Abstract
Background Whereas a number of genetic variants influencing total amygdala volume have been identified in previous research, genetic architecture of its distinct nuclei have yet to be thoroughly explored. We aimed to investigate whether increased phenotypic specificity through segmentation of the nuclei aids genetic discoverability and sheds light on the extent of shared genetic architecture and biological pathways between the nuclei and disorders associated with the amygdala.
Methods T1-weighted brain MRI scans (n=36,352, mean age= 64.26 years, 52% female) of trans-ancestry individuals from the UK Biobank were segmented into nine amygdala nuclei with FreeSurfer v6.1, and genome-wide association analyses were performed on the full sample and a European-only subset (n=31,690). We estimated heritability using Genome-wide Complex Trait Analysis, derived estimates of polygenicity, discoverability and power using MiXeR, and determined genetic correlations and shared loci between the nuclei using Linkage Disequilibrium Score Regression, followed by functional annotation using FUMA.
Results The SNP-based heritability of the nuclei ranged between 0.17-0.33, and the central nucleus had the greatest statistical power for discovery. Across the whole amygdala and the nuclei volumes, 38 novel significant (p < 5×10−9) loci were identified, with most loci mapped to the central nucleus. The mapped genes and associated pathways revealed both unique and shared effects across the nuclei, and immune-related pathways were particularly enriched across several nuclei.
Conclusions These findings indicate that the amygdala nuclei volumes have significant genetic heritability, increased power for discovery compared to whole amygdala volume, may have unique and shared genetic architectures, and a significant immune component to their aetiology.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Dr. Morey was supported by the US Department of Veterans Affairs (VA) Mid-Atlantic Mental Illness Research, Education, and Clinical Center (MIRECC) core funds of the Department of Veterans Affairs Office of Mental Health Services. Dr. Morey also received financial support from the VA Office of Research and Development (5I01CX000748-01, 5I01CX000120-02). Additional financial support was provided by the National Institute for Neurological Disorders and Stroke (R01NS086885-01A1). MM is supported by the South African National Research Fund, the David and Elaine Potter Foundation and the GINGER program. The GINGER program is, in part, supported by an award from the National Institute for Mental Health (1R01MH120642). TK, DM and OA are funded by the Research Council of Norway (#276082, #223273). RR, DS and SD are supported by the South African Medical Research Council.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
University of Cape Town, Faculty of Health Sciences, Human Research Ethics Committee
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All summary statistics are available from https://github.com/norment/open-science