behavioral incentives of both governments and citizens in conjunction with the pandemic dynamics.
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Table 1: Stringency index levels and their (median) constitutent NPI levels

Restriction type 51�60† 41�50⋄ 31�40◦

school closing 2 1 1 recommend closing
workplace closing 2 1 1 recommend closing (or work from home)
cancellation of public events 2 1 1 recommend cancelling
gatherings restrictions 3 3 2 restrictions on gatherings of 100-1000 people
transport closing 0 0 0 no measures
stay-home restrictions 1 0 0 no measures
internal mov. restrictions 0 0 0 no measures
international mov. restrictions 3 3 3 quarantine arrivals from high-risk regions
informational campaigns 2 2 2 coordinated public information campaign

† upper bound of optimal SI* for con�rmed case growth, ⋄ upper bound of optimal SI* for death death
growth, ◦ achieves at least 90% of the e�ectiveness for both case and death growth.

Importantly, the study's conclusions were shown to be robust to the recti�cation of econometric issues such

as endogeneity and correlated unobservable latent variables, and accounting for citizens' and governments'

voluntary behavior.

Strengths and limitations of this study The simultaneous modeling of pandemic dynamics with be-

havioral models of citizens' behavioral adaptation to the pandemic, along with a model of governments'

decision-making processes regarding policy implementation is the primary strength of this study with re-

spect to earlier work. Identi�cation of this more sophisticated model with behavioral components was made

possible by the larger amount of accumulated data including testing and vaccination rates. Nonetheless,

certain simpli�cations were still necessary to ensure identi�cation and to rein in the computational complex-

ity of the estimation processes. These simpli�cations included examining the e�ects of nations' stringency

index compiled from individual NPIs, rather than examining each NPI separately. Similarly, an average

measure of the change in mobility was used instead of disaggregated sub-measures of the type of mobility.

Furthermore, while random-e�ects allowed for variation across countries in unobservable variables, estimates

of the variables of interest (NPIs and other interventions) were pooled across countries.

Unanswered questions and further research As more data becomes available over time, future re-

search should be directed towards relaxing some of the acknowledged limitations of the current modeling.

For example, allowing for heterogeneity in the variable estimates across countries would be desirable rather

than pooling estimates across countries, as would the use of sub-national data. The analysis of vaccina-

tions should extended once data is available for higher levels of vaccination to properly estimate the likely

nonlinear e�ect beyond the currently low levels reported in this dataset.

Finally, the conclusions reached herein must be placed within the context of and validated by other

methodological approaches, such as SIR and agent-based models. However, I have presented signi�cant

evidence that strict NPIs provide no further bene�ts over less stringent ones, and that the latter function

primarily as signals for signi�cant voluntary changes in behavior rather than mandatory changes.
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Table 2: Generalized structural equation model of Ċi,t, Ḋi,t,Mi,t and SIi,t

Ċi,t Ḋi,t Mi,t SIi,t

Mi,t−7 -0.0417*** Mi,t−21 -0.0162*

[-0.0578,-0.0256] [-0.0304,-0.00199]

SIi,t−14 SIi,t−28 SIi,t−7

1�10 -4.522 -7.336*** 1�10 -3.346

[-10.40,1.350] [-10.97,-3.701] [-7.675,0.983]

11�20 -5.681* -7.938*** 11�20 -3.264

[-10.01,-1.352] [-10.85,-5.022] [-10.44,3.910]

21�30 -10.44*** -12.45*** 21�30 -6.421*

[-14.73,-6.153] [-15.16,-9.734] [-12.29,-0.550]

31�40 -13.45*** -14.96*** 31�40 -12.21***

[-17.42,-9.487] [-17.71,-12.22] [-15.98,-8.438]

41�50 -14.13*** -15.46*** 41�50 -13.90***

[-18.04,-10.22] [-18.14,-12.79] [-17.54,-10.26]

51�60 -14.81*** -15.80*** 51�60 -15.68***

[-18.70,-10.92] [-18.45,-13.14] [-19.40,-11.96]

61�70 -15.25*** -16.10*** 61�70 -19.84***

[-19.18,-11.33] [-18.80,-13.40] [-23.80,-15.88]

71�80 -15.28*** -15.91*** 71�80 -28.68***

[-19.19,-11.36] [-18.59,-13.22] [-32.76,-24.59]

81�90 -15.10*** -15.83*** 81�90 -34.90***

[-19.04,-11.17] [-18.57,-13.10] [-39.67,-30.13]

91�100 -14.19*** -15.07*** 91�100 -53.46***

[-18.23,-10.15] [-17.84,-12.30] [-59.67,-47.25]

Tpopi,t−14 -0.184 Tpopi,t−28 -0.126 Ċi,t−7 -0.214*** Ċi,t−7 0.0484***

[-0.404,0.0355] [-0.315,0.0629] [-0.255,-0.174] [0.0354,0.0613]

Vi,t−14 -0.0170* Vi,t−28 -0.0187* I
[
Ċi,t−7 0.531***

[-0.0316,-0.00242] [-0.0352,-0.00230] −Ċi,t−14

]
[0.453,0.609]

TPi,t−14(1) -4.385*** TPi,t−28(1) -2.603*

[-6.824,-1.946] [-4.671,-0.535]

TPi,t−14(2) -6.474*** TPi,t−28(2) -4.247***

[-8.964,-3.983] [-6.369,-2.125]

TPi,t−14(3) -7.390*** TPi,t−28(3) -4.875***

[-9.926,-4.854] [-7.086,-2.664]

CTi,t−14(1) -0.77 CTi,t−28(1) -0.567

[-1.973,0.434] [-1.584,0.450]

CTi,t−14(2) -0.82 CTi,t−28(2) -0.572

[-1.986,0.345] [-1.586,0.442]

α1 21.96*** α2 20.71*** α3 3.328*

[17.92,25.99] [18.30,23.13] [0.0958,6.560]

σ2
λ,1 4.299*** σ2

λ,2 2.870*** σ2
λ,4 3.240***

[3.312,5.287] [2.076,3.665] [2.350,4.130]

σ2
ϵ,1 22.22*** σ2

ϵ,2 33.72*** σ2
ϵ,4 200.4***

[17.82,26.62] [29.39,38.04] [160.2,240.5]

σλ,12=3.429*** [2.683,4.176] , σλ,14=2.478*** [1.798,3.158] , σλ,24=2.070*** [1.479,2.661]

[95% CI],* p<0.05, **p<0.01, *** p<0.001
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Table 3: Other estimates from the structural equation model of Ċi,t, Ḋi,t Mi,t and SIi,t

Ċi,t Ḋi,t SIi,t

Monday -0.0198 0.153 α3
1 -8.621***

[-0.167,0.128] [-0.0432,0.349] [-9.903,-7.340]
Tuesday 0.14 0.189 α3

2 -6.679***
[-0.0678,0.347] [-0.0111,0.389] [-7.437,-5.920]

Wednesday 0.332*** 0.238* α3
3 -4.625***

[0.173,0.491] [0.0540,0.423] [-5.252,-3.999]
Thursday 0.278*** 0.210* α3

4 -3.281***
[0.145,0.412] [0.00722,0.413] [-3.778,-2.784]

Friday 0.392*** 0.18 α3
5 -1.993***

[0.263,0.521] [-0.000637,0.361] [-2.413,-1.574]
Saturday 0.103 0.123 α3

6 -0.808***
[-0.00538,0.211] [-0.0604,0.307] [-1.192,-0.425]

α3
7 0.232

[-0.131,0.594]
α3
8 1.289***

[0.944,1.635]
α3
9 2.617***

[2.249,2.984]
α3
10 4.470***

[4.016,4.924]

Table 4: Total e�ects of SI ranges on the growth rate of con�rmed cases

Coef. p 95% CI

1�10 -4.383 0.140 -10.202 1.436
11�20 -5.544 0.012 -9.880 -1.209
21�30 -10.173 0.000 -14.473 -5.874
31�40 -12.945 0.000 -16.883 -9.007
41�50 -13.549 0.000 -17.424 -9.674
51�60 -14.156 0.000 -18.013 -10.298
61�70 -14.426 0.000 -18.319 -10.534
71�80 -14.080 0.000 -17.953 -10.208
81�90 -13.647 0.000 -17.531 -9.763

91�100 -11.958 0.000 -15.906 -8.010
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Table 5: Di�erence between the maximum e�ectiveness level of restrictions for con�rmed cases (61�70)

Relative to 61�70 χ2 (1) p

1�10 18.310 0.0002
11�20 43.220 0.0000
21�30 21.300 0.0000
31�40 13.910 0.0017
41�50 9.410 0.0193
51�60 2.550 0.6496
71�80 3.480 0.4392
81�90 8.340 0.0343
91�100 43.400 0.0000

Joint 101.710 0.0000

Table 6: Total e�ects of SI ranges on the growth rate of deaths

Coef. p 95% CI

1�10 -7.282 0.000 -10.896 -3.667
11�20 -7.885 0.000 -10.791 -4.979
21�30 -12.344 0.000 -15.047 -9.641
31�40 -14.766 0.000 -17.491 -12.041
41�50 -15.238 0.000 -17.901 -12.576
51�60 -15.541 0.000 -18.175 -12.908
61�70 -15.779 0.000 -18.448 -13.109
71�80 -15.444 0.000 -18.104 -12.785
81�90 -15.267 0.000 -17.968 -12.567
91�100 -14.204 0.000 -16.877 -11.531

Table 7: Di�erence between the maximum e�ectiveness level of restrictions for deaths (61�70)

Relative to 61�70 χ2 (1) p

1�10 25.35 0
11�20 51.57 0
21�30 21.07 0
31�40 10.53 0.0105
41�50 5.79 0.1359
51�60 2.42 0.6832
71�80 4.13 0.3206
81�90 4.3 0.2945
91�100 19.89 0.0001

Joint 81.64 0.0000
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