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ABSTRACT

Chronic respiratory diseases are often difficult to cure and are likely to originate early in life.
Therefore, early identification of such diseases is of interest for early prevention.

We explored the potential to predict these almost from birth; using data at 1 month of age, we
attempted to predict disease occurrence 4 years later in life. Our data came from the Barwon Infant
Study; after cleaning and processing, we had measurements on 41 variables from 401 participants.

We considered three respiratory diseases: asthma, wheeze and hay fever. As predictors, we used
a variety of information that would be available in a clinical setting. Of particular interest to our
investigation was whether lung function measurements (newly available at such an early age) would
helpfully improve predictive accuracy. We also investigated whether maternal smoking (previously
associated with respiratory illnesses) is a helpful predictor.

Our methods included logistic regression as the main model, multiple imputation to deal with missing
values, stepwise selection and LASSO to select variables, and cross-validation to assess performance.
We measured predictive performance using AUC (area under the receiver operating characteristic
curve), sensitivity and specificity.

Broadly, we found that the best models had only modest predictive power for each disease. For
example, for asthma we achieved an AUC of 0.67, a sensitivity of 68% and a corresponding specificity
of 63%. Performance for the other two diseases was similar.

We also found that our lung function measurements did not improve predictive performance; some-
what surprisingly, this was also true for maternal smoking. The most useful predictors included,
among others, family history of these diseases and variables relating to the size of the infants.

Given the modest performance of these models, our findings suggest that very early prediction of
respiratory illnesses is still a challenging task.
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1 Introduction

1.1 Background

Respiratory diseases are one of the challenges facing humanity and cause many deaths and disabilities in the world.
Tobacco smoke (Vanker et al., 2017), indoor air pollution from burning fuels, air pollution from transportation and
industrial sources (Brauer, 2010; Ferkol & Schraufnagel, 2014) are considered to be the cause of most respiratory
diseases. As air pollution gets worse, the number of people suffering from chronic respiratory diseases increases every
year. Even though a lot of effort is spent on chronic respiratory diseases every year, there is no complete cure for chronic
respiratory diseases. The report from the Forum of International Respiratory Societies demonstrates the link between
respiratory diseases and the environment and highlights the importance of preventing respiratory diseases from before
birth (Forum of International Respiratory Societies, 2017).

Most chronic respiratory diseases start developing early in life (Carraro et al., 2014; Stocks et al., 2013) , are incurable,
and can last throughout a person’s life. Chronic respiratory diseases are a variety of chronic infections of the lungs and
airways that have many adverse effects on people’s daily lives. Childhood is an important time for healthy development,
and many chronic respiratory diseases begin in infancy or in utero (Manuck et al., 2016). Because the lungs are not
fully developed during childhood, they are highly susceptible to environmental influences (Carraro et al., 2014). Poor
lung development can lead to lifelong defects in the respiratory system that affect people throughout their lives.

The diagnosis and treatment of respiratory diseases are complex, especially in developing countries. Early detection of
disease and prediction of the likelihood of children developing respiratory disease can reduce mortality. While chronic
disease cannot be cured, it is treatable and morbidity can be prevented (Ferkol & Schraufnagel, 2014). From a prevention
perspective, predicting those at increased risk of developing chronic respiratory disease allows for interventions that not
only prevent the progression of the disease, but also help patients maintain lung function and quality of life. Therefore,
if allergies and asthma in children can be detected early and treated effectively, we may be able to prevent them from
becoming chronic and serious diseases in adulthood. A model for predicting chronic respiratory disease in children is
helpful for this purpose.

1.2 Development of, and risk factors for, respiratory diseases

In an effort to prevent and treat respiratory diseases as early as possible, a large and growing body of literature
investigates the origins of disease development (Elo & Preston, 1992). It is undisputed that early abnormal development
of organ systems has long-term effects on an individual’s health. It is important to know when respiratory diseases
begin to develop, and understanding the origins of respiratory diseases is useful in order to select the features that would
help to predict such diseases.

As stated in the Introduction, respiratory disease usually begins early in life. A respiratory disease may be present
for several years before the person is diagnosed with it. This means that respiratory disease develops in a state
that is unrecognised by the individual. Asthma, the most prevalent chronic disease of childhood, is very commonly
under-diagnosed in Australia. In studies with 2,523 South Australian adults as a random sample, with a consistent
definition of asthma, 19.2% of those with asthma were undiagnosed (Aaron et al., 2018).

Smoke exposure in utero is one of the best known risk factors for decreased lung function and respiratory disease in
infants. Maternal smoking during pregnancy has a high potential to negatively affect the development of the infant’s
lungs and increase the risk of asthma and wheezing during childhood (Gilliland et al., 2001; Stick et al., 1996; Carlsen
et al., 1997; Hanrahan et al., 2012; Weitzman et al., 1990; Martinez et al., 1995). A study with a sample of 500 newborn
Australian infants illustrates the relationship between smoke exposure in utero, family history of asthma, maternal
hypertension, and low lung function in newborns (Stick et al., 1996).

There is evidence of an association between poor lung function in newborns and the presence of later respiratory
diseases. In a prospective survey of 1,246 children followed at three and six years of age, it was shown that poorer
lung function at birth can lead to transient wheeze, but symptoms of wheeze are not associated with an increased
risk of asthma in six-year-olds or later in life (Martinez et al., 1995). However, the same study also shown there is a
relationship between the early onset of symptoms of wheeze and the development of asthma. Another study came to a
similar conclusion that the presence of wheeze in one- and three-year-old children is associated with low lung function
early in life (Pike et al., 2011).

In addition to these factors, as was found in other studies, family history of respiratory diseases, IgE, birth weight,
siblings and daily care are all risk factors for respiratory diseases (Steffensen et al., 2000; Stick et al., 1996; Eysink et
al., 2005; Brims & Chauhan, 2005).
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1.3 The current state of respiratory disease prediction

If children with high levels of asthma can be identified early in life using readily available clinical parameters, then
timely prevention and treatment of these children can be implemented. Numerous studies (Schenker et al., 1983; Eysink
et al., 2005; Gergen, 2001) are exploring the risk factors that contribute to respiratory diseases, and there are many
studies (Caudri et al., 2009; Grabenhenrich et al., 2015; Keller et al., 2017) using different predictors to obtain predictive
models to predict respiratory diseases.

A study used data from 654 children aged 1 to 4 years who had coughing for more than 5 consecutive days to develop
an asthma prediction model that attempted to predict the probability of having asthma at age 6. The model used age,
wheezing, family history of pollen allergy, and IgE test results as predictors, and the accuracy of the prediction model
was improved with the addition of the IgE test (Eysink et al., 2005). However, this model is difficult to apply to the
primary care situation because of the need for allergen testing. The predictive power of the model for other populations
is unclear because the data used to validate the model consisted of children who sought medical attention because of
asthma symptoms.

Similarly, Caudri et al. (2009) developed a child-specific prediction model using 2171 children aged 0 to 4 years with
asthma-like symptoms to predict the probability of having asthma at age 7–8 years. The model had good predictive
power for children with wheezing or coughing symptoms, but was not suitable for all children, as the predictive power
for asymptomatic children is not known.

Much less research has been done on the predictors and risks of hay fever than on asthma and wheezing, but it is also a
very prevalent chronic disease (Grabenhenrich et al., 2015; Omenaas et al., 2008). Grabenhenrich et al. (2015) explored
the relationship between early environment and lifestyle and hay fever using data on the environmental, behavior and
allergy histories of 1,314 children from birth to 20 years of age. The study shown that although there is evidence
that early living environment and lifestyle are associated with an increased risk of hay fever, they do not predict the
occurrence of hay fever. However, early food allergies and parental hay fever could serve as predictors.

Available evidence suggests that factors such as early life environment (Colley & Holland, 1967), especially maternal
smoking (Carlsen et al., 1997; Hanrahan et al., 2012; Weitzman et al., 1990; Martinez et al., 1995), lung function,
family history of respiratory diseases (Stick et al., 1996), and the onset of wheezing symptoms are all associated with
later respiratory diseases. However, few predictive models are clinically applicable, and some predictive models use
selected samples that cannot be applied to all children. Thus more exploration of respiratory diseases is needed.

1.4 Measuring lung function

The multiple breath washout (MBW) technique has been used many times to understand the development of respiratory
disease in childhood. It was originally designed to measure uneven gas distribution in the lungs, but as devices have
advanced, the technique has been improved to measure functional residual capacity (FRC), lung clearance index (LCI)
and cumulative expired volume (CEV) during tidal breathing (Fowler et al., 1952). This technique has been adapted for
use in unsedated newborns, which will help to understand the lung function of the newborn (Sinhal et al., 2010). These
three measurements are important indicators as one of the purposes explored in this study.

1.5 Data

The data used in this paper are from the Barwon Infant Study (BIS), which aims to advance our understanding of the
mechanisms underlying non-communicable diseases. In the Barwon region of southeastern Australia, which has similar
demographic characteristics to the rest of Australia, women were recruited at their first antenatal hospital visit. A total
of 1,064 women and 1,074 infants were enrolled into the study. Subsequent reviews with mothers and infants were
conducted at fixed intervals before and after birth, with the infant’s reviews at age four ending at the end of 2014.
Parental and infant data were collected at different times by means of questionnaires and clinical examination, and
infant lung function data were collected at the age of one month (Vuillermin et al., 2015).

1.6 Research goals

The aim of this study was to assess the ability to predict respiratory diseases in 4-year-old children using information
obtained 1 month after birth and earlier in the BIS population. Specifically, the purpose of this study is to develop a
predictive model by selecting logistic regression models to investigate the information that is important for accurate
prediction in a clinical-based setting. And based on previous literature, we will explore the ability of three indicators of
MBW (LCI, FRC and CEV) and maternal smoking in predicting respiratory phenotypes.
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Table 1: Summary of outcomes.
Disease Present Absent Missing Total
Asthma 61 (15%) 291 (73%) 49 (12%) 401
Wheeze 68 (17%) 305 (76%) 28 (7%) 401
Hay fever 37 (9%) 315 (79%) 49 (12%) 401

This research focused on the following three chronic respiratory diseases:

Asthma. One of the most common diseases affecting the respiratory tract in childhood. Symptoms include coughing,
shortness of breath and chest tightness.

Wheeze. Wheezing is caused by airflow through narrowed airways and usually occurs in infants. Many people with
respiratory diseases have wheezing.

Hay fever. Hay fever is an allergic reaction usually caused by exposure to environmental allergens, such as pollen,
dust mites and animal hair.

2 Data and methods

2.1 Variables

As described in Section 1.5, the dataset for this study comprised data collected by BIS from Barwon district and its
surrounding areas. To begin with, the variables of interest were selected from the BIS dataset based on previous studies
and available data. The obtained dataset contained 1074 participants and 2685 variables, excluding the three lung
function measurement variables (LCI, FRC and CEV). However, we found a large number of missing values in this
dataset and further selection of variables was required. The process of further selection of participants and variables
will be explained below.

LCI, FRC, and CEV were necessary for one of the purposes of this study because they are data that measure lung
function in 1-month-old infants. First we needed to convert the MBW data, there were a total of 1,197 MBW records
and a total of 432 infants (including 4 pairs of twins) had their lung function measurement data completely collected
and recorded. This relates to the fact that one infant can have multiple lung function measurements. This needs to be
addressed before the data can be properly analyzed, by summarising the information from multiple measurements into a
single set of measurements. Of the infants for whom MBW records exist, there are between 1 and 7 recordings per
individual for each lung function parameter. The same measurement in each participant was averaged so that each child
have only one index and one row containing three variables (LCI,FEC and CEV). And merge this data set with the
above data set that has 1,074 rows, keeping the complete row of MBW data.

After excluding participants with missing values for the lung function variables, 31 of the remaining participants had
missing values for all outcomes and were also excluded. Of the 2,688 variables, the total proportion of missing values
was 72.5% due to the large number of missing values for most variables. Of these, Figure 1 shows that 1,986 variables
have more than 50% of their values missing which are distrusted in the dataset (Steyerberg et al., 2019); all of these
variables were excluded from further analyses.

Table 2 lists the final selected variables for analysis and their descriptions. These include infant lung function data,
anthropometric data at one month of age, demographics, the child’s environmental exposures, and parental and infant
diets for a total of 38 predictor variables. The baseline characteristics of these variables are presented in the Table 3.

There were 401 study participants in the above selected dataset. The three outcomes (asthma_4y, wheeze_4y and
hayfever_4y) indicate the respiratory health status of the participants at the age of four years, i.e. whether or not the
observer had any of the three diseases. Of these, 61 had asthma at four years of age, 68 had wheeze in the past 12
months at four years of age, and 37 had hay fever. Table 1 provides the sample size and distribution for each outcome.

2.2 Missing data

The dataset is composed of 41 variables and 401 participants. The proportion of missing values for each column of
variables is summarized in Figure 2 The proportion of missing values in each column does not exceed 4%, which
is acceptable. The visualisation of the missing value pattern is provided. These missing values were imputed using
multiple imputation (MI).

We used the MI approach known as Multivariate Imputation by Chained Equations (MICE), as implemented by the
mice R package (Buuren & Groothuis-Oudshoorn, 2010).
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Figure 1: Distribution of the proportion of missing values of variables.

We imputed the dataset with 10 iterations of Gibbs sampling and set the imputation number to 5 (m = 5), while the
built-in imputation model used was Predictive Mean Matching (PMM) to estimate missing values. The PMM is a
semi-parametric imputation method (Buuren & Groothuis-Oudshoorn, 2010) where the value closest to the predicted
value of the missing value is selected from a range of observations to fill in the missing value. In using this MI algorithm,
we have assumed that the missing values are missing at random (MAR), a commonly used assumption and one that we
think is reasonable here.

After imputation, we had 5 complete datasets consisting of observations and imputed values, including 38 predictors
and 401 observations for 3 outcomes.

Note that, in the data analysis for any given disease, we excluded participants with missing values for this disease (i.e.
missing values in the outcome variable). An alternative approach is to use the imputed values for this disease; we did
not attempt this.

Table 2: Definitions of the variables.

Variable Description
Variables for 1 month after birth or earlier
LCI Lung clearance index
FRC Functional residual capacity
CEV Cumulative expired gas volume
Thc_ b Thigh circumference at birth
Abc_ b Abdominal circumference at birth
Uparm_ b Middle upper arm circumference at birth
Hc_b Head circumference at birth
Wt_ b Weight at birth
Trc_ b Tricep skin fold at birth
Subfold_ b Subscapular fold at birth
Len_ b Length at birth
Mage Mother’s age at conception
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Table 2: Definitions of the variables.

Variable Description
Fage Father’s age at conception
Meducation Mother’s highest education (1 = Less than year 10; 2 = Year 10 or

equivalent; 3 = Year 12 or equivalent; 4 = Trade/Certificate/Diploma; 5
= Bachelor degree; 6 = Postgraduate degree; 7 = Other)

Feducation Father’s highest education (1 = Less than year 10; 2 = Year 10 or equiva-
lent; 3 = Year 12 or equivalent; 4 = Trade/Cert/Dip; 5 = Bachelor degree;
6 = Postgraduate degree; 7 = Other)

Siblings Any siblings (0= No; 1 = Yes)
Hhincome Household income last 12 months (1 = Less than 25,000; 2 = 25,000

to 49,999; 3 = 50,000 to 74,999; 4 = 75,000 to 99,999; 5 = 100,000 to
149,000; 6 = More than 150,000)

Pets Pet ownership (0 = No; 1 = Yes)
Livestocks Livestock ownership (0 = No; 1 = Yes)
Fh_asthma Family history of asthma (0 = No; 1 = Yes)
Fh_eczema Family history of eczema (0 = No; 1 = Yes)
Fh_hayfever Family history of hayfever (0 = No; 1 = Yes)
Mpsmoke Mother smoking during pregnancy (0 = Non pre,T1,T2,T3; 1 = Light

pre, none T1,T2,T3; 2 = Mod pre, none T1,T2,T3; 3 = Light pre or T1,
none T2,T3; 4 = Mod pre or T1, none T2,T3; 5 = Smoker pre,T1,T2,T3) a

Anympsmoke Any smoking by the mother during pregnancy (0 = No; 1 = Yes)
Passive_p12 Any passive smoking pre,T1,T2 (0 = No; 1 = Yes)
Milk Milk (ml)/day (0 = none 1 = <250 ml/day 2 = 250 to 500 ml/day 3 = 500

to 750 ml/day 4 = 750+ ml/day)
Egg Eggs/week (0 = don’t eat eggs; 1 = <1 egg/week; 2 = 1–2 eggs/week; 3

= 3–5 eggs/week; 4 = 6+ eggs/week)
Teanone Never drank tea (0 = not ticked; 1 = ticked)
Cofnone Never drank coffee (0 = not ticked; 1 = ticked)
Hygwashhn Baby handwash freq (0 = Not at all; 1 = 1–2 times; 2 = 3–4 times; 3 = 5+

times
Hygbathsh Baby wash freq (1 = Hardly ever; 2 = Once a wk; 3 = Several times a

wk; 4 = Once every day; 5 = More than once a day)
Slppos Sleep position (1 = Side; 2 = Stomach, face down; 3 = Stomach, face

side; 4 = Back, face up; 5 = Back, face side; 6 = No usual position)
Cc NonParent childcare (0 = No; 1 = Yes)
Osidehrs Outside Hrs/W
Vacc Baby vaccines (0 = No; 1 = Yes)
Pest Pesticides (0 = No; 1 = Yes)
Chlhm Chlorine freq (1 = Every day; 2 = A few times a week; 3 = About once a

week; 4 = Less than once a week; 5 = 1–3 times a month; 6 = Not at all)
Chlbabyb Chlorine in babybed (0 = No; 1 = Yes)
Variables for 4 years of age
asthma_4y Asthma at 4 years of age (0 = No; 1 = Yes)
wheeze_4y Wheeze at 4 years of age (0 = No; 1 = Yes)
hayfever_4y Hay fever at 4 years of age (0 = No; 1 = Yes)
a Pre, T1, T2 and T3 represent different periods of pregnancy. Pre: preconception; T1: First trimester

(conception to 12 weeks); T2: Second trimester (12 to 24 weeks); T3: Third trimester (24 to 40 weeks).

Table 3: Summary of variables. For continuous variables, we show the mean and standard deviation (the latter is
shown in parentheses). For categorical variables, counts and percentages (shown in parentheses) are shown.

Variable Summary
LCI 6.087 (0.39)
FRC 127.5 (21.75)
CEV 771.6 (114.89)
Thc_ b 13.52 (1.71)
Abc_ b 30.28 (3.04)
Uparm_ b 9.819 (1.21)
Hc_b 34.75 (1.56)
Wt_ b 3.527 (0.51)
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Table 3: Summary of variables. For continuous variables, we show the mean and standard deviation (the latter is
shown in parentheses). For categorical variables, counts and percentages (shown in parentheses) are shown.

Variable Summary
Trc_ b 4.936 (1.22)
Subfold_ b 4.796 (1.18)
Len_ b 50.93 (2.29)
Mage 31.57 (4.71)
Fage 33.34 (5.45)
Meducation

Less than year 10 3 (0.75%)
Year 10 or equivalent 16 (4%)
Year 12 or equivalent 64 (16%)
Trade/Cert/Dip 102 (25.5%)
Bachelor degree 146 (36.5%)
Postgraduate degree 69 (17.25%)

Feducation
Less than year 10 8 (2.05%)
Year 10 or equivalent 21 (5.38%)
Year 12 or equivalent 70 (17.95%)
Trade/Cert/Dip 156 (40%)
Bachelor degree 96 (24.62%)
Postgraduate degree 39 (10%)

Siblings 238 (59.35%)
Hhincome

Less than 25,000 7 (1.79%)
25,000 to 49,999 37 (9.44%)
50,000 to 74,999 73 (18.62%)
75,000 to 99,999 90 (22.96%)
100,000 to 149,000 142 (36.22%)
More than 150,000) 43 (10.97%)

Pets 305 (76.44%)
Livestocks 29 (7.32%)
Fh_asthma 212 (54.08%)
Fh_eczema 186 (47.57%)
Fh_hayfever 251 (64.52%)
Mpsmoke

Non pT,T1,T2,T 340 (86.29%)
Light pT, none T1,T2,T3 18 (4.57%)
Mod pre, none T1,T2,T3 3 (0.76%)
Light pTorT1, none T2,T3 9 (2.28%)
Mod pTorT1, none T2,T3 3 (0.76%)
Smoker pT,T1,T2,T3) 21 (5.33%)

Passive_p12 44 (11.28%)
Anympsmoke 54 (13.71%)
Milk

none 10 (2.58%)
<250 ml/day 112 (28.94%
250 to 500 ml/day 196 (50.65%)
500 to 750 ml/day 57 (14.73%)
750+ ml/day 12 (3.10%)

Egg
Don’t eat eggs 16 (4.14%)
<1 egg/week 93 (24.09%)
1–2 eggs/week 164 (42.49%)
3–5 eggs/week 101 (26.17%)
6+ eggs/week 12 (3.11%)

Teanone 155(40.16%)
Cofnone 208(53.89%)
Hygwashhn

Not at all 159 (40.05%)
1–2 times 211 (53.15%)
3–4 times 16 (4.03%)
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Table 3: Summary of variables. For continuous variables, we show the mean and standard deviation (the latter is
shown in parentheses). For categorical variables, counts and percentages (shown in parentheses) are shown.

Variable Summary
5+ times 11 (2.77%)

Hygbathhn
Hardly ever 3 (0.75%)
Once a wk 15 (3.76%)
Several times a wk 295 (73.93)
Once every day 85 (21.30%)
More than once a day 1 (0.25%)

Slppos
Side 13 (3.27%)
Stomach, Face Side 8 (2.01%)
Back, Face Up 46 (11.56%)
Back, Face Side 326 (81.91%)
No Usual Position) 5 (1.26%)

Cc 19 (4.76%)
Osidehrs 26.59 (121.38)
Vacc 336 (84.63%)
Pest 152 (38.09%)
Chlhm

Every day 5 (1.26%)
A few times a week 9 (2.27%)
About once a week 66 (16.62%)
Less than once a week 29 (7.31%)
1–3 times a month 60 (15.11%)
Not at all 228 (57.43%)

Chlbabyb 6 (1.54%)

2.3 Data analysis

For all of our analyses, we used a logistic regression model with various choices of predictor variables. Unless otherwise
stated, we used all available variables as predictors. We performed the same analyses for each of the three diseases,
with each one in turn used as the response variable.

We used two different methods for selecting variables: stepwise selection and LASSO. We applied both for each model
and compared results.

The stepAIC() function from MASS was used to implement stepwise selection, applying forward selection and
backward elimination, and the function eventually returns the best model for each dataset.

Fitting a logistic regression model using multiple imputed datasets is slightly different from fitting a single dataset. For
each outcome, after applying stepwise selection to each of the five complete datasets to select models, five less identical
models were obtained. To fit the logistic regression model using the same model, the five results were analysed. A list
of variables that appeared at least half the time (i.e. three times) was selected and these variables were then used to fit
logistic regression model in each dataset.

For LASSO, we use the train() function from the caret R package, where we apply CV to the function to find the
best tuning parameter to minimize test error and get the results of fitting the model to all the dataset using this parameter
for each dataset. We end up with a list of five variables selected by the LASSO. The final model is selected in the same
way as stepwise selection, by identifying variables that show up more than three times.

We attempted to explore how useful the lung function and smoking variables were by looking at the models with only
these variables and what had happened when these variables were added to the best set of variables obtained earlier.

2.4 Software

All data preprocessing, including creating subsets, feature selection, and handling of missing values, was done in
RStudio (Version 1.3.1073) using the R programming language (R Core Team, 2013). The following R packages were
used: dplyr for manipulating the dataset, naniar for missing value visualisation, mice for imputing missing values,
caret for choosing models and fitting logistic regression model, and MLeval for ploting ROC curves.

8

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 5, 2021. ; https://doi.org/10.1101/2021.07.04.21259873doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.04.21259873


Figure 2: Visualisation of the missing values.
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Table 4: Definition and naming of models.
Outcome Model name Description

Asthma Model 1 Model selected by stepwise selection when the response variable is asthma.
Model 2 Model selected by LASSO when the response variable is asthma.

Wheeze Model 3 Model selected by stepwise selection when the response variable is wheeze.
Model 4 Model selected by LASSO when the response variable is wheeze.

Hay fever Model 5 Model selected by stepwise selection when the response variable is hay fever.
Model 6 Model selected by LASSO when the response variable is hay fever.

3 Results

We applied our modelling approach to each of the three diseases, asthma, hay fever and wheeze. We present our results
for each disease in turn. For clarity of presentation, we have given specific names to each of the ‘best’ models for each
disease, as shown in Table 4).

3.1 Asthma

3.1.1 Using variable selection

Table 5 shows the list of variables arising from stepwise selection, while Table 6 shows those selected by LASSO. As
we can see, there are some differences in the variables selected by the two methods. Each table also shows the average
coefficients of the variables in each model (averaged across imputed datasets). For variables that are present in both
models, the coefficients in the two models are very close to each other. In particular, children with a family history of
asthma and hay fever have an increased risk of asthma, and increasing time spent outside reduces the risk of the disease.

We calculated the AUC using 10-fold cross-validation to evaluate prediction accuracy. For each model, the AUC is
calculated using the 5 imputed datasets separately and the results are combined and averaged.

Table 7 shows the AUC values of each data and the mean values when fitting Model 1 and 2, and presents the average
sensitivity and specificity of the five datasets. Figure 3 shows the ROC curves of the two models (Model 1 and Model 2).
The curves are the ROC curves for each dataset, and it can be concluded that the ROC curves obtained by five imputed
datasets with the same model are very close. From the AUC results we can conclude that neither of the two prediction
models is very accurate on this dataset. In order to combine the results of the analysis, the coefficient estimates from the
five same models are averaged.

3.1.2 Exploring the predictive power of lung function measurements

Logistic regression analysis has previously been applied to predict the risk of respiratory diseases. Notably, in many
similar studies, the prediction models included maternal smoking variables as well as lung function indices. However,
according to the results in the previous sections, neither stepwise selection nor LASSO methods for variable selection
included mpsmoke or anympsmoke, variables that were concluded to be important in previous studies, in the models.
Although the LCI variables were included in Model 2, the predictive model did not perform well. These variables do
not appear to be important predictor variables in this case.

To explore the predictive power of LCI, CEV and FRC in the models, each variable was individually placed into the
model with the outcome asthma_4y to see the accuracy of the predictive model. Table 8 provides the AUC for the
three univariate models.

Using the models (Model 1) obtained in Section 3.1, the three variables of MBW were added separately to see if the
accuracy of the models improved. This could help us determine if the variable could be an important factor in predicting
asthma in this case. Table 7 shows a comparison of the results of AUC after adding a lung respiratory parameter variable
to the original model.

From the above figures and tables, it can be concluded that the variables LCI, FRC, and CEV do not have the ability
to predict the risk of having asthma at 4 years of age. When one of the MBW variables is fitted to the model alone,
the AUC is below 0.5. When they are added individually to Model 1, the AUC of the new model does not increase.
Sensitivity and specificity of the new model are also described in Table 7 to facilitate comparisons between models.

The results showed that the predictive ability of the model including the MBW variables also did not improve
significantly, and to explore the reason, the relationship between these variables and the response variable was plotted
separately. Specifically, the variables within the distribution of the data on the x-axis are evenly and reasonably divided
into n intervals, the proportion of observations with asthma_4y in each interval is calculated, and each interval is
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(a) ROC curves for Model 1.
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(b) ROC curves for Model 2.

Figure 3: ROC curves for Model 1 and Model 2.
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Table 5: Estimated coefficients for Model 1.
Variable Coefficient
Tricep skin fold at birth 0.28
Abdominal circumference at birth −0.07
Family history of asthma 0.56
Family history of hay fever 0.78
Baby vaccines 0.97
Outside hours −0.07

Table 6: Estimated coefficients for Model 2.
Variable Coefficient
LCI −0.36
Tricep skin fold at birth 0.26
Abdominal circumference at birth −0.06
Siblings 0.39
Livestock −0.64
Family history of asthma 0.53
Family history of hay fever 0.83
Never drank tea 0.18
Nonparent childcare −0.97
Baby vaccines 0.99
Outside hours −0.07

Table 7: AUC, sensitivity and specificity of models for asthma.
AUC Sensitivity (%) Specificity (%)

Model 1 2 3 4 5 Mean Mean Mean
Model 1 0.68 0.66 0.67 0.66 0.67 0.67 68 63
Model 2 0.65 0.67 0.66 0.66 0.66 0.66 76 52
Model 1 + LCI 0.68 0.66 0.67 0.65 0.66 0.66 63 66
Model 1 + FRC 0.68 0.66 0.67 0.65 0.66 0.66 65 65
Model 1 + CEV 0.68 0.66 0.67 0.66 0.66 0.67 64 66
mpsmoke 0.38 0.37 0.39 0.37 0.4 0.38 100 1
Model 1 + mpsmoke 0.66 0.64 0.65 0.64 0.64 0.65 66 60
Model 2 + mpsmoke 0.64 0.63 0.64 0.62 0.63 0.63 54 71
anympsmoke 0.44 0.44 0.45 0.42 0.45 0.44 18 86
Model 1 + anympsmoke 0.68 0.66 0.67 0.65 0.66 0.66 64 65
Model 2 + anympsmoke 0.66 0.65 0.66 0.64 0.65 0.65 69 58

Table 8: AUC for models with only MBW measurements, for asthma.
Model AUC
LCI 0.48
FRC 0.32
CEV 0.39
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(c) Relationship plot for asthma and CEV.

Figure 4: The relationship between asthma and MBW data.

plotted with this proportion and its confidence interval (CI) to determine from the distribution of the data, and the
calculation whether there is a trend in this variable with respect to asthma. The confidence interval (CI) is the overall
range of values that may be included for a given level of confidence. As the sample size increases, the range of interval
values will become narrower, meaning that the mean has a higher degree of accuracy than a smaller sample.

Figure 4 shows the relationship between each of the three lung function parameters and the response variable asthma_4y.
As can be seen in Figure 4a, the LCI data is concentrated between 5.5 and 6.75, with the majority of subjects not having
asthma. The proportion in each interval fluctuates between 0.2 and 0.3 and does not show a very clear trend. Also,
because observations in the first and last interval did not have asthma, no confidence intervals are shown. The numbers
in the second interval are smaller and the confidence interval range is large.

Similarly, the Figure 4 also shows that the other two variables, FRC and CEV, do not have a clear trend of being related
to the outcome variable, i.e. the proportions do not change significantly as the values of the two variables increase.
We can observe a weak U-shaped curve between the MBW data and the asthma; we did not attempt to model this
relationship.
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3.1.3 Exploring the predictive power of smoking

Another variable of interest is mpsmoke, which is a variable with six categories that represent the severity of the mother’s
smoking during pregnancy. To explore the utility of this for the prediction of the 4-year-old phenotypes, we followed
the same approach as in the previous section, for examining the lung function measurements.

The AUC of the relevant models are presented in the Table 7. Similar to the previous section, our results indicated that
the smoking variable clearly did not help to improve prediction accuracy.

3.2 Wheeze

We followed the same process as for asthma and got similar results. The response variable in this case was wheeze_4y.
Table 9 and Table 10 show the selected variables and their average fitted coefficients.

The performance metrics for Model 3 and Model 4 are presented in Table 11. Model 3 has better predictive ability, but
not to a very high level, with a mean AUC of 0.65.

We followed the same process as for asthma to explore the utility of the lung function measurements and maternal
smoking during pregnancy. The results are summarized in Table 11. The conclusions are the same: these specific
variables did not improve prediction accuracy.

3.3 Hay fever

We repeated the same analyses but with hay fever as the outcome variable. Table 13 and Table 14 show the selected
variables and their average fitted coefficients. Table 15 provides the main results.

We followed the same process as for asthma to explore the utility of the lung function measurements and maternal
smoking during pregnancy. The results are summarized in Table 15. The conclusions are the same: these specific
variables did not improve prediction accuracy.
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Table 9: Estimated coefficients for Model 3.
Variable Coefficient
Tricep skin fold at birth 0.37
Subscapular fold at birth −0.22
Family history of asthma 0.67
Family history of eczema 0.84

Table 10: Estimated coefficients for Model 4.
Variable Coefficient
Middle upper arm circumference at birth 0.11
Tricep skin fold at birth 0.18
Mother’s age 0.03
Father’s age 0.02
Siblings 0.14
Livestock −0.48
Family history of asthma 0.72
Family history of eczema 0.74
Family history of hay fever 0.26

Table 11: AUC, sensitivity and specificity of models for wheeze.
AUC Sensitivity (%) Specificity (%)

Model 1 2 3 4 5 Mean Mean Mean
Model 3 0.65 0.64 0.65 0.65 0.65 0.65 63 68
Model 4 0.61 0.59 0.61 0.6 0.61 0.60 65 56
Model 3 + LCI 0.64 0.64 0.65 0.64 0.65 0.64 62 67
Model 3 + FRC 0.64 0.64 0.65 0.65 0.65 0.65 63 66
Model 3 + CEV 0.64 0.64 0.65 0.65 0.65 0.65 62 68
Model 4 + LCI 0.61 0.59 0.6 0.6 0.6 0.6 62 58
Model 4 + FRC 0.61 0.59 0.61 0.60 0.6 0.6 65 55
Model 4 + CEV 0.64 0.64 0.65 0.65 0.65 0.65 57 62
mpsmoke 0.36 0.37 0.36 0.37 0.41 0.37 98 2
Model 3 + mpsmoke 0.61 0.61 0.62 0.62 0.63 0.62 61 63
Model 4 + mpsmoke 0.57 0.56 0.57 0.57 0.59 0.57 68 49
anympsmoke 0.37 0.39 0.37 0.39 0.44 0.39 83 22
Model 3 + anympsmoke 0.64 0.63 0.64 0.64 0.65 0.64 64 66
Model 4 + anympsmoke 0.6 0.58 0.6 0.6 0.6 0.60 67 51

Table 12: AUC for models with only MBW measurements, for wheeze.
Model AUC
LCI 0.39
FRC 0.42
CEV 0.44
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Table 13: Estimated coefficients for Model 5.
Variable Coefficient
Mother’s age 0.12
Father’s age −0.15
Family history of hay fever 0.96
Never drank tea 1.01
Pesticides 0.95
Baby handwash frequency_2 15.20
Baby handwash frequency_3 13.50
Baby handwash frequency_4 12.61

Table 14: Estimated coefficients for Model 6.
Variable Coefficient
Father’s age −0.08
Family history of hay fever 0.86
Family history of eczema 0.44
Never drank tea 0.92
Pesticides 0.87
Baby handwash frequency_2 15.25
Baby handwash frequency_3 13.7
Baby handwash frequency_4 12.86

Table 15: AUC, sensitivity and specificity of models for hay fever.
AUC Sensitivity (%) Specificity (%)

Model 1 2 3 4 5 Mean Mean Mean
Model 5 0.71 0.7 0.71 0.71 0.68 0.70 68 67
Model 6 0.69 0.67 0.7 0.69 0.66 0.68 79 58
Model 5 + LCI 0.7 0.69 0.71 0.7 0.68 0.70 71 64
Model 5 + FRC 0.7 0.69 0.71 0.7 0.68 0.70 69 66
Model 5 + CEV 0.7 0.69 0.71 0.7 0.68 0.70 74 61
Model 6 + LCI 0.69 0.67 0.69 0.68 0.66 0.68 79 57
Model 6 + FRC 0.69 0.67 0.69 0.68 0.66 0.68 79 58
Model 6 + CEV 0.7 0.69 0.67 0.768 0.68 0.69 78 58
mpsmoke 0.44 0.4 0.42 0.44 0.44 0.43 95 11
Model 5 + mpsmoke 0.7 0.7 0.71 0.71 0.68 0.70 74 63
Model 6 + mpsmoke 0.69 0.67 0.7 0.68 0.66 0.68 77 59
anympsmoke 0.42 0.4 0.4 0.4 0.42 0.41 68 35
Model 5 + anympsmoke 0.69 0.69 0.7 0.7 0.67 0.69 68 67
Model 6 + anympsmoke 0.68 0.66 0.68 0.68 0.65 0.67 74 58

Table 16: AUC for models with only MBW measurements, for hay fever.
Model AUC
LCI 0.41
FRC 0.33
CEV 0.44
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4 Discussion

We analysed the BIS data to assess our capability to predict asthma, wheeze and hay fever in children of four years of
age, using lung function and other measurements obtained at birth. Our general conclusions, outlined below, applied
similarly to all three diseases that we studied.

Predictive performance is modest, and on par with existing literature. Using logistic regression, together with
either stepwise selection or LASSO, our main conclusion was that our models have only a modest ability to predict the
presence of the three diseases. For the best models, the estimated AUC was typically less than 0.7, and the sensitivity
and specificity was typically less than 70%. We therefore expect that these models are unlikely to be useful in a clinical
setting.

While these results might not yet reach a strong clinical standard, we note that this is a challenging prediction problem
and that we compare favourably with other similar attempts. By way of comparison, Castro-Rodríguez et al. (2000)
created a clinical index using children with wheezing symptoms in the previous three years to predict the risk of
having asthma at ages 6, 8, 11 and 13. The model had a sensitivity of 56.6% and a specificity of 80.8% in predicting
disease at age of 6 years. This is a less challenging scenario than ours: by the age of 3 there is substantially more
medical information to work with, and they aim to predict only 3 years ahead rather than 4. Nevertheless, our predictive
performance is only marginally worse than what they acheived. When our models for asthma are calibrated to a
specificity of around 80%, we obtain a sensitvity of around 30%; conversely, we can achieve about 60% sensitivity
when operating at a specificity of around 70%.

Maternal smoking was a poor predictor. Interestingly, maternal smoking was not a good predictor in our models,
despite showing a strong relationship with the risk of respiratory disease in previous literature (Carlsen et al., 1997;
Hanrahan et al., 2012; Weitzman et al., 1990; Martinez et al., 1995; Stick et al., 1996).

One possible reason is that there were relatively few smokers in our study. We may have simply had insufficient
information to estimate the impact of smoking.

A similar study to ours concluded that maternal smoking was associated with a high prevalence of asthma in children
under 5 years of age (Weitzman et al., 1990). For that study, the mothers who smoked daily accounted for 25.9% of the
total sample. For the BIS dataset that we used in our study, only 13.7% of mothers smoked at all.

MBW-derived lung function measures were poor predictors. One of our aims was to use lung function measure-
ments from birth to help improve prediction.

The evidence from previous studies on whether this might be successful has been mixed so far. For example, Pike et al.
(2011) reported that children with low lung function at birth have a higher chance of developing wheezing at three years
of age, however Martinez et al. (1991) also showed that wheezing at six years of age does not seem to be associated with
low lung function in children. Proietti et al. (2014) also found a weak correlation between tidal breathing parameters
and subsequent respiratory symptoms.

Unfortunately, in our study, the inclusion of any of the three MBW variables (LCI, FRC and CEV) did not provide any
noticeable improvement in predicting the three diseases we studied at 4 years of age.

Family history was the best predictor. Of the other variables, ones that were consistently selected for inclusion
were those that related to family history of respiratory diseases. This is reassuring, given that family history is known to
be a good predictor.

4.1 Limitations and future work

We highlight the following limitations of our study and suggestions for future research:

1. When MI was used to impute missing values, both the predictors and the response variables were imputed.
However, when fitting models to each disease, not all 401 participants were used, but instead observations
with no missing values for the response variable before imputation were selected. It is worth noting that it is
reasonable to fill in the missing values for the response variable and use them in the data analysis (Steyerberg
et al., 2019). The data after including these participants could be reanalyzed in a subsequent study, to see
whether and how the results change.

2. We used two methods (stepwise selection and LASSO) to select the variables and then used the selected model
to obtain the parameters of the model using the cross-validation method, but the results obtained following this
step will be overoptimistic. Doing cross-validation after model selection will result in an overestimate of the
predictive performance. A better way would be to do the CV with the whole model fitting process, i.e. perform
the variable selection within each fold. The extent of any overestimation should be assessed in a future project.
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3. We can observe weak U-shaped curves in the relationship between certain MBW variables and the presence of
the respiratory diseases. This suggests exploring non-linear relationships in the modellig. For example, adding
quadratic terms, such as LCI2, to the previously selected models to see if the predictive power of the model is
improved.
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