Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Object and Instance Detection Within Image Scenes

Daniel Adenisimi
doi: https://doi.org/10.1101/2021.07.03.21258850
Daniel Adenisimi
1University of Oulu, Faculty of Medicine
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: danieladenisimi@gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

This paper compares state-of-the-art methods in object and instance detection, and examines why YOLO (You Only Look Once) outperforms top detection methods. Different Pascal VOC dataset is used as the benchmark to explore mean average precision(mAP). YOLO is twice as accurate to prior works on real-time detection. The outcome of of merging YOLO with Fast R-CNN is an increased mean average precision (mAP) which results in performance boost. Hence, YOLO is an enhanced model of top detection methods.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No external funding.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Ethical approval was not required.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Publicly available

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted July 06, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Object and Instance Detection Within Image Scenes
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Object and Instance Detection Within Image Scenes
Daniel Adenisimi
medRxiv 2021.07.03.21258850; doi: https://doi.org/10.1101/2021.07.03.21258850
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Object and Instance Detection Within Image Scenes
Daniel Adenisimi
medRxiv 2021.07.03.21258850; doi: https://doi.org/10.1101/2021.07.03.21258850

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (164)
  • Allergy and Immunology (417)
  • Anesthesia (93)
  • Cardiovascular Medicine (867)
  • Dentistry and Oral Medicine (159)
  • Dermatology (98)
  • Emergency Medicine (251)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (398)
  • Epidemiology (8597)
  • Forensic Medicine (4)
  • Gastroenterology (391)
  • Genetic and Genomic Medicine (1775)
  • Geriatric Medicine (170)
  • Health Economics (376)
  • Health Informatics (1252)
  • Health Policy (625)
  • Health Systems and Quality Improvement (472)
  • Hematology (198)
  • HIV/AIDS (380)
  • Infectious Diseases (except HIV/AIDS) (10354)
  • Intensive Care and Critical Care Medicine (554)
  • Medical Education (193)
  • Medical Ethics (51)
  • Nephrology (214)
  • Neurology (1692)
  • Nursing (97)
  • Nutrition (252)
  • Obstetrics and Gynecology (330)
  • Occupational and Environmental Health (451)
  • Oncology (934)
  • Ophthalmology (265)
  • Orthopedics (104)
  • Otolaryngology (172)
  • Pain Medicine (115)
  • Palliative Medicine (40)
  • Pathology (256)
  • Pediatrics (541)
  • Pharmacology and Therapeutics (257)
  • Primary Care Research (210)
  • Psychiatry and Clinical Psychology (1788)
  • Public and Global Health (3877)
  • Radiology and Imaging (629)
  • Rehabilitation Medicine and Physical Therapy (324)
  • Respiratory Medicine (525)
  • Rheumatology (208)
  • Sexual and Reproductive Health (171)
  • Sports Medicine (159)
  • Surgery (191)
  • Toxicology (36)
  • Transplantation (101)
  • Urology (76)