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Abstract 1 

Background: While Asians have a higher risk of type 2 diabetes (T2D) than 2 

Europeans for a given BMI, it remains unclear whether the same markers of metabolic 3 

pathways are associated with diabetes. 4 

Objectives: We evaluated associations between metabolic biomarkers and incident 5 

T2D in three major Asian ethnic groups (Chinese, Malay, and Indian) and a European 6 

population.  7 

Methods: We analyzed data from adult males and females of two cohorts from 8 

Singapore (n = 6,393) consisting of Chinese, Malays and Indians, and three cohorts of 9 

European-origin participants from Finland (n = 14,558). We used nuclear magnetic 10 

resonance to quantify 154 circulating metabolic biomarkers at baseline and performed 11 

logistic regression to assess associations with T2D risk adjusted for age, sex, BMI and 12 

glycaemic markers.  13 

Results: Of the 154 metabolic biomarkers, 59 were associated with higher risk of T2D 14 

in both Asians and Europeans (P < 0.0003; Bonferroni-corrected). These included 15 

branched-chain and aromatic amino acids, the inflammatory marker glycoprotein 16 

acetyls, total fatty acids, monounsaturated fatty acids, apolipoprotein B, larger very 17 

low-density lipoprotein particle sizes, and triglycerides. In addition, 13 metabolites 18 

were associated with a lower T2D risk in both populations including omega-6 19 

polyunsaturated fatty acids and larger high-density lipoprotein particle sizes. 20 

Associations were consistent within the Asian ethnic groups (all Phet ≥ 0.05) and 21 

largely consistent for the Asian and European populations (Phet ≥ 0.05 for 128 of 154 22 

metabolic biomarkers).  23 

Conclusion: Metabolic biomarkers across several biological pathways were 24 

consistently associated with T2D risk in Asians and Europeans. 25 
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Introduction 31 

The global burden of type 2 diabetes (T2D) is high and rising [1, 2], with the 32 

prevalence expected to rise to 7079 cases per 100,000 in 2030, from 6059 cases per 33 

100,000 in 2017 [2]. In randomized trials, pharmaceutical and lifestyle interventions 34 

substantially reduced the risk of T2D [3-5] in high-risk individuals. Variation in 35 

genetic, environmental and lifestyle exposures between individuals, coupled with 36 

heterogeneity in T2D [6, 7] has motivated omics biomarkers as intermediate 37 

phenotypes to T2D and the development of ‘precision medicine’ approaches to 38 

prevention [8-10]. Metabolic biomarkers reflect the dynamic and ongoing state of 39 

homeostasis and metabolism [11]. In recent years, the field of metabolomics has 40 

gained traction due to technological advances [12] and has uncovered various 41 

metabolites that are consistent predictors of T2D [13]. As many of these metabolic 42 

biomarkers are modifiable by diet or other lifestyle factors, information on metabolic 43 

risk factors may guide personalized interventions.  44 

 45 

Previous studies on metabolic profiles and T2D risk were mostly conducted in 46 

populations of predominantly European ancestry, and it remains unclear if these 47 

findings can be generalized to different Asian ethnic groups. For example, individuals 48 

of Asian origin tend to develop T2D at a lower body mass index (BMI) and a younger 49 

age than those of European origin [7], and ethnic Indians are generally more insulin 50 

resistant than ethnic Malays or Chinese [14]. Although some metabolomics studies on 51 

T2D incidence have been conducted in East Asian (e.g. Chinese) populations, data on 52 

South East Asian (e.g. Malays) and South Asian (e.g. Indians) populations are limited 53 

[13].  54 

 55 
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We therefore evaluated whether associations between biomarkers reflecting a variety 56 

of biological pathways and diabetes incidence differed between Asian and European 57 

ethnic groups. We quantified amino acids, an inflammatory marker, fatty acids, 58 

lipoprotein and ketone bodies using nuclear magnetic resonance (NMR) metabolomic 59 

analysis in two multi-ethnic cohorts in Singapore and three cohorts in Finland. NMR 60 

metabolomics allows for highly reproducible identification and quantification of 61 

compounds [15, 16]. We subsequently performed association analyses of these 62 

metabolic measures with risk of T2D in three major Asian ethnic groups (Chinese, 63 

Malay, and Indian) and the European population.  64 

 65 

Methods 66 

Study Population 67 

The Asian participants included in this study were from two population-based cohorts 68 

in Singapore that included ethnic Indians, Malays and Chinese: the Multiethnic 69 

Cohort (MEC) [17] study and the Singapore Epidemiology of Eye Diseases (SEED) 70 

cohort study [18, 19]. The European participants in our study were from three Finnish 71 

prospective population-based cohorts (FINRISK 2002, FINRISK 2012 and Health 72 

2000) [20, 21]. All studies included questionnaires about socio-demographic 73 

characteristics and medical history, technician-measurement of anthropometric 74 

measures and blood pressure, and collection of blood samples. Details of the 75 

individual cohorts are provided in the Supplemental Text. Informed consent was 76 

obtained from all participants and ethical approvals were obtained from the respective 77 

ethics review boards. 78 

 79 
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For all cohorts, we excluded participants with diabetes, cardiovascular diseases or 80 

cancer at baseline. From the MEC cohort of 9180 participants, we identified 694 81 

incident diabetes cases using the following criteria: (a) fasting plasma glucose ≥7.0 82 

mmol/L or HbA1c ≥6.5 % (47.5 mmol/mol) based on the American Diabetes 83 

Association [22] or self-reported physician-diagnosed diabetes at follow-up, or (b) 84 

record linkage with a national database of medical diagnoses as part of public 85 

hospital, polyclinic, and subsidized GP visits). Using risk-set sampling, we selected 86 

1315 controls matched for age (±5 years), sex, date of health screening (±2 years), 87 

and ethnicity from cohort participants who were alive, and did not have diabetes at the 88 

time the index case occurred. We used 6-year revisit data from 4384 SEED cohort 89 

participants among whom 391 developed diabetes during follow-up. Diabetes 90 

ascertainment at baseline and the revisit was based on random glucose ≥11.1 mmol/L 91 

or HbA1c ≥6.5 % (47.5 mmol/mol) [22], or a self-reported physician diagnosis. For 92 

the European cohorts, we used data on 14588 participants from FINRISK 2002, 93 

FINRISK 2012 and Health 2000, among whom 1055 developed diabetes during 94 

follow-up. Diabetes ascertainment at baseline was based on the National Social 95 

Insurance Institution Drug Purchase and Reimbursement Registries for purchases and 96 

reimbursements of purchases of hypoglycemic drugs, and the National Hospital 97 

Discharge Register for hospitalizations with diabetes as the diagnosis. Incident 98 

diabetes cases were identified by linking the participants to the registers described 99 

above with a unique personal identification code assigned to each Finnish citizen. 100 

Participants with prevalent or incident gestational diabetes were excluded. 101 

 102 

Metabolic Biomarker Quantification and Quality Control 103 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.07.04.21259971doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.04.21259971


 8

Metabolic biomarkers were quantified from plasma (MEC, SEED Malays and 104 

European cohorts) and serum (SEED Chinese and SEED Indians) samples at baseline 105 

using a high-throughput 1H-NMR metabolomics platform developed by Nightingale 106 

Health Ltd. (Helsinki, Finland; nightingalehealth.com/; biomarker quantification 107 

version 2016). Details of the procedure have been described previously [23, 24]. The 108 

metabolic biomarkers quantified reflected several etiologically diverse pathways, such 109 

as amino acids, fatty acids, ketone bodies, and gluconeogenesis�related 110 

measurements. In addition, lipoprotein measures including total concentration, total 111 

lipids, phospholipids, total cholesterol, cholesterol esters, free cholesterol and 112 

triglycerides within 14 lipoprotein subclasses were measured. 9 MEC and 20 SEED 113 

participants had >10% missing metabolic biomarker values and were excluded from 114 

subsequent analyses. For participants with metabolic biomarker values lower than 115 

detection level, we replaced values of 0 with a value equivalent to 0.9 multiplied by 116 

the non-zero minimum value of that measurement. Finally, we standardized the 117 

metabolic biomarker concentrations to z-scores, and all effect sizes were reported as 118 

per standard deviation increment to enable comparison of metabolic biomarker 119 

associations for measures with different units and concentration ranges. A total of 154 120 

individual metabolic biomarkers were included in our analyses. 121 

 122 

Statistical analyses 123 

We first calculated Pearson’s correlation coefficients for all 154 metabolic 124 

biomarkers. Logistic regression was then used to assess associations between 125 

circulating metabolic biomarkers with T2D. We did not use Cox regression because 126 

most of the T2D cases were detected during revisit and the time-to-event data 127 

therefore did not accurately reflect time from baseline to disease onset. For the 128 
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matched MEC case-control study, conditional logistic regression model was used. In 129 

all studies, we adjusted for baseline age, sex, BMI, and fasting glucose (for MEC and 130 

Health 2000) or glycated hemoglobin (HbA1c, for non-fasting SEED, FINRISK 2002 131 

and 2012 cohorts). For MEC, age2 was included in the conditional logistic model as 132 

there was evidence of non-linearity in the relationship between age and T2D risk. 133 

Logistic models were performed separately by study and ethnic group to account for 134 

differences between populations. Inverse variance-weighted fixed-effect meta-135 

analysis was used to first pool ethnic-specific association statistics from the two 136 

Singapore cohorts, and then to combine association results from three ethnic groups. 137 

We also tested for heterogeneity using the Cochran Q heterogeneity. Bonferroni 138 

correction was used to account for multiple testing of 154 metabolic biomarkers and P 139 

<0.0003 (0.05/154) was considered statistically significant.  140 

 141 

To test the joint effects of multiple metabolic biomarkers on risk of T2D, we first 142 

performed the variable selection as described below and subsequently included the 143 

selected metabolites in a multivariable logistic regression model. Due to the correlated 144 

nature of the markers, we considered pairwise correlations between the metabolic 145 

biomarkers from MEC (Supplement Table 1). For the set of T2D associated metabolic 146 

biomarkers in the association analysis above that considered a metabolic biomarker 147 

individually across Asian and European populations, we first sorted the metabolic 148 

biomarkers by their strength of association. Starting with the most significantly 149 

associated metabolic biomarker (index-associated metabolic biomarker), we 150 

iteratively excluded other associated metabolic biomarkers that had correlations ≥ 151 

0.80 with the index-associated metabolic biomarker (correlation-pruning). The set of 152 

remaining metabolic biomarkers thus had a Bonferroni-adjusted significant 153 
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association with T2D and pairwise correlations <0.80. Finally, we performed stepwise 154 

regression analysis with the criterion of P-value of 0.05 in a joint model that included 155 

the selected biomarkers in the Asian and European cohorts. All statistical analyses 156 

were conducted using R 3.3.2 (R Foundation for Statistical Computing, Vienna, 157 

Austria). 158 

 159 

Results 160 

In the nested MEC case-control study, 694 incident T2D cases and 1315 matched 161 

controls were included in this study during a mean follow-up of 6.9 y (standard 162 

deviation SD: 2.4 y), and in the SEED cohort study, 391 incident T2D cases occurred 163 

in 4384 participants during an average of 6.2 y (SD: 1.1 y). In the European cohorts, 164 

1055 incident T2D cases occurred in 14,558 participants during an average of 11.3 165 

years (SD: 5.0 y). The average age was 54.0 y (SD: 9.8 y) for the Asian participants 166 

and 50.6 y (SD: 14.1 y) for the European participants, with similar representation of 167 

males and females for all populations, and Chinese, Malays and Indians for the Asian 168 

population (Table 1).  169 

 170 

We observed high correlations among the branched-chain amino acids (BCAAs) 171 

leucine, isoleucine and valine, and concentrations of n-6 polyunsaturated (n-6 PUFA) 172 

fatty acids, PUFA, monounsaturated fatty acids (MUFA), saturated fatty acids and 173 

linoleic acid (18:2n-6) (all r>0.80) (Supplemental Tables 1 to 4). In general, the lipid 174 

components (total lipids, phospholipids, cholesterol esters, free cholesterol) with the 175 

exception of triglycerides within a particular lipoprotein subclass were also highly 176 

correlated. Overall, 59 of the 154 metabolic biomarkers were consistently associated 177 

with a higher risk and 13 with a lower risk of T2D in both Asians and Europeans 178 
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(Pmeta < 0.0003; Bonferroni-corrected; Phet < 0.05 for 12 metabolic biomarkers) 179 

(Table 2, Figure 1 and Supplemental Table 5) after adjustment for age, sex, BMI 180 

and either fasting glucose or HbA1c. For the population-specific meta-analysis, we 181 

observed little heterogeneity in association across the three Asian ethnic groups (Phet ≥ 182 

0.05 for all 154 metabolic biomarkers) and across the three European cohorts (Phet ≥ 183 

0.05 for 144 of 154 metabolic biomarkers). Of the 29 metabolic biomarkers for which 184 

we did observe evidence for heterogeneity between the Asian and European 185 

populations, 23 were lipoprotein measures. 186 

 187 

Amino Acids and Inflammation 188 

Higher concentrations of BCAAs (leucine, isoleucine, and valine), aromatic amino 189 

acids (phenylalanine and tyrosine), and alanine were significantly and consistently 190 

associated with higher T2D risk in both Asians and Europeans (all Phet > 0.05). The 191 

strongest association was observed for leucine (Asians: OR 1.50 per 1 SD increment, 192 

95% CI 1.35 - 1.66; Europeans: OR 1.36, 95% CI 1.27 - 1.46). The inflammatory 193 

marker glycoprotein acetyls (GlycA) was also directly associated with risk of T2D 194 

(Asians: OR 1.41, 95% CI 1.28 - 1.55; Europeans: OR 1.34, 95% CI 1.25 - 1.43; Phet 195 

= 0.37). GlycA remained directly associated with T2D risk after further adjustments 196 

for CRP (data available only for MEC and the European cohorts, Asians: OR 1.94, 197 

95% CI 1.63 - 2.31; Europeans: OR 1.34, 95% CI 1.25 - 1.44). 198 

 199 

Fatty Acids 200 

Higher total concentrations of fatty acids were significantly associated with higher 201 

T2D risk. Among the different types of fatty acids, a higher proportion of MUFA was 202 

consistently associated with a higher T2D risk (Asians: OR 1.43, 95% CI 1.30 - 1.57; 203 
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Europeans: OR 1.38, 95% CI 1.27 - 1.51), and a higher proportion of n-6 PUFA with 204 

a lower risk (Asians: OR 0.70, 95% CI 0.64 - 0.77; Europeans: OR 0.70, 95% CI 0.65 205 

- 0.75). The proportion of saturated fat (SFA) was directly associated with T2D risk, 206 

but this was not statistically significant after Bonferroni correction in Asians (Asians: 207 

OR 1.15, 95% CI: 1.05 - 1.25; Europeans: OR 1.21, 95% CI 1.13 - 1.29). n-3 PUFAs 208 

were not significantly associated with risk of T2D in any ethnic group. There was no 209 

evidence of heterogeneity for associations of fatty acids with T2D between the Asian 210 

and European populations (all Phet > 0.05). 211 

 212 

Lipoprotein Measures 213 

We evaluated lipoprotein particle sizes, apolipoproteins and various lipoprotein 214 

measures including total concentrations, total lipids, phospholipids, total cholesterol, 215 

cholesterol esters, free cholesterol and triglycerides for 14 lipoprotein subclasses, in 216 

relation to T2D (Figure 1 and Supplemental Table 5).  217 

 218 

Higher levels of apolipoprotein B were associated with higher T2D risk in both 219 

Asians (OR 1.24, 95% CI 1.13 - 1.35) and Europeans (OR 1.22, 95% CI 1.13 - 1.30; 220 

Phet = 0.45). Larger VLDL particle size was among the metabolic biomarkers with the 221 

strongest direct associations with T2D risk (Asians: OR 1.44, 95% CI 1.31 - 1.59; 222 

Europeans: OR 1.46, 95% CI 1.36 - 1.57; Phet = 0.83). Larger LDL particle sizes were 223 

inversely associated with incident T2D risk in Europeans (OR 0.82, 95% CI 0.76 - 224 

0.89), but not in Asians (Asians: OR 0.98, 95% CI 0.89 - 1.07; Phet = 0.01). Larger 225 

HDL particle sizes were also more strongly inversely associated with T2D risk in 226 

Europeans (OR 0.63, 95% CI 0.58 - 0.69) as compared with Asians (OR 0.77, 95% CI 227 

0.69 - 0.86; Phet = 0.01).  228 
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 229 

The concentration of cholesterol in very low-density lipoprotein (VLDL) particles 230 

was generally associated with higher risk of T2D in both Asians and Europeans (all 231 

Phet > 0.05), with the strongest association observed for cholesterol in large VLDL 232 

particles (Asians: OR 1.41, 95% CI 1.29 - 1.53; Europeans: OR 1.29, 95% CI 1.22 - 233 

1.37; Phet = 0.10). Because the lipid components (total lipids, phospholipids, 234 

cholesterol esters, free cholesterol, triglycerides) in VLDL particles were highly 235 

correlated (Supplemental Tables 1 to 4), particularly in extremely large VLDL, very 236 

large VLDL, large VLDL and medium VLDL (Pearson’s r>0.85), these lipid 237 

components were similarly associated with T2D risk as VLDL cholesterol. 238 

 239 

Total high-density lipoprotein (HDL) cholesterol was inversely associated with T2D 240 

risk in Asians (OR 0.85, 95% CI 0.76 - 0.94) and Europeans (OR 0.76, 95% CI 0.69 - 241 

0.82; Phet = 0.09), although this did not reach Bonferroni-corrected significance in 242 

Asians. These inverse associations appeared to be driven by cholesterol in very large 243 

and large HDL particles, which were stronger in Europeans than in Asians (very large 244 

HDL: Phet=0.02; large HDL: Phet=0.04). Other lipid components of HDL (total lipids, 245 

phospholipids, cholesterol esters, free cholesterol) with the exception of triglycerides 246 

were similarly associated with T2D risk as the cholesterol component of HDL. There 247 

were no significant associations between intermediate-density lipoprotein (IDL) 248 

cholesterol and low-density lipoprotein (LDL) cholesterol concentrations and T2D 249 

risk.  250 

 251 

Elevated concentrations of total triglycerides were significantly associated with a 252 

higher risk of T2D in Asians (OR 1.43, 95% 1.31 - 1.57) and Europeans (OR 1.32, 253 
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95% CI 1.25 - 1.40; Phet = 0.14). Results were similar when we analyzed triglycerides 254 

in subclasses of VLDL, LDL, and HDL, with the exception of triglycerides in large 255 

HDL.  256 

 257 

Other Metabolic Biomarkers 258 

We also evaluated ketone bodies, glycerides, phospholipids, and metabolites related 259 

to glycolysis and fluid balance (Table 2). Higher phosphoglyceride concentrations 260 

were associated with T2D risk but this remained significant after Bonferroni 261 

correction only in Asians (OR 1.18, 95% CI 1.08 - 1.30) and not in Europeans (OR 262 

1.08, 95% CI 1.01, 1.16; Phet = 0.14). Similarly, higher albumin concentrations were 263 

significantly associated with a higher risk of T2D in Asians (OR 1.23, 95% CI: 1.12 - 264 

1.35), but not Europeans (OR 1.12, 95% CI 0.97 - 1.28; Phet = 0.25). 265 

 266 

Joint Effects of Metabolic Biomarkers on Risk of T2D 267 

Using the correlation-pruning method, 12 metabolic biomarkers in MEC were 268 

significantly associated with T2D with pairwise correlations with all other biomarkers 269 

<0.80. These were isoleucine, valine, phenylalanine, tyrosine, alanine, GlycA, 270 

unsaturation index, proportion of n-6 PUFA, proportion of MUFA, VLDL size, small 271 

VLDL particle concentration, and very large HDL phospholipids. Stepwise regression 272 

selected a multivariable model that simultaneously included isoleucine, GlycA, 273 

unsaturation index, and very large HDL phospholipids (Supplemental Table 6). 274 

Higher levels of isoleucine (Asians: OR 1.25, 95% CI 1.10 - 1.42; Europeans: 1.18, 275 

95% CI 1.06 - 1.31) and GlycA (Asians: OR 1.17, 95% CI 1.03 - 1.33; Europeans: 276 

OR 1.06, 95% CI 0.95 - 1.18) were associated with higher T2D risk, and very large 277 

HDL phospholipids with lower T2D risk (Asians: OR 0.88, 95% CI 0.77 - 0.99; 278 
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Europeans: OR 0.70, 95% CI 0.62 - 0.78). There was no independent significant 279 

association between unsaturation index and T2D risk. We observed evidence of 280 

heterogeneity between the Asian and European populations only for very large HDL 281 

phospholipids (Phet = 0.01). 282 

 283 

Discussion 284 

We quantified 154 metabolic biomarkers using NMR technology in plasma and serum 285 

samples from five prospective cohort studies representing three major ethnic groups 286 

in Asia (Chinese, Malay, and Indian) and a European population. While there have 287 

been previous metabolomics studies in Asians and individuals of European descent, 288 

these were mostly conducted separately in ethnically homogenous populations with 289 

cross-sectional study design, different metabolomics platforms or statistical methods 290 

that did not facilitate direct comparison of results [13, 25]. Here, we report that 291 

branched-chain amino acids, aromatic amino acids, alanine, the inflammatory marker 292 

GlycA, total fatty acids, the proportion of MUFA, apolipoprotein B, larger VLDL 293 

particle sizes and triglycerides were consistently associated with a higher T2D risk in 294 

Asians and Europeans. Furthermore, the proportion of n-6 PUFA and larger HDL 295 

particle sizes were consistently associated with a lower T2D risk in Asians and 296 

Europeans. Overall, associations were consistent across the Asian ethnic groups, and 297 

largely consistent for the Asian and European populations.  298 

 299 

Our finding that higher concentrations of BCAAs (leucine, isoleucine and valine) 300 

were associated with a higher risk of T2D is consistent with the results of previous 301 

prospective studies [13, 23, 25-30]. Results from Mendelian randomization studies 302 

suggest that BCAA metabolites play a causal role in the pathogenesis of T2D [30]. In 303 
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line with our results, the aromatic amino acids phenylalanine and tyrosine were 304 

directly associated with T2D risk in a meta-analysis of prospective studies [13], and 305 

alanine was directly associated with T2D risk in a Japanese cohort [27]. Elevated 306 

concentrations of aromatic amino acids and alanine have been hypothesized to induce 307 

insulin resistance, possibly by inhibition of glucose transport and phosphorylation in 308 

skeletal muscle [13, 31, 32]. 309 

 310 

A higher concentration of the inflammatory marker GlycA was associated with a 311 

higher risk of T2D in our study, which is compatible with results from the Dutch 312 

PREVEND study and the U.S. Women’s Health Study [33, 34]. GlycA is a composite 313 

NMR measure that arises from the N-acetyl methyl group protons of oligosaccharide 314 

moieties of acute-phase proteins [35], proteins whose concentrations change in 315 

response to inflammation. As opposed to CRP, which is characterized by multi-fold 316 

elevation in acute state, GlycA levels fluctuate less on short-term bases and may 317 

therefore capture different aspects of the inflammatory response [36], a hypothesis 318 

supported by our results and results of the PREVEND study as GlycA remains 319 

directly associated with T2D risk after adjusting for CRP [33]. However, in the 320 

Women’s Health Study, the association between GlycA and incident T2D was 321 

significantly attenuated after adjusting for CRP [34]. It is plausible that low-grade 322 

inflammation is involved in the pathogenesis of T2D through insulin resistance and 323 

beta-cell dysfunction [37, 38].  324 

 325 

Our report of a direct association between circulating MUFA and T2D risk is 326 

consistent with a previous finding in a Finnish cohort [39], but not with the 327 

Atherosclerosis Risk in Communities (ARIC) study [40]. Because MUFA can be 328 
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synthesized endogenously from SFA [41], MUFAs concentrations may reflect SFA 329 

intake. We also observed a direct association between circulating SFA and T2D risk 330 

although this was not significant in Asians. In the ARIC study [40] and a Finnish 331 

cohort [39], a higher proportion of SFA was also associated with higher T2D risk. It 332 

has been hypothesized that high SFA concentrations promote insulin resistance and 333 

are lipotoxic to beta-cells [42, 43]. Our study further showed that higher proportions 334 

of n-6 PUFAs were associated with a lower risk of T2D, concordant with a previous 335 

meta-analysis of prospective cohort studies [44]. The association may be partly 336 

mediated by increasing insulin sensitivity through increasing cellular membrane 337 

fluidity [45, 46], particularly of skeletal muscle cells and hepatocytes [45, 46], and by 338 

acting as ligands for peroxisome proliferator-activated receptor gamma [47, 48]. 339 

These hypotheses are supported by a meta-analysis of randomized feeding trials that 340 

showed improvements in glucose-insulin homeostasis for dietary PUFA compared to 341 

SFA or MUFA [49]. In a recent Mendelian randomization study, genetic 342 

predisposition to higher levels of linoleic acid was associated with a lower risk of 343 

T2D [50], supporting a causal effect of linoleic acid on T2D. The lack of association 344 

between the relative fraction of n-3 PUFA and T2D risk is consistent with a previous 345 

meta-analysis of prospective studies [51].  346 

 347 

We also identified several patterns in the lipoprotein profile that were consistently 348 

associated with T2D risk across ethnic groups. Larger VLDL particles were directly 349 

associated with T2D risk, similar to existing evidence from prospective studies [23, 350 

52-54]. VLDL is mostly comprised of triglycerides, and larger particles carry more 351 

triglycerides [54]. The causal relationship between circulating triglycerides and T2D 352 

is still a matter of debate [55] and there was no consensus among studies on 353 
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genetically influenced triglyceride levels and T2D incidence [56, 57]. Our finding that 354 

the concentration of larger HDL particles was inversely associated with T2D risk also 355 

agrees with previous prospective studies in western populations [23, 52-54]. While 356 

HDL lipid components (e.g. phospholipids, cholesterol esters, free cholesterol) in very 357 

large and large HDL particles were associated with lower risk of T2D, they were not 358 

associated with T2D risk in medium and small HDL particles. This suggests that the 359 

inverse associations observed for HDL lipid components were driven by particle size 360 

rather than lipid composition. Larger HDL particles have been hypothesized to be 361 

more efficient in cholesterol efflux capacity than smaller HDL particles [58, 59]. HDL 362 

particles may also have other anti-diabetic properties such as promoting insulin 363 

secretion and glucose uptake in skeletal muscle cells [60].  364 

 365 

Our study's strengths included the use of large population-based cohorts collected in 366 

diverse populations with reasonable follow-up times that allowed us to have sufficient 367 

statistical power to evaluate the associations separately in each ethnic group and for 368 

heterogeneity between populations. However, we also acknowledge certain 369 

limitations. First, a limitation of NMR technology compared to mass spectrometry is 370 

its lower sensitivity, and we could not quantify metabolic biomarkers that were below 371 

the detection limit of NMR. Second, participants of the SEED cohorts were not 372 

required to fast and this may have affected levels of certain metabolic biomarkers 373 

such as triglycerides and amino acids [61, 62]. However, this would have more likely 374 

weakened than strengthened the observed associations. Third, different T2D case 375 

ascertainments were used for the cohorts and this may have affected comparability of 376 

the results. However, despite different methodologies in case ascertainments, we 377 
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obtained consistent results across the different cohorts.  Finally, we cannot rule out 378 

residual confounding due to unmeasured or imperfectly measured risk factors.   379 

 380 

Our results may have implications in clinical practice, including the prevention and 381 

treatment, and early detection and prognosis of T2D. The metabolic biomarkers 382 

associated with T2D risk in our study are modifiable and may thus provide targets for 383 

lifestyle and pharmacological interventions for prevention and treatment. For 384 

example, replacing dietary SFA with PUFA has long been part of dietary 385 

recommendation to reduce cardiovascular disease risk [63] and may also reduce T2D 386 

risk by improving plasma fatty acid profiles. Similarly, dietary BCAAs and aromatic 387 

amino acids are primarily from animal products, such as meat, and lower consumption 388 

may reduce T2D risk partly by improving circulating amino acids [64-66] and insulin 389 

sensitivity [67]. Furthermore, cholesteryl ester transfer protein inhibitors are a drug 390 

class that is known to preferentially increase larger HDL particles [68, 69]. In a meta-391 

analysis of four randomized trials, these drugs significantly reduced T2D risk 392 

although it is unclear if this effect is caused solely by changes in circulating HDL [68-393 

70]. Because these metabolic biomarkers reflect modifiable pathways, metabolic 394 

profiling data could inform ‘precision medicine’ approaches that prioritize specific 395 

preventive interventions for individuals at high risk of T2D. Various biomarkers such 396 

as BCAAs and aromatic amino acids may be etiologically involved in insulin 397 

resistance [31, 71], and the inclusion of these biomarkers to prediction models of T2D 398 

improved area under curve (AUC) [72]. As the biological pathways involved in the 399 

pathogenesis of T2D appear to be similar in Asians and Europeans, these 400 

interventions and approaches for detection and prediction may be effective for both 401 

populations. 402 
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 403 

Several physiological differences have been proposed to contribute to the higher 404 

susceptibility to developing T2D in Asians than Europeans [7]. For example, greater 405 

visceral adiposity and less lean body mass may contribute to the higher rates of T2D 406 

in South Asians as compared with European ancestry populations [7, 73, 74]. The 407 

generally consistent associations for metabolic biomarkers across diverse ethnic 408 

groups in our study suggest that differences in the degree of metabolic disturbances in 409 

the evaluated pathways rather than differences in the pathways involved contribute to 410 

ethnic differences in risk of T2D. However, there may be exceptions for selected 411 

biological pathways. For example, South Asians have been found to have smaller 412 

mean HDL particle sizes as compared with European ancestry populations [75] and 413 

this may contribute to the higher risk of T2D in South Asians through less efficient 414 

reverse cholesterol transport and dyslipidemia [58]. Our observation of possibly 415 

stronger inverse associations between HDL and T2D risk in Europeans than Asians, 416 

particularly for very large HDL, is novel and warrants further studies.  417 

 418 

We found consistent associations between metabolic signatures and risk of T2D in 419 

prospective cohorts in Asia and Europe. Metabolic aberrations that spanned multiple 420 

pathways, including amino acids, inflammation, fatty acids and lipoproteins were 421 

similarly associated with T2D risk in major Asian ethnic groups and Europeans 422 

despite environmental, lifestyle, and physiological differences. Our results suggest 423 

that these are candidates for better prediction of T2D in different ethnic groups that 424 

require further evaluation in prognostic studies. Moreover, these metabolic 425 

biomarkers are modifiable and may be targets for preventive interventions across 426 
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different ethnic groups. Metabolic profiles may inform future personalized  427 

interventions for the prevention of T2D in increasingly cosmopolitan populations.  428 
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Legends for figures 

Figure 1. Associations between baseline circulating lipoprotein measures and risk of 

incident type 2 diabetes. Values are ORs (95% CIs) per 1 SD increment in metabolic 

biomarkers levels. The results for Asian participants (n=6393) were meta-analysed 

using data from Chinese (n=2676), Malay (n=1872) and Indian (n=1845) participants 

of the MEC and the SEED cohorts which consist of the Singapore Chinese Eye Study, 

Singapore Malay Eye Study and the Singapore Indian Eye Study. Results for the 

European participants (n=14558) were meta-analysed from 3 prospective Finnish 

cohorts (FINRISK 2002, FINRISK 2012 and Health 2000). We adjusted or matched 

for age, age2 (only for MEC), sex, BMI and fasting glucose (MEC and Health 2000) 

or HbA1c (SEED cohorts, FINRISK 2002 and FINRISK 2012). We accounted for 

multiple testing using Bonferroni correction and P-values < 0.0003 were considered 

statistically significant. Abbreviations: ApoA1, apolipoprotein A1, ApoB, 

apolipoprotein B, HbA1c, glycated hemoglobin A1c, HDL, high-density lipoprotein, 

IDL, intermediate-density lipoprotein, LDL, low-density lipoprotein, MEC, 

Multiethnic Cohort, SEED, Singapore Epidemiology of Eye Diseases, VLDL, very 

low-density lipoprotein 
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Table 1. Baseline characteristics of participants of the cohorts included in the study1 

  MEC SEED2 European cohorts 

Characteristic Chinese Malay Indian Chinese Malay Indian FINRISK 2002 FINRISK 2012 Health 2000 

No. cases / No. controls 256/499 216/411 222/405 96/1825 132/1113 163/1055 350/3904 78/4475 627/6179 

Follow-up duration (y) 7.4 ± 2.5 6.7 ± 2.5 6.6 ± 2.3 5.8 ± 0.9 7.1 ± 0.9 6.0 ± 0.9 13.8 ± 0.1 3.8 ± 0.1 15.1 ± 0.1 

Age at interview (y) 53.6 ± 9.5 49.1 ± 9.9 47.8 ± 10.4 57 ± 8.6 54.8 ± 10 54.4 ± 8.4 48.5 ± 13.7 48.8 ± 13.8 53.2 ± 14.2 

Male [n (%)] 356 (47.1) 234 (37.3) 257 (41) 889 (46.3) 563 (45.2) 568 (46.6) 1794 (45.9) 2088 (46.7) 2748 (44.5) 

Education level3 
      

   
 

Low 243 (32.2) 208 (33.2) 199 (31.8) 905 (47.1) 773 (62.2) 588 (48.4) - - - 

 
Intermediate 415 (55) 404 (64.5) 356 (56.9) 818 (42.6) 455 (36.6) 478 (39.3) - - - 

 
High 97 (12.8) 14 (2.2) 71 (11.3) 198 (10.3) 15 (1.2) 149 (12.3) - - - 

Body mass index (kg/m2) 23.8 ± 3.7 26.9 ± 5 26.7 ± 4.9 23.4 ± 3.5 26 ± 4.7 25.7 ± 4.2 26.6 ± 4.5 26.6 ± 4.6 26.8 ± 4.6 

Fasting glucose (mmol/L) 4.9 ± 0.6 5 ± 0.6 5.1 ± 0.6 - - - - - 5.4 ± 0.8 

HbA1c (%)4 5.6 ± 0.4 5.6 ± 0.4 5.8 ± 0.4 5.8 ± 0.3 5.7 ± 0.4 5.7 ± 0.4 5.4 ± 0.4 5.2 ± 0.3 - 

Total cholesterol (mmol/L) 5.3 ± 0.9 5.6 ± 1 5.3 ± 0.9 5.6 ± 1 5.7 ± 1.1 5.5 ± 1 5.6 ± 1.1 5.4 ± 1.0 6.0 ± 1.1 

HDL cholesterol (mmol/L) 1.4 ± 0.3 1.3 ± 0.3 1.1 ± 0.3 1.4 ± 0.4 1.4 ± 0.3 1.1 ± 0.3 1.5 ± 0.4 1.5 ± 0.4 1.4 ± 0.4 

LDL cholesterol (mmol/L) 3.4 ± 0.8 3.6 ± 0.9 3.5 ± 0.8 3.4 ± 0.9 3.6 ± 1 3.6 ± 0.8 3.4 ± 0.9 3.3 ± 0.9 3.8 ± 1.1 
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Triglycerides (mmol/L) 1.2 (0.9,1.7) 1.2 (0.9,1.7) 1.3 (0.9,1.8) 1.4 (1.0,2.1) 1.3 (0.7,2.1) 1.6 (1.1,2.3) 1.1 (0.8, 1.6) 1.1 (0.8, 1.6) 1.3 (1.0, 1.8) 

DBP (mmHg) 78.7 ± 11.3 76.4 ± 11.7 74.5 ± 11.5 77.6 ± 9.9 79.2 ± 11.0 77.9 ± 10.1 78.7 ± 11.4 81.3 ± 11.1 82.0 ± 11.0 

SBP (mmHg) 134.2 ± 20.6 131.9 ± 20 125.3 ± 21.4 133.4 ± 18.4 141 ± 22.3 130.9 ± 18.7 135.0 ± 20.2 132.7 ± 18.6 134.2 ± 20.7 

1 Mean ± SD; median (Q1, Q3) 

2 SEED cohorts consist of a collection of three cohorts: Singapore Chinese Eye Study, Singapore Malay Eye Study and the Singapore Indian Eye Study. Participants of the SEED cohorts 

were not required to fast. LDL cholesterol was measured in the Singapore Chinese Eye Study and Singapore Indian Eye Study, and calculated in the Singapore Malay Eye Study. 

3 We classified education level as follows: low – none, Primary or equivalent, intermediate – Secondary, diploma, Junior College, high school or equivalent, and high – college degree and 

above. The data for European cohorts could not be accessed. 

4 Only a subset of participants in MEC (N = 598, 531, 516, for Chinese, Malay, and Indian) had HbA1c measurements. To convert HbA1c from % to mmol/mol, first multiply HbA1c (%) 

by 10.93 and then substract 23.50. 

Abbreviations: DBP, diastolic blood pressure, HbA1c, glycated hemoglobin A1c, HDL, high-density lipoprotein, LDL, low-density lipoprotein, MEC, Multiethnic Cohort, SEED, SBP, 

systolic blood pressure, Singapore Epidemiology of Eye Diseases, Q1, quantile 1, Q3, quantile 3 
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Table 2. Associations between non-lipoprotein metabolic biomarkers and type 2 diabetes1 

  Chinese Malay Indian Meta-analysis of Asians Meta-analysis of Europeans P-het 

(Asians and 

Europeans) 
Metabolite OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) P-value 

P-

het 
OR (95% CI) P-value 

P-

het 

Branched-chain amino acids 
  

         Leucine 1.68 (1.41 - 2.00)  1.44 (1.19 - 1.73)  1.38 (1.16 - 1.64) 1.50 (1.35 - 1.66) <0.0003 0.26 1.36 (1.27 - 1.46) <0.0003 0.55 0.14 

  Isoleucine 1.68 (1.42 - 1.98)  1.43 (1.19 - 1.72)  1.33 (1.12 - 1.58) 1.48 (1.34 - 1.63) <0.0003 0.15 1.36 (1.27 - 1.45) <0.0003 0.76 0.17 

  Valine 1.54 (1.30 - 1.83) 1.35 (1.14 - 1.61) 1.36 (1.14 - 1.61) 1.42 (1.28 - 1.57) <0.0003 0.48 1.25 (1.16 - 1.35) <0.0003 0.39 0.05 

Aromatic amino acids 
      

  
 

   Phenylalanine 1.27 (1.07 - 1.51) 1.29 (1.04 - 1.59) 1.24 (1.04 - 1.47) 1.26 (1.14 - 1.40) <0.0003 0.96 1.22 (1.14 - 1.31) <0.0003 0.75 0.63 

  Tyrosine 1.34 (1.13 - 1.59) 1.21 (1.04 - 1.42) 1.22 (1.05 - 1.41) 1.25 (1.14 - 1.37) <0.0003 0.64 1.21 (1.13 - 1.29) <0.0003 0.79 0.56 

Other amino acids 
         

   Histidine 1.08 (0.91 - 1.27) 1.10 (0.91 - 1.32) 0.94 (0.80 - 1.11) 1.03 (0.93 - 1.14) 0.55 0.40 1.08 (1.00 - 1.16) 0.06 0.83 0.51 

  Alanine 1.35 (1.14 - 1.61) 1.15 (0.97 - 1.38) 1.27 (1.09 - 1.47) 1.26 (1.14 - 1.38) <0.0003 0.45 1.25 (1.14 - 1.39) <0.0003 0.19 0.96 

Inflammation 
      

  
 

   Glycoprotein acetyls 1.62 (1.38 - 1.90) 1.29 (1.05 - 1.58) 1.32 (1.15 - 1.52) 1.41 (1.28 - 1.55) <0.0003 0.11 1.34 (1.25 - 1.43) <0.0003 0.95 0.37 

Fatty acids 
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  Total fatty acids 1.41 (1.22 - 1.64) 1.22 (1.03 - 1.45) 1.29 (1.12 - 1.49) 1.31 (1.20 - 1.44) <0.0003 0.45 1.21 (1.13 - 1.29) <0.0003 0.93 0.14 

  SFA  (%) 1.16 (1.00 - 1.34) 1.22 (1.03 - 1.46) 1.09 (0.95 - 1.26) 1.15 (1.05 - 1.25) 0.002 0.62 1.21 (1.13 - 1.29) <0.0003 0.56 0.36 

  MUFA (%) 1.52 (1.30 - 1.78) 1.48 (1.22 - 1.81) 1.32 (1.14 - 1.53) 1.43 (1.30 - 1.57) <0.0003 0.42 1.38 (1.27 - 1.51) <0.0003 0.28 0.63 

  PUFA (%) 0.66 (0.56 - 0.78) 0.67 (0.55 - 0.81) 0.78 (0.67 - 0.90) 0.71 (0.64 - 0.78) <0.0003 0.30 0.72 (0.67 - 0.77) <0.0003 0.48 0.78 

    n-6 PUFA (%) 0.64 (0.55 - 0.75) 0.68 (0.56 - 0.81) 0.76 (0.66 - 0.88) 0.70 (0.64 - 0.77) <0.0003 0.27 0.70 (0.65 - 0.75) <0.0003 0.52 0.96 

    Linoleic acid (%) 0.76 (0.65 - 0.88) 0.77 (0.65 - 0.92) 0.79 (0.68 - 0.92) 0.77 (0.71 - 0.85) <0.0003 0.92 0.72 (0.67 - 0.77) <0.0003 0.41 0.21 

    n-3 PUFA (%) 0.96 (0.83 - 1.10) 0.93 (0.78 - 1.10) 1.05 (0.90 - 1.23) 0.98 (0.89 - 1.07) 0.60 0.56 0.97 (0.91 - 1.04) 0.44 0.55 0.94 

    DHA (%) 0.95 (0.83 - 1.09) 0.97 (0.82 - 1.15)  1.03 (0.88 - 1.20) 0.98 (0.90 - 1.07) 0.67 0.78 0.96 (0.90 - 1.03) 0.30 0.46 0.75 

Other metabolic biomarkers 
         

   Sphingomyelins 1.01 (0.87 - 1.18) 0.92 (0.79 - 1.08) 1.07 (0.91 - 1.25) 1.00 (0.91 - 1.10) 0.98 0.44 0.90 (0.84 - 0.97) 0.007 0.70 0.08 

  Phosphoglycerides 1.24 (1.06 - 1.45) 1.11 (0.94 - 1.31) 1.19 (1.02 - 1.39) 1.18 (1.08 - 1.30) <0.0003 0.60 1.08 (1.01 - 1.16) 0.03 0.67 0.14 

  Phosphatidylcholines 1.21 (1.04 - 1.42) 1.08 (0.92 - 1.28) 1.17 (1.01 - 1.36) 1.16 (1.06 - 1.27) 0.001 0.60 1.05 (0.98 - 1.13) 0.19 0.64 0.09 

  Cholines 1.15 (0.98 - 1.34) 1.03 (0.87 - 1.21) 1.14 (0.98 - 1.32) 1.11 (1.01 - 1.21) 0.03 0.58 1.02 (0.95 - 1.10) 0.63 0.71 0.16 

  Triglyceride by  

  phosphoglyceride ratio 
1.60 (1.37 - 1.86) 1.52 (1.24 - 1.85) 1.27 (1.11 - 1.45) 1.42 (1.30 - 1.55) <0.0003 0.06 1.33 (1.26 - 1.42) <0.0003 0.46 0.25 

  Citrate 1.15 (0.96 - 1.37) 1.05 (0.90 - 1.23) 1.38 (1.13 - 1.67) 1.16 (1.05 - 1.29) 0.003 0.11 0.91 (0.80 - 1.03) 0.13 0.11 0.00 

  Lactate 1.16 (0.98 - 1.37) 1.10 (0.91 - 1.34) 1.11 (0.95 - 1.29) 1.12 (1.02 - 1.24) 0.02 0.91 1.15 (0.98 - 1.35) 0.09 0.01 0.82 

  beta-hydroxybutyrate 1.22 (1.04 - 1.43) 1.10 (0.94 - 1.29) 1.28 (1.04 - 1.56) 1.19 (1.08 - 1.31) 0.001 0.48 0.99 (0.91 - 1.07) 0.80 0.79 0.01 

A
ll rights reserved. N

o reuse allow
ed w

ithout perm
ission. 

(w
hich w

as not certified by peer review
) is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in perpetuity. 
T

he copyright holder for this preprint
this version posted O

ctober 26, 2021. 
; 

https://doi.org/10.1101/2021.07.04.21259971
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.07.04.21259971


 37

  Acetate 1.03 (0.84 - 1.27) 0.74 (0.50 - 1.10) 0.94 (0.81 - 1.09) 0.95 (0.85 - 1.06) 0.36 0.34 0.96 (0.88 - 1.05) 0.43 0.40 0.81 

  Acetoacetate 1.05 (0.91 - 1.22) 0.89 (0.74 - 1.07) 0.86 (0.73 - 1.02) 0.94 (0.86 - 1.04) 0.24 0.16 1.04 (0.96 - 1.12) 0.35 0.69 0.13 

  Albumin 1.28 (1.09 - 1.50) 1.26 (1.06 - 1.50) 1.17 (1.01 - 1.35) 1.23 (1.12 - 1.35) <0.0003 0.68 1.12 (0.97 - 1.28) 0.13 0.10 0.25 

  Creatinine 0.96 (0.75 - 1.23) 0.71 (0.56 - 0.92) 0.96 (0.80 - 1.15) 0.89 (0.78 - 1.01) 0.07 0.14 0.97 (0.84 - 1.13) 0.72 0.06 0.36 

1 Other than fatty acids and lipoprotein measures, results for all metabolic biomarkers are shown here. For individual fatty acids, we only showed fatty acids expressed as a percentage of total fatty 

acids to avoid confounding by total fatty acids. All results for lipoprotein measures are displayed in Figure 1. Estimates are odds ratios (95% confidence intervals) per SD increase. The results for 

Chinese (n=2676), Malay (n=1872) and Indian (n=1845) participants were meta-analysed from the MEC and the SEED cohorts which consist of the Singapore Chinese Eye Study, Singapore Malay 

Eye Study and the Singapore Indian Eye Study. Results for the European participants (n=14558) were meta-analysed from 3 prospective Finnish cohorts (FINRISK 2002, FINRISK 2012 and Health 

2000). We adjusted or matched for age, age2 (only for MEC), sex, BMI and fasting glucose (MEC and Health 2000) or HbA1c (SEED cohorts, FINRISK 2002, FINRISK 2012). We accounted for 

multiple testing using Bonferroni correction and P-values < 0.0003 were considered statistically significant. P-het denotes Cochran Q heterogeneity.  

Abbreviations: HbA1c, glycated hemoglobin A1c, MEC, Multiethnic Cohort, MUFA, monounsaturated fatty acids, n-3, omega-3, n-6 - omega-6, PUFA, polyunsaturated fatty acids, SEED, 

Singapore Epidemiology of Eye Diseases, SFA, saturated fatty acids 
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