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Summary 

Head and neck cancer is the sixth leading cause of cancer across the globe and is significantly 

more prevalent in South Asian countries, including Pakistan. Prediction of pathological stages of 

cancer can play a pivotal role in early diagnosis and personalized medicine. This project ventures 

into the prediction of different stages of head and neck squamous cell carcinoma (HNSCC) using 

prioritized DNA methylation patterns. DNA methylation profiles for each HNSCC stage (stage-I-

IV) were used to extensively analyze 485,577 methylation CpG sites and prioritize them on the 

basis of the highest predictive power using a wrapper-based feature selection method, along with 

different classification models. We identified 68 high-power methylation sites which predicted the 

pathological stage of HNSCC samples with 90.62 % accuracy using a Random Forest classifier. 

We set out to construct a protein-protein interaction network for the proteins encoded by the 67 

genes associated with these sites to study its network topology and also undertook enrichment 

analysis of nodes in their immediate neighborhood for GO and KEGG Pathway annotations which 

revealed their role in cancer-related pathways, cell differentiation, signal transduction, metabolic 

and biosynthetic processes. With information on the predictive power of each of the 67 genes in 

each HNSCC stage, we unveil a dynamic stage-course network for HNSCC. We also intend to 

further study these genes in light of functional datasets from CRISPR, RNAi, drug screens for their 

putative role in HNSCC initiation and progression. 
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Introduction 

Head and neck cancer is the sixth leading cause of cancer across the globe and is more prevalent 

in the developing countries of South Asia, including Pakistan [2]. Cancer of the head and neck 

region is often diagnosed at advanced stages leading to a reduced survival rate of 20% with 

significant mortality and morbidity [3]. The progression of the cancer is classified using the staging 

system of the American Joint Committee on Cancer (AJCC) to determine the treatment for the 

patient [4]. However, the outcomes of the treatment depends upon the molecular biology of the 

cancer cells and it is important to identify and understand the actionable molecular signature for 

better and personalized treatment at any particular stage of the cancer [5]. 

Epigenetic modifications are emerging molecular features that are stable heritable phenotypes 

resulting from changes in a gene without alterations in the DNA sequence [6]. The most studied 

epigenetic modification of genes is DNA methylation, which can alter the gene expression without 

altering the DNA sequence, preferably in the CpG islands. CpG islands are regions in the genome 

with a high frequency of CpG sites where the percentage of cytosine and guanine is greater than 

50 %. DNA methylation is a process in which a methyl group is attached mostly to a cytosine base 

in DNA and plays an important role in regulating gene expression [7]. Gene expression can be 

significantly regulated by alterations in DNA methylation patterns and these alterations can result 

in mutational effects that can lead to cancer [8]. Studies show that DNA methylation markers can 

be used for the diagnosis of common cancers [9, 10]. Advancements in high-throughput 

sequencing with platforms such as Illumina Infinium Human Methylation 450K BeadChip array, 

which can cover over 480K CpG sites and target 96% of CpG islands in the human genome has 

enabled large studies such as The Cancer Genome Atlas (TCGA) to understand the methylation 

patterns in different cancer types and their progression [11, 12]. DNA methylation is an important 
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contributor to the pathophysiology of the various stages of cancer making it important to 

understand the role of specific methylation events in each stage of a particular cancer. If we 

understand the dynamics of DNA methylation in the specific stages of cancer then it has the 

potential to give rise to new precision medicine therapies for each patient based on their specific 

tumor [13]. 

Recently, Veeramachaneni et al (2019) reported changes in the genomic landscape in the 

development of head and neck squamous cell carcinoma (HNSCC) from premalignant lesions to 

malignancy and lymph node metastasis. They showed that known cancer drivers have significantly 

increased frequency of somatic copy number alterations, maybe due to deletion or promoter 

hypermethylation, when transitioning from premalignant lesions to HNSCC [14]. In 2013, a study 

was conducted by Kang et al, to identify those genes which undergo methylation alterations as the 

tumor progresses from benign to malignant form. For this purpose, genome-wide methylation 

databases of breast cancer cell lines from stage I to stage IV were analyzed, where they found the 

promoter methylation level of some genes consistently increased through normal cell lines to stage 

IV cell lines of breast cancer [15]. Additionally in the same year, methylation patterns of selected 

genes were analyzed for which previous breast cancer DNA methylation reports were available 

and they also concluded that the level of aberrant DNA methylation is higher in late-stage 

compared with early stage of invasive breast cancers [16]. Eventually, such studies encourage data 

scientists to analyze complex databases and build statistical models for helping in cancer diagnosis 

and prognosis. 

Advancements in modern machine learning and artificial intelligence techniques have aided 

researchers to detect and predict common types of cancer better and faster than clinicians using 

complex datasets [17]. Research studies have applied probabilistic methods, and machine learning 
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algorithms to microarray gene expression data for the classification of cancer types [18-20]. In a 

recent study, a deep neural network was applied to predict the unknown primary origin of the 

cancer cell with high accuracy using DNA methylation datasets. The study used one-way ANOVA 

and Turkey’s HSD to prioritize 10360 methylation sites from a total of 27K sites. These sites were 

used in the input layer of the neural network [21]. However, there is a need for better prioritization 

of DNA methylation sites to understand the potential role of the genes that harbor these sites in 

disease onset.  

For the prioritization of methylation sites, machine learning feature selection algorithms can be 

applied to extract the subset of features from the information system that can predict the target 

outcomes. In 2019, Kaur et al predicted early (stage I) and late (stage II, III, IV) stages of Liver 

Hepatocellular Carcinoma using differentially expressed transcripts and methylation CpG sites, 

identified through the Yuen-Welch test and feature selection techniques available in the WEKA 

software package and Scikit learn package. In their results, they achieved a respectable accuracy 

of 75.27 % for stage prediction using Random Forest with 21 CpG sites selected from 447 CpG 

differentially methylated sites [22]. One drawback of selecting CpG sites from differentially 

methylated sites is to lose those sites with a mid-methylation score, which might have prediction 

power as well as biological and clinical meaning. A feature selection algorithm, known as the 

Boruta algorithm, can extract features of significant relevance from an information system 

regardless of the size of the dataset. The Boruta algorithm was developed by Miron B. Kursa and 

Witold R. Rudnicki as an R package at the University of Warsaw in 2010 [1]. The Boruta algorithm 

is a Random Forest based wrapper feature selection method that can provide an unbiased and stable 

prioritization of significant CpG sites from a total of 485,577 CpG sites. The key idea behind the 

Boruta algorithm is to make a randomized copy, also called the shadow features, of the information 
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system then merge this copy with the original dataset and build the Random Forest (RF) classifier 

for this extended information system. After this, the algorithm performs predefined RF iterations 

and the replicated features are randomized before each iteration. The importance of all the features 

is computed in each iteration. A feature is considered important for a single iteration if its 

importance is higher than the maximal importance of all the randomized features and if the 

importance is below the maximal importance then the feature is removed from the information 

system. The features can be ranked based on the mean importance which is the mean of the 

importance computed at each iteration [23]. 

In our study, we have built three machine learning-based classification models to predict 

pathological stages (stage 1, stage 2, stage 3, stage 4a) of primary tumors from HNSCC patients 

based on a set of key methylation sites (CpG sites) identified using the Boruta algorithm, regardless 

of the primary sites or demographics of the patients [24]. We have also analyzed the feature 

contribution for each stage in the high-performance classification model to identify sites and their 

genes which offered a higher prediction power. Further, GO term enrichment analysis, KEGG 

pathway analysis, PPI network analysis was also performed for the associated genes of the 

identified CpG sites. 
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Results 

The Boruta algorithm identified 68 high-power CpG sites 

In phase 1, after intense processing of 13.7 hrs, 294,603 CpG sites were reduced to 1580 important 

CpG sites. In phase 2, a file of 1580 important CpG sites from phase 1 was prepared, and Boruta 

was applied with maximum runs of 50,000 iterations and default parameters. Phase 2 provided 68 

important CpG sites out of 1580 and was confirmed in phase 3, where no more unimportant CpG 

sites were found (Figure 1). Time taken by runs in phase 2 and phase 3 was 1.4 hr and 10.7 mins, 

respectively. These 68 CpG sites are located in 67 genes and are ranked by the mean importance 

of the Boruta algorithm. CpG sites of SPO11, CMSS1, EFR3B, and ESD were the most important 

(Table 1).  

Random Forest classifier staged primary tumor with 90.62% accuracy 

After obtaining our 68 CpG sites, we evaluated three machine learning models i.e. Random Forest 

(RF), Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the classification and 

prediction of pathological stages (stage 1, stage 2, stage 3, stage 4a) of HNSCC, with 10-fold cross-

Figure 1: Boruta algorithm box plot 

The Boruta algorithm identified 68 CpG sites as high powered which are used as primary features in the prediction models. X-

axis represents the composite element REF (CpG sites) and y-axis represents the importance of the sites. Steeper box plot 

represents high importance composite element REF. 
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validation repeated 30 times using the R caret package. Random Forest outperforms the SVM and 

KNN classifiers in predicting the pathological stages of the testing dataset (30%) after training the 

machine learning models using the training dataset (70%). Random Forest classifier predicted the 

stages with an accuracy of 90.62% (95% CI: 74.98-98.02%) with a kappa value of 0.875 and P-

value of 7.507e-15, the best in predicting the stages in the test data than SVM and KNN. Where 

SVM with linear kernel had an accuracy of 68.75% (95% CI: 49.99-83.88%) with a kappa value 

of 0.583 and a P-value of 2.406e-07. SVM with radial kernel had an accuracy of 71.88% (95% CI: 

53.25-86.25%), kappa value of 0.625, and P-value of 3.411e-08. KNN performed with the lowest 

accuracy of 56.25% (95% CI: 37.66-73.64%), kappa value of 0.4167, and P-value of 1.602e-04 

(Figure 2).  

Figure 2: Machine learning models performance 

(a) Performance evaluation of machine learning models where boxplots present accuracies with 95% 

confidence interval along with corresponding Kappa and p-values. (b) Confusion matrices for each 

machine learning models where cells with red boundries indicates the number of correctly classified 

samples for each stage. 

(a) 

(b) 
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Feature contribution analysis. Considering the Random Forest as the best model, we analyzed 

the feature contribution of CpG sites to each class (pathological stage) using the varImp function 

of the caret package in R. Feature contribution provides the measure of the influence of features 

(CpG sites in our case) on the prediction outcome [25], where the outcome is the pathological stage 

of HNSCC. We observed the contribution of most sites for stage 4a while the least for stage 1, 

consistent with the fact that tumor progression is attributed to the accumulation of alterations 

overtime driving the course of the disease [26]. This analysis of feature contribution might be 

Figure 3: Feature contribution analysis 

Feature contribution plot for the pathological stage outcome. X-axis presents the mean importance from the Boruta algorithm 

where feature contribution for each class (stage) is represented as gradient blue from stage 1 (darker) towards stage 4). From this 

plot, stage specificity of the CpG sites and their respective genes is assumed based on variable importance from Random Forest 

classifier. 
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useful in predicting the stage specificity of a gene and also providing a dynamic stage-course view 

of HNSCC progression (Figure 3).  

18 genes connect densely in the protein interaction network 

After aiming at 67 highly significant genes, the Protein-Protein Interaction (PPI) network of 67 

genes corresponding to 68 CpG sites obtained through the Boruta algorithm in Cytoscape 3.8.2 

[27] but no interactions were found for PROB1, HES3, FXYD5, and SH2D4B in the human PPI 

of BioGrid database [28]. Using a Network Analyzer in Cytoscape, we found 2566 nodes and 3374 

edges in the PPI (Table 2). Where the top 3 hub genes were LMNA, HIST3H3, and CRK with a 

Figure 4: Protein protein interaction network  

Protein-Protein Interaction network of proteins encoded by 63 genes with 2566 nodes and 3374 edges where LMNA, 

HIST3H3, and CRK are identified as top three hub genes. 
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high degree of interactions (Figure 4) (Table 3). In the large network of 63 genes, densely 

connected regions did appear that may represent molecular complexes. To detect densely 

connected regions, we utilized the MCODE plugin in Cytoscape [29]. We found 1 cluster of 18 

densely connected genes with 21 interactions in our PPI network of 63 genes as shown in (Figure 

5). Further statistics of network analyzer and MCODE are available in supporting information S1. 

Enrichment analysis of genes with high confidence CpG sites 

Enrichment analysis was performed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes 

and Genomes (KEGG) Pathway terms using the EnrichR to further study the 67 genes [30]. The 

analysis was categorized into KEGG Pathways, Biological Processes, Molecular Function, and 

Cellular Component with the top terms ranked by adjusted P-value as shown in Figure 6. KEGG 

and GO enrichment analysis showed that the 67 genes are not significantly related on a functional 

level. Most genes were found to be encoding enzymes including kinases, ion, and nucleic acid 

binding proteins which are involved in anatomical structural development, cell differentiation, and 

proliferation, signal transduction, metabolic and biosynthetic processes. KEGG Pathway analysis 

revealed that FGF6, CRK, GRIN2A, P2RX4, ABCC4, ATF6B, LMNA, and CTNNBIP1 are 

involved in cancer-related pathways like MAPK signaling pathway, PI3K-Akt signaling pathway, 

Figure 5: MCODE analysis 

Using MCODE, 18 densely connected genes in the interaction network of 63 

genes were identified, where ellipses represent the genes. 
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Wnt signaling pathway, apoptosis,  cAMP signaling pathway, and estrogen signaling pathway.  

A complete list of GO and KEGG terms is provided in supporting information S2. 

Genetic mutations identified in the candidate 67 genes for HNSCC 

We also compared our list of prioritized genes with those reported in The Catalogue Of Somatic 

Mutations In Cancer (COSMIC) and cBioPortal for HNSCC. COSMIC is a comprehensive 

database of somatic mutations in cancer while cBioPortal contains a wide variety of genomic data 

which is obtained from multiple cancer types [31]. We explored these databases to identify 

mutations and copy number alterations in the respective genes for HNSCC. In COSMIC, 

CARD11, HIP1, LPP are found to be annotated as oncogenes while GRIN2A and LMNA play 

their role as a tumor suppressor and fusion gene in cancer. Gene mutations including missense, 

Figure 6: Gene ontology and pathway enrichment analysis 

 

Gene ontology and pathway enrichment analysis of the genes associated high powered CpG sites in HNSCC. (a) KEGG 

Pathways (b) Biological processes (c) Molecular function (d) Cellular components. The vertical axis represents top 10 GO 

terms and KEGG pathways while the hortizontal axis represents the statistical significance of the annotations in terms of  –

log10 (p value). 

a) b) 

c) d) 
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truncating, or inframe mutations were not found in CTNNBIP1, TM2D1, HES3, GOLGA7, 

EFR3B, and C7orf72 (SPATA48), but there are some copy number alterations in these genes 

including deep deletions and amplification in HNSCC patients.  

Discussion 

Epigenetics, more specifically DNA methylation, appears to play a critical role in cancer 

progression [13]. HNSCC is the sixth leading cancer type and on the top in the South Asian 

countries including Pakistan and India, making it a cancer type of interest. In our study, we 

demonstrated the capability of the Boruta algorithm, a powerful feature selection algorithm, using 

large-scale DNA methylation datasets from TCGA. The algorithm eliminated 99.98% of irrelevant 

CpG sites and extracted 68 high confidence CpG sites to classify pathological stages of HNSCC 

by building three popular machine learning classifiers i.e. Random Forest, Support Vector 

Machines, and K-Nearest Neighbors. Random Forest was the best classifier where it classified the 

data points with an accuracy of 90.62%. We evaluated the models by considering kappa statistics 

and P-Value. Kappa statistics are useful in analyzing the performance of the machine learning 

classifiers by measuring the match of the predicted labels by the machine learning classifier to the 

actual labels as a reference [32]. The kappa value for the Random forest was 0.875 while the kappa 

value for the KNN classifier was the lowest at 0.417. This means the Random Forest is a strong 

classifier in terms of predicting the pathologic stages of HNSCC where the data (DNA methylation 

data) used for building this model is 64-81% reliable while KNN is a weak classifier where the 

data is only 15-35% reliable for this model [33]. On the other hand, the P-Value provides the 

statistical significance that how well the models have performed in terms of accuracy than the No 

Information Rate (P-Value [Acc > NIR]), where for all the models the No Information Rate was 

25%. These results indicate with the inline hypothesis that if we use the Boruta algorithm before 
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prediction using Random Forest classifier we can predict the pathological stages of HNSCC with 

significant accuracy.  

In previous studies, multiple parameters and different types of integrated data have been used to 

predict stages of different cancer types using machine learning with good accuracy [34-37], but 

there was little use of methylation data to classify pathological stages especially in head and neck 

cancer. 

After identifying the set of 68 high confidence CpG sites representing 67 genes with a putative 

role in HNSCC, we analyzed the feature contribution of the random forest classifier with the 

available literature to determine the stage specificity of the genes in HNSCC or any other cancer 

type. In our literature review, we could not found relevant studies related to 32 genes out of 67. In 

our Random Forest model, 8 CpG sites had high predictive power for class “stage1” but no 

significant literature was found to support early-stage specificity. However, KIAA2018 (USF3) 

may be involved in the predisposition of thyroid cancer [38]. Additionally, LDB1 [39], HMHA-1 

[40], and CTNNBIP1 [41] are associated with cancer progression and metastasis in HNSCC, 

melanoma, and thyroid cancer respectively. For class “stage2”, 12 CpG sites contributed the most, 

in which ABCC4, LMNA, MXD1, ABCA3, and CRK have significant behavior in the early stages 

of cancer. ABCC4 is highly expressed in lung cancer cell lines to promote cell growth, making it 

a potential target for lung cancer therapy [42]. LMNA is associated with the regulation of gene 

expression, cell proliferation, and apoptosis, where its loss of expression is incremental towards 

advanced stages of breast cancer [43]. MXD1 is thought to be a tumor suppressor and its 

underexpression can lead to tumorigenesis [44]. ABCA3, its downregulation is associated with 

early stages of cancer [45] where CRK expression is a prognostic factor of oral cancer and can be 

a potential target for cancer therapy [46]. However, ZCCHC11 is not specific to the early stage 
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but is associated with metastasis and can also be a therapeutic target [47]. Further, 19 CpG sites 

had high prediction power for class “stage3” significantly. ENTPD1 (CD39) [48], EIF2B5 [49], 

and HES3 [50] were related to advance stage cancer while FERMT1 (Kindlin-1) [51], RBFOX1 

[52], GRIN2A [53], DLG2 [54] are not found to be stage-specific but have a role in tumorigenesis 

where no relevant literature was found for 12 out of 19 genes. However, inhibitors of CD39 are 

now entering clinical trials for cancer therapy [55]. Lastly, 29 CpG sites contributed to class 

“stage4a”, LPP [56], HMGB2 [57], HIP1 [58], FXYD5 [59], PVRL4 [60], CYFIP1 [61], IQSEC1 

(GEP100) [62], and KIF2B6 [63] are involved in different types of cancers related to advance 

stage metastasis. Additionally, literature stating advance stage relation with NUCB1 was not 

found, however, NUCB2 enhances cell migration and invasion in the colon and other cancers [64] 

which is in high similarity with NUCB1 [65]. Moreover, ESD [66], ZNF146 [67], IFFO1 [68], 

MAEA [69], CELF6 [70], SLC3D2 [71], PPP6R2 [72] are not stage-specific but they can 

contribute to tumorigenesis. Further, the top gene, CMSS1 (C3orf26), its CpG site ranked highest 

by the Boruta Algorithm, is not characterized well, however, it can be associated with the 

immortalization of cancer cells [73]. The feature contribution of a highly significant classification 

model can be useful for assuming the stage specificity of the genes or their CpG sites, supported 

by a literature review. In summary, roughly 52% of the genes are involved in tumorigenesis and 

metastasis, and the remaining 33 key genes make for interesting candidates for in vivo and in vitro 

analysis for their role in cancer initiation and progression. 

In our study, there are three main limitations. First, we were limited to the sample size of 27 cases 

per stage since we required a balanced set of labels for each pathological stage to avoid class bias; 

because the maximum number of cases available for stage 1 were 27 while cases for stage 2, stage 

3 and stage 4a were over 70. The performance and accuracy of our machine learning models could 
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improve significantly if larger balanced datasets were available. However, the problem of missing 

information is a trend across datasets [74], which is counteracted by under sampling and 

oversampling techniques accompanied by information loss and overfitting [75]. Second, we have 

considered the head and neck as a singular region by itself while in reality, its subtypes including 

oral, larynx, salivary glands cancer are different and a sufficient amount of data should be available 

for each subtype. Third, in our dataset, 84 % of the patients come from a European background 

and only 10 % of the patients come from Africa and Asia while 6 % were not reported for their 

race. Studies have shown that DNA methylation patterns are known to be different across 

populations [76, 77]. The datasets should have comprised diverse demographics, which means our 

results cannot be extrapolated to other populations due to the majority representation of the white 

patients. 

In conclusion, our study identified 68 key CpG sites as potential features using the Boruta 

algorithm and a Random Forest classifier can be used to predict the pathological stages of HNSCC 

with significant accuracy. These results demonstrate the promising capabilities of the Boruta 

algorithm on large datasets like DNA methylation profiles to extract useful insights from the noise. 

An integrated omics analysis of these findings will help us narrow down the list further of ideal 

candidates and then the role of those candidates will be needed to be experimentally validated 

using in vitro or in vivo models. 

Experimental procedures 

Data collection 

We identified and gathered patient data of HNSCC with DNA methylation profiles and confirmed 

pathological stages in TCGA. DNA methylation data files from TCGA consist of 10 columns while 

clinical files of the corresponding patients consist of 181 columns or fields. We extracted the 
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Composite element REF, Beta_value, Gene_symbol fields from DNA methylation profiles and 

Case ID, ajcc_pathologic_stage from clinical files of 529 patients. We found a total of 452 out of 

529 primary tumor methylation profiles with confirmed pathological stages that were included in 

this study (Figure 7). 

 

Data pre-processing  

We used R programming 4.0.3 and SPSS 22 to pre-process data for the machine learning 

algorithms. We randomly picked data files of a total of 108 patients of stage 1, stage 2, stage 3, 

and stage 4a (with 27 from each stage, limited by stage 1 which only had 27 cases) for the training 

and testing of our classifiers. The data was compiled into the main file which consisted of 

gene_symbol, composite element REF (CpG sites), and columns of 108 patients consisting of beta 

values. 

Figure 7: Data availability 

There are 1264 DNA profiles from 1,193 HNSCC cases, out of which only 529 DNA methylation 

profiles for primary tumor samples are available. 452 DNA methylation profiles of 452 primary tumor 

samples have confirmed pathological stage assigned. DNA methylation profiles available for each 

stage are not available in equal proportion. A set of 108 DNA methylation files (in equal proportions) 

of stage 1, stage 2, stage 3, and stage 4a regardless of primary sites is used for training our machine 

learning classifiers. 

Total available samples in this 
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HNSCC mutated genes 

TCGA has reported simple somatic mutations in 20,759 genes in HNSCC, out of which we were 

able to find 354,434 composite element REF (rows) representing methylation/ CpG sites of 18,509 

genes, which are then extracted from the main file by joining gene symbols (Figure 8) 

Missing Value imputation 

Machine learning classifiers do not perform optimally with missing values. Therefore, CpG sites 

with missing Beta Values for different samples were removed. The composite element REF (CpG 

sites) was reduced from 354,434 to 294,603 rows (CpG sites).  

Main file transpose 

The composite element REF (CpG sites) were used as features (columns), and beta values and 

stage labels were used as observations (rows). We divided the main file into 148 sub-files and each 

file was transposed. Each file was repaired after transpose for the feature selection algorithm 

(Figure 9). 

 

Figure 8: Gene specific CpG sites 

Human Methylation 450K BeadChip array containing 485577 probes 

(CpG sites) covering 99 percent of RefSeq genes. CpG sites in our 

study are reduced to 294,603 by involving only those CpG sites which 

are associated with genes that are found to be mutated in HNSCC in 

TCGA i.e. 20,684 genes. 
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Feature selection 

To identify key CpG sites, we used the Boruta algorithm (package v7.0) [1]. This feature selection 

algorithm iteratively removes the features (CpG sites) which are proved by a statistical test to be 

less relevant. This removal of features is done by calculating the maximum Z score among shadow 

features (shuffled copy of original features to remove correlation) and classifying the features into 

important and unimportant, where the unimportant features are removed [1]. The algorithm was 

performed in 3 phases in R 4.0.3 with default parameters, however, max runs for phase 1 were set 

to 20,000 while max runs for phase 2 and 3 were set to 50,000. The CpG sites obtained in phase 3 

are used as features in the machine learning algorithms to classify pathological stages of HNSCC 

(Figure 10). 

Figure 9: Data frame structure 

The data frame consists of 108 rows of Beta values for each Composite Element 

REF (CpG Site) column. Each row has a specified stage of a particular patient 

which is placed in the Class column as a response object for the feature selection 

and machine learning algorithms. 
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Machine learning models 

We developed three different machine learning models using the random forest, support vector 

machine (both linear and radial kernel), and k-nearest neighbor using the caret package in R [78]. 

Validation rule was set to 30 times repeated 10 fold cross-validation using trainControl function 

of the caret package while methods in the train function used for random forest, support vector 

machine with linear kernel, support vector machine with radial, and k-nearest neighbor were “rf”, 

“svmLinear”, “svmRadial” and “knn” respectively. For the evaluation of machine learning models, 

confusion matrixes were built to compare accuracies, Kappa Values, and P-Values of the models. 

All the algorithms are performed on an Intel machine of 8th Gen Core i7 with 1.8 GHz base speed 

and 16 GB Ram.  

Figure 10: Boruta result plot 

Result plot of Boruta algorithm performed on example ozone data adapted 

from Kursa et al (2010). Blue boxplots corresponds to minimal, average 

and maximum Z score of shadow features which are the randomized copy 

of original features. Red and green boxplots represent Z scores of 

respectively rejected and confirmed features [1]. 
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Network and enrichment analysis 

For network analysis, the protein-protein interaction (PPI) network of proteins encoded by genes 

associated with the prioritized CpG sites was constructed using Cytoscape version 3.8.2. The 

source of the network interaction database was the Biological General Repository for Interaction 

Datasets (BioGIRD release 4.2.191, human taxon identifier: 9606). The Network Analyzer 

(version 4.4.6) was used to compute the network summary statistics. Moreover, Molecular 

Complex Detection (MCODE) was used to identify densely connected regions of genes in the PPI 

network. “Degree cutoff = 25”, “node score cutoff = 0.2”, “k-core = 2”, and “max. depth from 

seed = 100” was set as the cut-off parameters. Enrichment analysis of GO annotation was 

performed using EnrichR (https://maayanlab.cloud/Enrichr/). 

Additionally, (Figure 11) illustrates the overall methodology followed in this research. 

Figure 11: Research methodology 

 TCGA contained 1264 methylation profiles for all 1840 head and neck cancer patients out of which 

only 529 primary tumor files were available. We selected the datasets of patients with their comfirmed 

pathological stages. For the machine learning models, a symmetrical dataset was compiled of 108 

HNSCC patients with confirmed pathological stages and methylation profiles. The methylation 

profiles consist of more than 485K CpG sites which were reduced to 384K CpG sites associated with 

18509 genes. The CpG sites are aggressively reduced to 68 in 3 phases using the Boruta algorithm 

and based on these 68 CpG sites, machine learning models with 10 fold Cross-Validation repeated 30 

times and 70% training split. Finally, network and enrichment analysis was performed for the 67 genes 

corresponding to 68 CpG sites and feature contribution was also analyzed for all four stages. Feature 

contribution provides the measure of influence of features (CpG sites in our case) on the prediction 

outcomes [19], where the outcome built were the pathological stage of HNSCC. 
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Data and code availability 

All the data is publicly available at The Cancer Genome Atlas (TCGA). Case ID’s of randomly 

selected patients is available in the supporting information S3. The R code for building machine 

learning models is available at “Arsalan_Riaz/Rcode_patterns.zip at main · PML-

research/Arsalan_Riaz · GitHub”. 
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Figures 

Figure 1: Boruta algorithm box plot 

The Boruta algorithm identified 68 CpG sites as high powered which are used as primary features in the prediction models. X-

axis represents the composite element REF (CpG sites) and y-axis represents the importance of the sites. Steeper box plot 

represents high importance composite element REF. 

Figure 2: Machine learning models performance 

(a) Performance evaluation of machine learning models where boxplots present accuracies with 95% confidence interval along 

with corresponding Kappa and p-values. (b) Confusion matrices for each machine learning models where cells with red boundries 

indicates the number of correctly classified samples for each stage. 

Figure 3: Feature contribution analysis 

Feature contribution plot for the pathological stage outcome. X-axis presents the mean importance from the Boruta algorithm 

where feature contribution for each class (stage) is represented as gradient blue from stage 1 (darker) towards stage 4). From this 

plot, stage specificity of the CpG sites and their respective genes is assumed based on variable importance from Random Forest 

classifier. 

Figure 4: Protein protein interaction network  

Protein-Protein Interaction network of proteins encoded by 63 genes with 2566 nodes and 3374 edges where LMNA, HIST3H3, 

and CRK are identified as top three hub genes. 

Figure 5: MCODE analysis 

Using MCODE, 18 densely connected genes in the interaction network of 63 genes were identified, where ellipses represent the 

genes. 

Figure 6: Gene ontology and pathway enrichment analysis 

 

Gene ontology and pathway enrichment analysis of the genes associated high powered CpG sites in HNSCC. (a) KEGG 

Pathways (b) Biological processes (c) Molecular function (d) Cellular components. The vertical axis represents top 10 GO terms 

and KEGG pathways while the hortizontal axis represents the statistical significance of the annotations in terms of  –log10 (p 

value). 
 
Figure 7: Data availability 

There are 1264 DNA profiles from 1,193 HNSCC cases, out of which only 529 DNA methylation profiles for primary tumor 

samples are available. 452 DNA methylation profiles of 452 primary tumor samples have confirmed pathological stage assigned. 

DNA methylation profiles available for each stage are not available in equal proportion. A set of 108 DNA methylation files (in 
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equal proportions) of stage 1, stage 2, stage 3, and stage 4a regardless of primary sites is used for training our machine learning 

classifiers. 

Figure 8: Gene specific CpG sites 

Human Methylation 450K BeadChip array containing 485577 probes (CpG sites) covering 99 percent of RefSeq genes. CpG sites 

in our study are reduced to 294,603 by involving only those CpG sites which are associated with genes that are found to be mutated 

in HNSCC in TCGA i.e. 20,684 genes. 

Figure 9: Data frame structure 

The data frame consists of 108 rows of Beta values for each Composite Element REF (CpG Site) column. Each row has a specified 

stage of a particular patient which is placed in the Class column as a response object for the feature selection and machine learning 

algorithms. 

Figure 10: Boruta result plot 

Result plot of Boruta algorithm performed on example ozone data adapted from Kursa et al (2010). Blue boxplots corresponds to 

minimal, average and maximum Z score of shadow features which are the randomized copy of original features. Red and green 

boxplots represent Z scores of respectively rejected and confirmed features [1]. 

Figure 11: Research methodology 

TCGA contained 1264 methylation profiles for all 1840 head and neck cancer patients out of which only 529 primary tumor files 

were available. We selected the datasets of patients with their comfirmed pathological stages. For the machine learning models, a 

symmetrical dataset was compiled of 108 HNSCC patients with confirmed pathological stages and methylation profiles. The 

methylation profiles consist of more than 485K CpG sites which were reduced to 384K CpG sites associated with 18509 genes. 

The CpG sites are aggressively reduced to 68 in 3 phases using the Boruta algorithm and based on these 68 CpG sites, machine 

learning models with 10 fold Cross-Validation repeated 30 times and 70% training split. Finally, network and enrichment analysis 

was performed for the 67 genes corresponding to 68 CpG sites and feature contribution was also analyzed for all four stages. 

Feature contribution provides the measure of influence of features (CpG sites in our case) on the prediction outcomes [19], where 

the outcome built were the pathological stage of HNSCC. 

Tables 

Table 1: Boruta power predictive CpG sites 

Boruta extracted CpG sites with their corresponding Genes and mean importance calculated by the Boruta algorithm. 

composite_element_ref Symbol Name meanImp 

cg23998200 SPO11 SPO11 meiotic protein covalently bound to DSB 4.858123 

cg20118409 CMSS1 cms1 ribosomal small subunit homolog (yeast) 4.799199 

cg19746719 SPO11 SPO11 meiotic protein covalently bound to DSB 4.221874 

cg06643951 EFR3B EFR3 homolog B (S. cerevisiae) 4.179392 

cg12424329 ESD esterase D 4.169134 

cg15109172 ATHL1 ATH1, acid trehalase-like 1 (yeast) 4.008545 

cg09011162 LMF1 lipase maturation factor 1 3.955815 

cg13169641 BOLA1 bolA family member 1 3.911182 

cg07279321 PHACTR1 phosphatase and actin regulator 1 3.893777 

cg16465882 IQCD IQ motif containing D 3.891268 

cg13771378 HIST3H3 histone cluster 3, H3 3.886862 
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cg26596975 HIP1 huntingtin interacting protein 1 3.873064 

cg05931551 ZCCHC11 zinc finger, CCHC domain containing 11 3.862913 

cg18644543 HMHA1 histocompatibility (minor) HA-1 3.836166 

cg17972631 CTNNBIP1 catenin, beta interacting protein 1 3.800791 

cg09469111 PROB1 proline-rich basic protein 1 3.769765 

cg19937212 DLG2 discs, large homolog 2 (Drosophila) 3.75324 

cg02130555 NSUN7 NOP2/Sun domain family, member 7 3.753178 

cg09829843 PRTG protogenin 3.751863 

cg15316734 IFFO1 intermediate filament family orphan 1 3.743989 

cg19821804 NUCB1 nucleobindin 1 3.650323 

cg27164753 HMGB2 high mobility group box 2 3.591297 

cg15561613 KIF26B kinesin family member 26B 3.564371 

cg12297546 LPP LIM domain containing preferred translocation partner in lipoma 3.536387 

cg15419183 FXYD5 FXYD domain containing ion transport regulator 5 3.486434 

cg18471474 PPP6R2 protein phosphatase 6, regulatory subunit 2 3.482633 

cg02766391 TM2D1 TM2 domain containing 1 3.476714 

cg09323768 PXDC1 PX domain containing 1 3.454683 

cg02707669 MRPL57 mitochondrial ribosomal protein L57 3.449793 

cg09857577 C7orf72 chromosome 7 open reading frame 72 3.32915 

cg07711397 SH2D4B SH2 domain containing 4B 3.314978 

cg01931028 MAEA macrophage erythroblast attacher 3.296058 

cg08680764 ZNF146 zinc finger protein 146 3.285076 

cg00718541 ABCA3 ATP-binding cassette, sub-family A (ABC1), member 3 3.28319 

cg24343273 TMEM87B transmembrane protein 87B 3.281379 

cg00031556 PRB1 proline-rich protein BstNI subfamily 1 3.259202 

cg03057216 TMOD4 tropomodulin 4 (muscle) 3.214732 

cg24364084 KIAA2018 KIAA2018 3.169192 

cg02527886 CARD11 caspase recruitment domain family, member 11 3.166892 

cg07719965 NPAP1 nuclear pore associated protein 1 3.156775 

cg05028639 ERICH1 glutamate-rich 1 3.143164 

cg21216944 SLC35D2 solute carrier family 35 (UDP-GlcNAc/UDP-glucose transporter), member D2 3.130727 

cg14984066 CYFIP1 cytoplasmic FMR1 interacting protein 1 3.12293 

cg06055478 ARHGEF9 Cdc42 guanine nucleotide exchange factor (GEF) 9 3.095094 

cg10607557 ARSI arylsulfatase family, member I 3.074565 

cg01344243 GRIN2A glutamate receptor, ionotropic, N-methyl D-aspartate 2A 3.065536 

cg11874451 IQSEC1 IQ motif and Sec7 domain 1 3.014007 

cg25734279 EIF2B5 eukaryotic translation initiation factor 2B, subunit 5 epsilon, 82kDa 3.01141 

cg16460342 P2RX4 purinergic receptor P2X, ligand gated ion channel, 4 2.978878 
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cg00592411 GNB1L guanine nucleotide binding protein (G protein), beta polypeptide 1-like 2.97264 

cg23274561 LMNA lamin A/C 2.92159 

cg07832203 PVRL4 poliovirus receptor-related 4 2.909421 

cg23560113 MXD1 MAX dimerization protein 1 2.893829 

cg15693573 LRTOMT leucine rich transmembrane and O-methyltransferase domain containing 2.876075 

cg10338848 RBFOX1 RNA binding protein, fox-1 homolog (C. elegans) 1 2.873982 

cg10304534 ABCC4 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 2.866317 

cg12456799 SORCS3 sortilin-related VPS10 domain containing receptor 3 2.796964 

cg23305678 ERCC1 excision repair cross-complementation group 1 2.784574 

cg15320455 LDB1 LIM domain binding 1 2.762781 

cg10976908 CELF6 CUGBP, Elav-like family member 6 2.72666 

cg05981034 CRK v-crk avian sarcoma virus CT10 oncogene homolog 2.72345 

cg04451770 ENTPD1 ectonucleoside triphosphate diphosphohydrolase 1 2.694511 

cg02583247 FGF6 fibroblast growth factor 6 2.654622 

cg26257210 HES3 hes family bHLH transcription factor 3 2.64443 

cg15504666 ERI3 ERI1 exoribonuclease family member 3 2.640991 

cg13720581 ATF6B activating transcription factor 6 beta 2.631007 

cg02643110 GOLGA7 golgin A7 2.62349 

cg19026124 FERMT1 fermitin family member 1 2.62159 

 

Table 2: Network analyzer 

Summary statistics from a network analysis of 67 genes 

Number of nodes 2566 

Number of edges 3374 

Avg. number of neighbors 2.451 

Network diameter 8 

Network radius 5 

Characteristic path length 3.792 

Clustering coefficient 0.01 

Network density 0.001 

Network heterogeneity 8.353 

Network centralization 0.346 

Connected components 5 

Analysis time (sec) 0.5 
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Table 3: Hub genes 

Top 20 hub genes in the interaction network of 67 genes 

name Degree 

LMNA 933 

HIST3H3 396 

CRK 327 

CYFIP1 99 

HMGB2 84 

PPP6R2 81 

RBFOX1 75 

MAEA 70 

ZCCHC11 66 

LPP 65 

EIF2B5 65 

LDB1 64 

HIP1 63 

ERCC1 63 

MRPL57 55 

CARD11 47 

MXD1 42 

NUCB1 40 

DLG2 39 

ESD 37 

 

Supporting information 

Supporting files are available at “Arsalan_Riaz/Supporting_information at main · PML-

research/Arsalan_Riaz · GitHub “ 

S1: Network and MCODE analysis 
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S2: GO and KEGG terms of 67 genes 

S3: Case ID’s of samples 
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