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ABSTRACT

Tracking the COVID-19 pandemic has been a major challenge for policy makers. Although, several efforts
are ongoing for accurate forecasting of cases, deaths, and hospitalization at various resolutions, few have
been attempted for college campuses despite their potential to become COVID-19 hot-spots. In this paper,
we present a real-time effort towards weekly forecasting of campus-level cases during the fall semester
for four universities in Virginia, United States. We discuss the challenges related to data curation. A
causal model is employed for forecasting with one free time-varying parameter, calibrated against case
data. The model is then run forward in time to obtain multiple forecasts. We retrospectively evaluate
the performance and, while forecast quality suffers during the campus reopening phase, the model makes
reasonable forecasts as the fall semester progresses. We provide sensitivity analysis for the several model
parameters. In addition, the forecasts are provided weekly to various state and local agencies.

1 INTRODUCTION

The COVID-19 pandemic has presented an extreme challenge for the global human population. With a
high mortality rate and significant economic impact, the drive to learn from and develop techniques to
assuage the damage of COVID-19 is at the forefront. While the initial phase of the pandemic was marred
by lack of understanding of the dynamics of the disease spread and a lack of coordination, subsequent
efforts to mitigate the spread have been marked by informed policy-making. Some of the key efforts have
been in forecasting of cases, deaths, hospitalization, etc. and has involved top academic institutions and
modeling teams (ForecastHub 2020).

In order to reduce inconsistency of forecasts between teams, these forecasting efforts enforce standardized
data sets, forecast formats, and evaluation metrics. However, these efforts have largely focused on national-,
state- and county-level forecasting. This work notwithstanding, there is an outstanding need to understand
the course of the pandemic among a variety of other resolutions. To this point, since the start of the epidemic,
there have been over 530,000 cases reported by American colleges and universities (Times 2020). As a
result of rising case counts, universities have had to move much of their teaching to online modalities given
that campuses are subject to high contact rates among individuals. However, some of the activities within
universities require physical presence and hence ensuring the safety of the staff and students is a major
challenge.

In this paper, we describe our efforts modeling and forecasting cases on multiple university campuses
depicted in Figure 1. To the the best of our knowledge, this is one of the only campus-level real-time
forecasting efforts at present. Beginning with the Fall 2020 semester, we have been providing continuous up-
to-date campus-level weekly COVID-19 cases forecasts and scenario analyses of four Virginia universities,
shown in Table 1, to state and local officials in order to inform policy relating to pandemic mitigation
(e.g. group sizes, class openings, service availability, student movement) and student testing frequency. By
providing multiple scenarios, our decision makers received a view of not only the course of the pandemic
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Figure 1: The weekly work flow.

in real-time, but also the upside and downside potential cases from decreases and increases in the student
contact rate, thus informing contingency planning.

During our work, we faced a variety of data issues, including: collection, inconsistency of reporting
frequency, formats, and resolution, restatements, and corrections. Many of these data issues resulted from the
difficult positions that colleges found themselves in. Building a team to address the pandemic, developing
new reporting systems, testing individuals, and disseminating that information to their community all
required time and resources that were unlikely to be budgeted for. Given the lack of and challenged
nature of the campus case data, statistical or purely data-driven models were not feasible at the time. As
a result, we employed the Susceptible-Exposed-Infected-Recovered (SEIR) model, a popular infectious
disease compartmental model which incorporates the causal mechanisms of disease spread dynamics. We
employed one SEIR model per school with the model parameters calibrated on the respective school’s
case time series. The model produced two week’s worth of daily forecasts and for performance evaluation
purposes we aggregated them into two weekly forecasts.

Despite these challenges, our weekly report contained: 2 weekly COVID-19 case forecasts under each
of three scenarios (stable contact rate, contact rate halved, and contact rate doubled), along with isocurves,
described in (Weitz, Joshua 2020), that informed intervention efforts by depicting the trade-off between
testing frequency and contact rate in resulting new cases. The case forecasts and testing intervention scenarios
are combined to create an important and valuable source of information for COVID-19 management decision
makers.

Table 1: The enrollment of the four modeled schools along with the population of the county of city where
they are located.

School Enrollment County/City County Population
(2018/2019) (2019)

Virginia Tech (VT) 34,683 Montgomery 98,535
Virginia Commonwealth University (VCU) 30,697 Richmond 226,622
University of Virginia (UVA) 24,639 Charlottesville 47,096
James Madison University (JMU) 21,751 Harrisonburg 53,273
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1.1 Related Work

SEIR models have a long history. They have been a primary candidate for COVID-19 modeling (COVID-19
ForecastHub 2020), and, while they have performed generally well, there have been some efforts to use
either statistical or other mechanistic models alongside them for pandemic research (Adiga et al. 2020; Yang
et al. 2020; Xiao et al. 2020). Work involving their use for COVID-19 forecasting is already widespread
(He et al. 2020), including those studying the difficulties that SEIR models have making such forecasts
(Roda et al. 2020). Despite the difficulties, SEIR models have, by now, been used to forecast COVID-19
cases all over the world in both large- and small-scale resolutions (Annas et al. 2020; Radulescu et al.
2020; López and Rodo 2021). These studies also, together, investigate the effect of various intervention
measures (closures, vaccinations, isolation, etc.). Additional intervention studies include the placement of
recovered individuals in high-contact roles (Weitz et al. 2020), and optimizing isolation control policies
based on improved testing (Li et al. 2020).

Along with the work done at higher resolutions on forecasting and intervention techniques, there
have been several investigations concerning college campuses and COVID-19. Due to to the lack of
data and understanding of university reopening strategies and testing protocols, initial work focused on
understanding effects of interventions using hypothetical cohorts (Paltiel et al. 2020) to understand the
effects of pre-arrival testing, regular testing, and test specificity, etc. Other works described the progression
and spread of the virus through a college campus (Wilson et al. 2020). Further works focused on studying
college administration detection and mitigation techniques and the impact on observed cases (Fox et al.
2021; Betancourt et al. 2021; Marsicano et al. 2020; Walke et al. 2020; Losina et al. 2021). There has
been work completed that delves into the impact of such actions by schools on the health of the student
population itself, often focusing on mental health (Conrad et al. 2021; Zhai and Du 2020). Additionally,
there has been work completed on the impact of large schools on the case prevalence of their surrounding
community (Leidner et al. 2021; Mehrab et al. 2020; Andersen et al. 2020), finding that schools with
students returning to campus may have contributed to higher observed cases in the broader community.
These findings heighten the importance for systems, like the one described in this article, that can inform
college administration-level decision making.

The paper is organized as follows: In Section 2 we discuss the challenges of data curation, model
details, scenarios, and probabilistic forecasting. In Section 3, we present the forecasts, discuss intervention
modeling, evaluate forecast performance using multiple metrics and perform sensitivity analysis of the
SEIR model parameters. We conclude the paper with a discussion in Section 4.

2 COLLEGE CASE FORECASTING

2.1 Data Collection

To identify the initial subset of US schools to model, we used a combination of a list of schools made
available by the New York Times (Times 2020) with the most cases, along with the largest schools in each
state. Given the lack of a central case database at the time, we decided to collect the data manually from
each school’s COVID-19 dashboard.

Throughout the modeling period, collecting data reliably posed a challenge. At the outset, not all of
our chosen universities made their COVID-19 case data publicly available and we were simply unable to
acquire case data from these schools regularly. Given the number of schools we were able to find data for,
eventually 67 institutions, we decided to not pursue extra efforts to track cases from additional schools.
When we set up the pipeline to provide forecasts to various agencies in the state of Virginia, we settled on
modeling just four of the largest public schools in Virginia.

Once the subset of schools, with publicly available COVID data, was determined we were next confronted
with the reality that there was no consistent periodicity, format, or granularity between the schools that
made their COVID cases available. Case reporting frequency could be daily, partial weekly, weekly, or
irregular. The format varied from static images of case counts to Tableau windows, from simple data tables
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to interactive charts. The granularity of reporting confirmed cases varied from a single number for the
school, to subsections shown for each of students (on- and off-campus), faculty, and affiliates. As a result
of all these variations, we manually collected data from each school’s COVID-19 dashboard. Scraping
techniques were investigated, however, given the individual nature of each reporting method, this was not
a scalable solution. These issues, shared among those modeling college-level cases, have led to initiatives
to centralize college data (The College Crisis Initiative 2020).

Beyond the variations between school postings of COVID-19 cases, we also encountered the issue of
frequent restating of a school’s case history. Usually minor updates occur to the latest posted data as cases
are confirmed late, or lag the initial release of that day’s data. Occasionally, though, restatements several
days or, rarely, even weeks in the past would occur. In these cases we updated the school data to the latest.
To dampen the effects of variability in daily reporting and time biases, we applied a rolling 7-day average
to the daily case time series.

The challenge that coping with the pandemic posed to schools explains some of the data collection
difficulties. The schools had to build teams to inform the plethora of decisions to be made, build infrastructure
for collecting cases, monitor a decentralized community of on- and off-campus students with varying levels
of commitment or interest in following pandemic policies, and create new reporting systems or dashboards
to make that information available. Given a limited set of resources, none of these are easily done on short
notice especially in an environment when the management of the school itself is under a variety of new
pressures (budgetary, when/if to open for in person classes, what to do with on-campus students, etc.).

2.2 SEIR Model

We employ a compartmental Susceptible-Exposed-Infectious-Recovered (SEIR, shown in Figure 2) model
with outcome processing for case confirmation generated at the school-level resolution. The campus
population is divided into the four compartments and the rate at which the individual compartment
population changes are given by

∆S(t) =−βS(t)
I(t)
N

,

∆E(t) = βS(t)
I(t)
N
−αE(t),

∆I(t) = αE(t)− γI(t),

∆R(t) = γI(t), (1)

where β , α , and γ are the transmissibility, incubation rate, and recovery rate parameters, respectively,
and indicate the disease specific parameters. The model employed in this paper is an adaption of the
non-network version of PatchSim model (Venkatramanan et al. 2019). In this model, we train each school
in isolation where the interactions, effects of social distancing and miscellaneous adaptations are captured
as temporal variations (daily variations) in the transmissibility term β while keeping other parameters, the
duration of incubation (5 days) and recovery rate (5 days), case ascertainment rate (7x, each confirmed
case indicates 7 underlying infections in the population), and delay from exposure to confirmation (7 days)
fixed (CDC 2020). Widespread pandemic eliminates sensitivity to initial conditions, hence we assumed
steady low-level of importation/external seeding ( 1 case per 10 million).

Let the SEIR model be expressed as ∆S,∆E,∆I,∆R = fα,γ(βββ ), where boldface indicates the vector
form of a time series, for example, ∆S = [∆S(0),∆S(1), · · · ,∆S(T )] and ∆S(i) = S(i)−S(i−1) indicates
the change in number of susceptibles from day i− 1 to i and βββ = [β (0),β (1), · · · ,β (T )]. Note that, in
practice, ∆S,∆E,∆I,∆R are typically not observed but only the reported number of cases C is available. We
typically employ the case ascertainment value κ that is the average number of infections getting reported,
that is, C = κI. For the sake of brevity, we denote the SEIR model as ∆C = fα,γ,κ(βββ ). With the assumed
disease parameter values the transmissibility parameter is calibrated as
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Figure 2: The SEIR model and the location of the input parameters.

β̂ββ = argmin
βββ

‖C− fα,γ,κ(βββ )‖, (2)

where the nonlinear optimization problem is solved using Broyden-Fletcher-Goldfarb-Shanno algorithm,
a gradient-based optimization of the mean-squared error objective function. This method allows for layering
counterfactual projections (i.e., increase or decrease in future β ). Once calibrated, the forecasts are obtained
by projecting forward the β̂ββ in multiple ways and is discussed in Section 2.3.

Testing Most universities resorted to high volumes of testing during the fall semester. The tested
individuals identified as infected are subjected to isolation which effectively results in the reduction of
number of infected individuals in the population. Key to testing is the frequency at which they are conducted
and also the test sensitivity (true positive rate). Given the test parameters, the effects of testing on the
disease dynamics can be incorporated into the SEIR model as follows:

∆I(t) = µE(t)− γI(t)−ωseI(t), (3)

where ω is the rate at which an individual is tested and se is the sensitivity of the test (was determined to
be 75%). In our modeling efforts, we incorporated a range of testing rates and generated possible scenarios
that are captured in isocurves, shown in Figure 4.

2.3 Scenarios

Beyond the data collection issues, predicting 1- and 2-weeks forward cases for a college campus is difficult
due to the highly interactive structure of campus life. In order to account for the potential for rapid changes
in contact rate we investigated avenues that inform forward contact rate adjustments.

One of these avenues was to use location-based mobility data. Studies of this have shown promising
results for the early period (reopening) of a semester (Mehrab et al. 2020), but the correlations did not
hold for later portions of the semester.

Another avenue was to use knowledge of upcoming events on campus (e.g. Spring Break, Greek-life
rush) that we believed would result in higher contact rates among the students to alter the forward beta.
We found it too difficult to reliably model these events accurately ahead of time - simply having awareness
of such events along with understanding their size, and the interaction dynamics was not feasible within
the time constraints of our process.

Given these difficulties, we produce three different scenarios: after calibrating the model on the known
case data, we compute the average of the latest 7-days of βββ and use that to produce the forecasts for Scenario
1.0, that is β1.0(T + k) = 1

7 ∑
6
i=0 β (T − i), for k = 1,2, · · · ,14. The two other scenarios are: Scenario 0.5 -

the ”best” case where we reduce Scenario 1.0’s future β1.0 by half, representing some combination of the
success of containment policies and student compliance. Scenario 2.0 - the ”worst” case where we double
Scenario 1.0’s future β1.0, representing the potential contact rate spike resulting from a particular social
event or perhaps a breakdown of policy compliance in general (e.g. due to a change in weather, COVID
fatigue, etc.).
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2.4 Probabilistic forecasts

Of high importance in case forecasting is the need for quantifying the uncertainty. Unlike the point forecasts,
probabilistic forecasts provide a model’s confidence in its forecast values. We determine uncertainty in
our model by perturbing the projected β̂ββ values as a function of the training error (calibration error).
Specifically, we randomly sample N times from a Gaussian distribution with mean as calibrated β and
variance as the training mean square error and project forward to obtain N different forecasts. We then
compute the statistics of the N forecasts.

We also compare the SEIR model to an ARIMA model, which does reasonably well for time series
forecasting. Given the short time period and continual nature of the prediction, we built an individual
non-seasonal model for each of the forecast periods and school time series. Each model uses a training
period length of 15 days of each school’s log-transformed daily new COVID-19 cases time series. The
model’s p, d, and q parameters are tuned by optimizing the Bayesian Information Criterion over a range of
[0, 10] for p and q, and [0, 2] for d. The prediction accuracy can be found in Figure 5. It can be seen that
the ARIMA model performs fairly in-line with the SEIR scenarios 0.5, and 1.0. The reason for employing
the SEIR model as opposed to the ARIMA model, is the ability to incorporate multiple scenarios based
on the same input data. For decision makers faced with planning contingencies having a model that can
give reasonable bounds to a ”worse” scenario is vital to forward planning.

3 MODEL PERFORMANCE

Figure 3: The figure shows the 7-day rolling average daily new COVID-19 cases (blue line) during fall
semester (August through mid-November) of the four different Virginia universities. Also shown are the
weekly forecasts from the SEIR model (dark red lines). Each forecast is made two weeks forward. The
orange shaded area represents the 95% confidence interval for each prediction. Finally, the purple lines
represent the future beta used by the SEIR model for each predictions.

We present forecasts for four Virginia universities in Figure 3. From the figure, it can be observed that
in the initial weeks most universities show sharp increase in cases. The sharp rise coupled with lack of
sufficient historical data makes it hard for the model to train and hence does not closely predict the course
of the pandemic at the school. Once the initial phase of high weekly cases passes, the model forecasts
appear to closely capture the trajectory across all campuses. We quantify the performance of the model
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using Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Squared
Error (RMSE). The forecast performance across the fall semester based on these metrics is presented in
Figure 5 (Note that for evaluation purposes we aggregate the daily forecasts to weekly forecasts which
helps overcome the reporting biases observed over different days of the week). The MAE and RMSE show
error reducing after the initial period for both one-week- and two-week-ahead forecast horizon. The errors
corresponding to Scenario 2.0 are consistently higher than the other two scenarios thus indicating that the
cases were mostly below the ”worst case” expectations. As for Scenarios 0.5 and 1.0, the MAPE shows
steady performance of the models indicating that the errors were generally proportionate to the cases. We
also compute the number of times the ground truth falls within the 95% confidence interval of the forecasts.
Apart from JMU, the 1.0 scenario was able to capture the trend in one-week-ahead cases nearly 50% of
the time while the one-week-ahead case trend was captured 60-90% of the time by at least one of the
scenarios. This trend holds, although at higher percentages, for the two-week-ahead prediction coverage.
Given that all three scenarios jointly have a higher percentage of ground truth coverage demonstrates the
value of multiple scenarios.

As a result of the weekly delivery schedule, we have a relatively short amount of time to produce our
results and make changes to the model. The consistency of this schedule was an important tool for the
recipients to monitor the course of the pandemic in their purview. In addition to the short time frame, the
schools’ COVID-19 policy was dynamically updated throughout the period. These updates (e.g. to the
rate of testing or various mitigation practices) resulted in the need to constantly change the model to be
consistent with the current state of the college’s efforts.

Figure 4: The isocurves show the resulting cases four weeks forward (curved lines) given the frequency
of testing (y-axis) and contact rate (x-axis). As testing frequency increases, a higher contact rate can be
tolerated to result in the same number of cases (due to the resulting mitigation measures taken for persons
testing positive). Alternatively, if the contact rate decreases, the school can choose to decrease the rate
of testing in order to maintain an expected new case count that it is comfortable with. The three colored
squares indicate the position of the school’s current testing policy and contact rate.

3.1 Sensitivity Analysis

The results presented in Section 3 are based on fixed SEIR model parameters discussed in Section 2.2.
The β (t) was calibrated based on the model parameters such as incubation period, recovery period and
delay from exposure to confirmation. A natural question that arises in this context is the variability of a
model’s forecast performance based on the choice of the parameters. In order to determine the sensitivity
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to the choice of parameters, we construct a full factorial design experiment using a range of parameter
values: Incubation period ({3,5,7,9} days) and recovery ([3−14] days in steps of 1 day). The model
is calibrated over every combination of these parameters and then run forward for 14-days for the three
different scenarios (0.5, 1.0, and 2.0). This experiment is repeated for each submission week and the
corresponding MAE is determined. We present the distribution of the MAE obtained for a fixed value of
incubation period and recovery period using boxplots (depicting the quartile points) in Figures 6 and 7,
respectively. Each boxplot represents a group of model forecasts that employs the indicated model parameter
in the x-axis. Visual inspection indicates low variability in performance across groups for Scenario 1.0
and 0.5. However, for Scenario 2.0 the variation in model performance is quite significant. In order to
determine if there is statistically significant differences between the groups across all scenarios, we perform
a one-way analysis of variance (ANOVA) test. The one-way ANOVA test compares the means between
the groups and statistically determines whether the means are significantly different from each other. We
present the p-values of the test in table 2. A critical value of 0.05 was chosen and hence p > 0.05 indicates
the null hypothesis that the samples in all groups are drawn from populations with the same mean values.
The entries in the table indicate that for Scenarios 0.5 and 1.0 the variability in model performance for
various design choices is statistically insignificant. Hence, the choice of incubation period of 5 days and
a recovery period of 5 days is a reasonable assumption.

Table 2: ANOVA test p-values to determine significance of the variation of the mean performance across
parameters. The columns indicate the scenarios while the rows indicate the parameter with respect to which
SA is performed. For a given parameter and scenario of interest we obtain a group of absolute error values.
If p > 0.05 then the null-hypothesis, that the means of different groups are statistically equal, is true.

1.0 0.5 2.0

Recovery period 0.63969 0.999999 1.02654e-06
Incubation period 0.995204 0.994067 1.46495e-12

4 DISCUSSION

In this paper we present a real-time campus-level forecasting framework. In terms of the performance,
the initial spike in error results primarily from two factors: a training period that is too short - the model
has no to very little case history - and the first phase of the epidemic on campus being the period when
students are gathering from widespread locations (e.g. UVA students came from 44 US states, and over 40
countries (Collegefactual 2021)). This first phase results in the most weekly cases observed and a rapidly
changing slope of the new-case curve.

During the period after the model has been trained on a reasonable amount of data, the forecasts provide,
at a minimum, a directionally correct indication of the trajectory of cases for the universities, shown in
figure 8. All three scenarios jointly have a higher percentage of ground truth coverage which demonstrates
the value of having multiple scenarios. The ground truth coverage of the scenarios together is important
since this process is implemented on a real-time basis and used for decisions being made week-to-week.
The decision makers consuming these forecasts are able to have a reliable view of the forward expected
cases, upside, and downside potential of the new cases in the future which allows them to alter the measures
that influence the tolerable future contact rate (e.g. managing group gathering sizes, in-person class and
program availability, dining hall arrangements, and mobility from and around dormitories).

The case forecasts inform the process that regulates interactions, but in particular can help the college
manage the number of students in quarantine, and the demands on those facilities. If the college has the
ability to adjust its isolation or quarantine capacity, an increasing or decreasing case count and model
forecasts indicating a worsening or easing of the new case trend is useful information for the college in
deciding to whether to change the capacity of their facilities. In addition, the isocurves allow the school to
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manage the frequency of testing the student population. Combined, the school is able to find the optimal
testing frequency and management of other intervention measures such that the forward case flow is tenable
to the administration, when considering isolation facilities, etc.

When considering the application of this work going forward, of primary interest is adding more
schools to the analysis and expanding the scope to the national level. Including schools from across the
country (which will help account for regional differences in COVID responses) and across various sizes of
schools (which will help account for resource differences in implementing interventions, communication,
and student accommodations) will provide more information on the usefulness of the model for all
schools. The SEIR model and an updated technical report can be found at https://github.com/benjaminhurt/
University SEIR Model.
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Figure 5: The above shows three different mean error measures, MAE, MAPE, and RMSE, for predictions
from the four Virginia colleges for the 1-week and 2-weeks forward predictions. The different lines are
the different contact rate scenarios run for each school: SEIR constant, halved, doubled, along with the
ARIMA model for comparison. The MAPE calculation is corrected by adding 1 to the denominator in
order to avoid division by 0. The initial spike in the errors can be observed in all scenarios and ARIMA
and across both forecast periods and measures. Afterwards, MAE and RMSE drop as the magnitude of
cases dwindles.
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Figure 6: Sensitivity analysis to determine the effect of changing the incubation parameter. The boxplots
indicate the variation in MAE for different incubation periods across the three scenarios.
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Figure 7: Sensitivity analysis to determine the effect of changing the recovery period parameter. The
boxplots indicate the variation in MAE for different recovery periods across the three scenarios.

Figure 8: The above shows percent of predictions whose 95% CI band contain the realized cases for the
one week and two week horizons. The 1.0 scenario only, shown on top. The capture from any of the three
scenarios shown below.
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