Colorectal Cancer Disparities: A Systematic Review and Meta-Analysis
Solomiya Syvyk, Chris Wirtalla, Sanford Roberts, Caitlin Finn, Rachel Rapaport Kelz

IMPORTANCE Colorectal Cancer (CRC) disparities continue to impact vulnerable populations. Across the CRC care continuum, most focus has been attributed to interventions in prevention, detection, and diagnosis. Varying surgical outcomes has emerged as an important contributing factor to CRC disparities.

OBJECTIVE To evaluate the distribution of publications across the CRC care continuum, examine interventional studies related to CRC Surgery, and synthesize findings in studies evaluating CRC disparities in Surgery.

DATA SOURCES We searched PubMed for prospective or retrospective studies reporting data on colorectal cancer disparities.

STUDY SELECTION Studies were selected if: (1) articles used US-sourced data (2) articles were published in the English language, and (3) Subjects included humans only or data.

MAIN OUTCOMES AND MEASURES Odds ratios for receipt of surgery for black versus white patients were pooled from studies that performed multivariate analysis. Subgroup analysis was performed per procedure type.

RESULTS No publications regarding interventions associated with improvements in colorectal cancer surgery were found. Of the 1600 CRC disparities articles identified, an analysis was conducted from 18 publications. It included 89,214 black patients and 646,990 white patients. Black patients were significantly less likely to receive surgical treatment for CRC than white patients. This was confirmed in the sensitivity analysis by cancer site (colon vs rectum).

CONCLUSIONS AND RELEVANCE Based on the results, the majority of studies on CRC disparities have focused on access to prevention, diagnosis and screening. Considering the impact of varying surgical outcomes on vulnerable populations, it should be considered to shift research focus from process-oriented interventions to outcomes.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction:
Colorectal cancer (CRC) is the most common GI malignancy\(^1\) and presents 3\(^{rd}\) in the highest number of cancer cases in the United States (US).\(^2\) Vulnerable populations including people of lower socioeconomic status, racial and ethnic minorities, and rural residents often succumb to worse outcomes.\(^3,4,5\) Up to 2010, the majority of published work, across the CRC care continuum, focused on prevention, detection, and diagnosis.\(^6\)

More recently, there has been a resurgence of interest in cancer-related outcomes for vulnerable populations. However, the majority of interventional studies continue to address screening and stage of cancer at diagnosis.\(^7,8\) Studies on the cancer care continuum have been process oriented rather than centered on outcomes. CRC care delivery has improved in the past decade, but outcomes disparities remain significant, with higher mortality\(^9\) and lower overall survival rates\(^10\) in vulnerable populations.

We conducted a systematic review and meta-analysis among studies of colorectal cancer care disparities published between 2011 and May 2021. The primary aims were to (1) examine the distribution of studies across the domains of cancer care delivery, (2) describe interventional studies designed to improve colorectal cancer surgical outcomes, and (3) synthesize the findings of studies evaluating CRC disparities in Surgery.

Methods:
We performed this systemic review and meta-analysis in accordance with PRISMA guidelines.

Search Strategy:
References for this systemic review and meta-analysis were identified through a search using PubMed. The search terms included “colorectal cancer disparities”, during the 10-year period, 2011 to May 2021 including the ‘10 years’ filter. Manual selection of relevant studies was carried out based on the related articles function. The citation lists of all retrieved articles were analyzed to identify other potentially relevant reports.
Study Selection and Data Extraction:
The criteria for eligibility among studies, prior to collection, were the following: (1) US-sourced data (2) published in the English language, and (3) human subjects or data. The exclusion criteria included the use of non-US-sourced data. If studies compared US and non-US sourced data, they were excluded.
One author (S.S.) conducted the search and identification, and the selection of an article was reached by consensus with two authors (C.W. and R.R.K.). Each primary publication was grouped in accordance with the Institute of Medicine domains of the cancer care continuum: Prevention, Screening, or Diagnosis, Treatment, Survivorship, or End-of-Life Care. The following information was extracted from each primary publication: Studied disparities, Sample size, Data source, Outcome(s), Presence of disparate outcome(s), Summary of outcome(s). [ref]
If the domain was categorized as Treatment, type of treatment(s) was included in the data extraction: Surgery, Systemic Therapy, Radiation, or Combined. Basic science studies and those involving epigenetics were excluded. Studies were included in the meta-analysis if they examined disparities related to surgical care including rates of use of surgery and outcomes. For these studies, we extracted the population descriptive factors, and sample size. Odds ratios (OR), including lower and upper bounds were recorded for use of surgery.

Statistical Analysis:
For our analysis of receipt of surgery, ORs less than 1.00 indicated that the vulnerable race population in question received less surgery than their White counterparts. We pooled ORs in order to provide an aggregate value. For all analyses, ORs and their corresponding 95% confidence intervals (CI) were pulled from studies that performed multivariable analyses. Because some of the papers performed analyses for colorectal procedures combined, while others were clearly stratified by colon and rectal procedures, we also performed subgroup analyses for each procedure type (colorectal, colon, and rectal) with respective pooled ORs for each. This served as a sensitivity analysis of sorts to ensure that our results were not disproportionally driven by one specific procedure type.

In testing for heterogeneity of effects, we considered p-values of less than 0.05 or an I² value of 50% or greater to be significant. In the case that heterogeneity was identified, we used a random-
effects model with the DerSimonian-Laird method. Fixed effects were used for instances in which heterogeneity was not observed.

We used the Newcastle-Ottawa Scale (NOS) for risk of bias assessment. This scale assesses the potential of bias in 3 domains: (1) selection of the study groups; (2) comparability of groups; and (3) ascertainment of exposure and outcome. Studies with scores of 7 or higher were considered as having a low risk of bias, scores of 4 to 6 as having a moderate risk of bias, and scores less than 4 as having a high risk of bias. Funnel plots were also generated in order to visually inspect for potential publication bias.

Results:
A total of 1600 publications were identified from the database (Figure 1). Among them, 0 reported interventional studies regarding surgery as the treatment within vulnerable populations. Between 2011 to 2021, 26 studies were published that reported on disparities in surgery rates and outcomes. Among them, 8 did not report odds ratio for inclusion in the final analysis. Ultimately, 18 studies were analyzed.11-28 The total number of patients included 89,214 black patients and 646,990 white patients, ranging from 513 to 11,111 and 2,047 to 190,688, respectively. In all articles, a retrospective analysis of patients was presented including the outcome of surgical utilization. In 8 studies, variation in patient socioeconomic status was reported, 4 studies reported variation in patient geographic location (rural/urban), and 2 studies reported variation in patient education. Only 3 studies reported Mortality as an outcome. The quality of publication expressed by the NOS scale ranged from 6 to 9, with 94% including studies of high quality (NOS scores ranging from 7-9).
Due to all pooled results having I² values greater than 50% -- overall (72.2%; p<0.001), colorectal (83.1%; p<0.001), rectal (58.5%; p=0.065), and colon (51.4%; p=0.067) -- we utilized a fixed-effects model for our analyses on receipt of surgery. (Figures 2 and 3)
Figure 2. Meta – analysis (Forest Plot) of 18 Studies Assessing Receipt of Surgery in Black vs. White Patients with Colorectal Cancer, Colon Cancer, or Rectal Cancer

<table>
<thead>
<tr>
<th>Procedure Type and Study (Year)</th>
<th>No. pts</th>
<th>OR (95% CI)</th>
<th>% Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haas JS, et al (2011)</td>
<td>36648</td>
<td>0.57 (0.52, 0.63)</td>
<td>8.55</td>
</tr>
<tr>
<td>Munene G, et. al (2013)</td>
<td>93542</td>
<td>0.61 (0.52, 0.71)</td>
<td>3.24</td>
</tr>
<tr>
<td>Goldberg EM., et. al (2021)</td>
<td>6369</td>
<td>0.62 (0.45, 0.86)</td>
<td>0.75</td>
</tr>
<tr>
<td>Kann BH., et al (2017)</td>
<td>66925</td>
<td>0.71 (0.66, 0.76)</td>
<td>15.81</td>
</tr>
<tr>
<td>Simpson, et al (2013)</td>
<td>7288</td>
<td>0.76 (0.67, 0.85)</td>
<td>5.56</td>
</tr>
<tr>
<td>Raof M, et al (2020)</td>
<td>11255</td>
<td>0.75 (0.58, 0.95)</td>
<td>1.29</td>
</tr>
<tr>
<td>Upal A, et al (2019)</td>
<td>14679</td>
<td>0.91 (0.79, 1.05)</td>
<td>3.89</td>
</tr>
<tr>
<td>Subgroup, IV (I² = 83.1%, p = 0.000)</td>
<td>236706</td>
<td>0.69 (0.66, 0.72)</td>
<td>39.09</td>
</tr>
<tr>
<td>Rectal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samuel CA, et al (2014)</td>
<td>1887</td>
<td>0.57 (0.39, 0.82)</td>
<td>0.57</td>
</tr>
<tr>
<td>Tramontano, et al (2020)</td>
<td>22755</td>
<td>0.64 (0.57, 0.72)</td>
<td>5.77</td>
</tr>
<tr>
<td>Bilton JN, et al (2021)</td>
<td>117897</td>
<td>0.71 (0.70, 0.88)</td>
<td>6.01</td>
</tr>
<tr>
<td>Arsoniadis EG, et al (2017)</td>
<td>22697</td>
<td>0.78 (0.70, 0.87)</td>
<td>6.66</td>
</tr>
<tr>
<td>Subgroup, IV (I² = 58.5%, p = 0.065)</td>
<td>165236</td>
<td>0.71 (0.66, 0.75)</td>
<td>19.00</td>
</tr>
<tr>
<td>Colon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tramontano, et al (2020)</td>
<td>81924</td>
<td>0.67 (0.62, 0.72)</td>
<td>14.08</td>
</tr>
<tr>
<td>Sell NM, et. al (2020)</td>
<td>19062</td>
<td>0.74 (0.66, 0.83)</td>
<td>5.99</td>
</tr>
<tr>
<td>Gill AA., et. al (2014)</td>
<td>2560</td>
<td>0.75 (0.37, 1.53)</td>
<td>0.16</td>
</tr>
<tr>
<td>Bilton JN, et al (2021)</td>
<td>219334</td>
<td>0.78 (0.73, 0.83)</td>
<td>19.09</td>
</tr>
<tr>
<td>Birkett RT., et. al (2019)</td>
<td>4834</td>
<td>0.80 (0.64, 0.98)</td>
<td>1.73</td>
</tr>
<tr>
<td>Samuel CA., et al (2014)</td>
<td>6548</td>
<td>0.82 (0.61, 1.12)</td>
<td>0.85</td>
</tr>
<tr>
<td>Subgroup, IV (I² = 51.4%, p = 0.067)</td>
<td>334262</td>
<td>0.74 (0.71, 0.77)</td>
<td>41.90</td>
</tr>
</tbody>
</table>

Heterogeneity between groups: p = 0.110
Overall, IV (I² = 72.2%, p = 0.000) | 736204 | 0.71 (0.69, 0.73) | 100.00 |
Discussion:
This systematic review and meta-analysis identified significant gaps in the scientific investigation of opportunities for improvements in colorectal cancer outcomes among vulnerable populations. Notably, we were unable to find a single interventional study that attempted to improve cancer care disparities via treatment interventions. All of the interventional studies targeted prevention, diagnosis and screening process. In the meta-analysis, black patients were significantly less likely to receive surgical treatment for CRC than white patients. This was confirmed in the sensitivity analysis by cancer site (colon vs rectum). Our work confirms and emphasizes previous reports indicating the racial disparity in the receipt of surgery.

The disparities in use of Surgery for colorectal cancer represent a critical target for improvement in outcomes of colorectal cancer among the Black community. It is unclear if the problem is provider or patient driven and probably reflects the complex interaction between patients and providers. Disparate outcomes of treatment may perpetuate myths regarding the effects of
surgery and magnify an underlying mistrust of the medical community.30 Similarly, disparate outcomes of surgery due to treatment at low quality hospitals may drive concerns regarding surgical treatment among Black patients.31

Historically, screening rates for colorectal cancer differed significantly between black and white patients.32 Several strategies have been shown to improve screening rates among vulnerable populations including the organization of educational group learning lessons in community health centers and regular contact with their primary care provider.33 Many efforts have targeted the Black community and the national difference in screening rates has remained fixed while the disparities for vulnerable populations without screening campaigns has climbed.34 Unfortunately, despite a small gap in screening, large mortality differences remain along with gaps in acceptance of surgery as a treatment. Given these findings, efforts such as those adopted for screening should be made to both increase use of Surgery as a treatment and, to improve the quality of surgical care recommended.

This study has several limitations. First, we aimed to identify interventions associated with improvements in colorectal cancer surgery and found none. It is plausible that our search terms missed articles specific to colorectal surgery because we only explored cancer disparities. However, we screened the titles of the top 300 recent publications in colorectal surgery disparities and found one single intervention study on the Enhanced Recovery After Surgery Program that reduced length of stay without mention of death or complications. Also, we were not able to perform an adequate sensitivity analysis on socioeconomic status and we were unable to perform a meta regression due to the inherent limitations of the studies included in this study.

In summary, the majority of studies on CRC disparities have focused on access to prevention, diagnosis and screening. Outcomes benefits have been slim due to persistent differences in receipt of treatment and the quality of care delivered. In order to eradicate disparities in cancer care delivery, we must move from process-oriented interventions to a focus on outcomes.
References:

1. S Balzora, RB Issaka, A Anyane-Yeboa, DM Gray, FP May
 Impact of COVID-19 on colorectal cancer disparities and the way forward
 Gastrointest Endosc, 92 (2020), pp. 946-950

 National Cancer Institute, posted to the SEER website, April 2021. Last accessed April 19, 2021.

 PMCID: PMC3999705.

4. Akinyemiju T, Meng Q, Vin-Raviv N. Race/ethnicity and socio-economic differences in colorectal
 cancer surgery outcomes: analysis of the nationwide inpatient sample. BMC Cancer. 2016 Sep

5. Raman V, Adam MA, Turner MC, Moore HG, Mantyh CR, Migaly J. Disparity of Colon Cancer
 Outcomes in Rural America: Making the Case to Travel the Extra Mile. J Gastrointest Surg. 2019

6. Naylor K, Ward J, Polite BN. Interventions to improve care related to colorectal cancer among racial
 10.1007/s11606-012-2044-2. PMID: 22798214; PMCID: PMC3403155.

 J Natl Cancer Inst Monogr. 2012 May;2012(44):100-11. doi: 10.1093/jncimonographs/lgs015. PMID:
 22623602; PMCID: PMC3482960.

 10.3390/ijerph13010048. PMID: 26703651; PMCID: PMC4730439.

 Outcome disparities in colorectal cancer: a SEER-based comparative analysis of racial subgroups. Int J
 30443675.

12. Munene G, Parker RD, Shaheen AA, Myers RP, Quan ML, Ball CG, Dixon E. Disparities in the

 sociodemographic characteristics and capacity for treatment with disparities in colorectal cancer care and
 21413000.

