Current therapeutic trends for tinnitus cure and control – a scoping review

Vatsal Chhaya MSc*1, Divya Patel MPharm2, Shamik Mehta MS(ENT)3, Jignesh Rajvir MS(ENT)4 Vinodkumar Jhinjhuwadia MBBS5, Pranshuta Sehgal MS(ENT)6, Kapil Kambholja MPharm, PhD7

4. Consultant & ENT surgeon, Gandhinagar, Gujarat
5. Consulting family physician, Rajkot, Gujarat.
6. Senior Resident (ENT), Hindu Rao Hospital, New Delhi.
7. Vice President, Genpro Research Inc., Boston, USA.

*Correspondence to:
Vatsal Chhaya
Senior Executive Medical Writing and RWE
Genpro Research Inc.
vatsal.chhaya@genproresearch.com

Abstract

- **Objectives** - The absence of high-level evidence about treatment approaches in tinnitus has eluded the clinical community from arriving at the consensus to date. This could be partially attributable to a limited number of trials. The objective of the present scoping review was to check updates in existing knowledge about tinnitus management and provide recommendations for further research and practice.

- **Design** - Scoping review with Population, Concept, and Context (PCC) framework.

Review question(s) for our study were:

1. *Is there any knowledge update from the published evidence on the treatment of tinnitus after the scoping review on tinnitus by Makar S et al. 2017?*

2. *Are there any therapies existing that do not focus on habituation but target the root cause of tinnitus?*

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
3. Which pharmacological interventions are used in the treatment of tinnitus?

- **Methods** - The database of our literature search included PubMed, Joanna Briggs Evidence synthesis, Cochrane Library, Scopus, and Google Scholar. We included full-text original articles (randomized controlled trials (RCTs), systematic reviews (SLRs), or meta-analyses) published in the *English* language between 2010-2021. We included only studies that included interventions to treat patients without any focus on the patient’s habituation or natural adaptation. We excluded reviews, case studies, observational studies, and anecdotal evidence.

- **Patient and Public Involvement** - Being a secondary data-based analysis, our study did not directly involve any patient.

- **Results** - Of 20 included records, 11 SLRs and nine RCTs were found. Non-pharmacological interventions included transcranial magnetic- (TMS) (four studies) and direct current stimulation (tDCS) (three studies), vagus nerve stimulation (VNS) (one study), and hearing aid or combined amplification and sound generator (two studies); however, despite causing moderate improvement in tinnitus severity, neither of these interventions reached statistical significance. Pharmacological interventions included AM-101(two studies), anticonvulsants (one study), and antidepressants (one study) with insufficient strength to establish the efficacy of either. Also, a specific extract of the *Ginkgo Biloba* (EGb 761®) plant demonstrated a reduction in tinnitus severity (1 study). No studies included actionable insights on the quality of life (QoL) outcomes.

- **Conclusions** - Despite the lack of actionable evidence for tDCS and rTMS like therapies, their curative potential cannot be overlooked. Hence, it is recommended to conduct large-scale trials on similar interventions. Also, aspects like patient-reported outcomes (PROs) in tinnitus.
Keywords: Tinnitus, management, scoping review, hearing aids, transcranial direct current stimulation, Severity of illness index

Protocol registration

The protocol was registered in the open science framework registry (OSF) (registration DOI: 10.17605/OSF.IO/R8D39)
Introduction

The clinical care pathway is a major deterministic factor for better patient outcomes. Conventionally, it is decided based on clinical acumen. However, with the increasing clinical inclination towards evidence-based medicine, the best available evidence and patient values and preferences have been also strongly recommended to consider while determining treatment course. Nevertheless, there are a few clinical conditions with a blurry picture in terms of standard clinical care, including Tinnitus. Tinnitus is a clinical condition in which patients hear a ringing sound in their ears, impacting their quality of life. It may be referred to as “phantom auditory perception”[1] with a variety of sounds including – hissing, buzzing, clicking, chirping, ringing, whistling, or cricket-like sound, which can be intermittent or continuous.

Tinnitus is not a disease but a symptom of various underlying otological (noise-induced hearing loss, otosclerosis, Meniere’s disease), neurological (multiple sclerosis, head injury), and cardiovascular disorders (atherosclerosis).[2] affecting an estimated 10-15% of the adult population globally.[3] Epidemiologic data shows tinnitus prevalence as 15% in the USA,[4] 14.2% in Europe,[5] 13.2% in the UK,[6] and 14.5% in China.[7]

Tinnitus, regardless of its clinical type, can be distressing and may deteriorate the patient’s quality of life.[8] It may interfere with routine activities. Individuals suffering from tinnitus might experience anxiety, depression, irritability, sleep cycle disturbances, poor concentration, pain, and even suicidal thoughts in extreme cases.[9] Even though the exact cause and mechanism for tinnitus are not known, it may be associated with age-related hearing loss, middle ear infection, trauma, a loud work environment with noises, or ototoxic drugs like NSAIDs (non-steroidal anti-inflammatory drugs), antibiotics, chemotherapeutic agents.[10–12] The lack of a proper mechanism makes it difficult to manage or treat the condition.
Despite several systematic literature reviews (SLRs) published on the efficacy of various clinical interventions to cure tinnitus, there is no food and drugs administration (FDA) approved, gold standard treatment or drug for tinnitus to date.[13] Several treatment pathways are identified through anecdotal evidence including but not limited to cognitive-behavioral therapy (CBT), tinnitus retraining therapy (TRT), biofeedback, psychoeducation or counseling, hearing aids, electrical stimulation, antidepressants, anticonvulsants, dietary supplements.[2,11,14–16] However, their implications in practice can be debated due to a lack of high-level evidence. In addition, combination therapies have shown promising potential not only in terms of relief from tinnitus but also improvement in the holistic health of the patient.[17–19]

Given such inconclusive evidence from the published SLRs on the efficacy/effectiveness of various clinical interventions for tinnitus treatment, it is difficult to build the practice consensus. Instead, a novel research concept has gained immense interest especially from a policy perspective, known as “scoping review (ScR). It is a typical variant of the traditional systematic review, where rigorous specific attention towards any single interventions’ efficacy and safety is replaced by collation of evidence in a comprehensive and informative manner.[20]

Although there are several scoping reviews published on Tinnitus in the past,[21–28] to the best of authors’ knowledge, no research provided a holistic overview of the treatment options likely to be recommended in the actual treatment of tinnitus except only one. Makar S et al. in 2017 [21] described an overview of therapies for tinnitus; however, no information about its protocol registration was found. Also, mapping of reported content in the same ScR with the PRISMA-ScR checklist was not possible due to the later release of the revised checklist in 2020.[21]
The objective of the present scoping review was to check updates in existing knowledge about tinnitus management and provide recommendations for further research and practice. We addressed the following research questions:

1. *Is there any knowledge update from the published evidence on the treatment of tinnitus after the scoping review on tinnitus by Makar S et al. 2017?*

2. *Are there any therapies existing that do not focus on habituation but target the root cause of tinnitus?*

3. *Which pharmacological interventions are used in the treatment of tinnitus?*
Material and Methods

Protocol registration
The initial version of the protocol for this study was registered at the open science framework registry (OSF), registration DOI: 10.17605/OSF.IO/R8D39

Study selection criteria
Study Design and Search Filters
Although being a scoping review, full-text SLRs, meta-analyses, and randomized controlled trials (RCTs) in English were included to maintain the quality of evidence with the highest scientific hierarchy. We excluded review articles, case reports, case series, cross-sectional studies, and observational studies. Focusing on the recency of the data, records published before 2010, or records not published in English if any.

Population
We included studies on patients with tinnitus regardless of its type. No age or gender-related restrictions were applied as per the protocol. Tinnitus was defined as the sound in ears with or without any identifiable clinical cause.[1] It included both subjective and objective types, where the former refers to the tinnitus perceived only by the sufferer and the latter refers to the perception of tinnitus by both the examiner and sufferer through an objective assessment of the condition.

Concept
We included the records containing information about the efficacy and safety profile of pharmacological, non-pharmacological, or miscellaneous interventions for the treatment of tinnitus. Studies including details about secondary outcomes like effect on tinnitus-induced distress, anxiety, sleep disturbance, or depression were also included if any. Studies assessing habituation/natural adaptation-oriented therapy such as TRT, CBT, masking were excluded. Nevertheless, studies including on multidisciplinary approach to treat tinnitus were considered regardless of the presence of therapies with the cognitive outcome(s).
Context
We included studies without applying restrictions on geographic regions.

Search Strategy
A preliminary search was performed on PubMed to identify the relevant search terms used in publications related to tinnitus. Following this step, a detailed search strategy was developed which included the following databases – Cochrane, PubMed, Scopus, and Google Scholar. The PubMed-based search was performed using an AI-powered tool named VOODY (Genpro Research Inc.). The search strategy used for the Cochrane database can be accessed from Appendix-1.

Additionally, a targeted search was performed from additional sources like Google, American Tinnitus Association, British Tinnitus Association, All Indian Institute of Speech and Hearing (AIISH), and Joanna Briggs Institute Evidence Synthesis. Also, an exclusive targeted search for tinnitus-related scoping review was performed using the VOODY.

Two independent reviewers (DP and PS) performed the screening and selection of retrieved records. Any discrepancy regarding inclusion was resolved by mutual agreement or a consenting third reviewer (KK).

Data charting
The data charting instrument/template was prepared and piloted using three articles by PS and VC. Following necessary modifications post-pilot work, DP and VC performed the charting. The extraction items included: author, year of publication, study type, type of tinnitus, population demographic details, concept (intervention used, outcome measures), context (study region). Outcome measures were categorized into primary (tinnitus severity, loudness, annoyance, distress) and secondary (QoL, HRQoL, depression, anxiety) outcomes. SM and JR cross-verified the extracted data with the help of source records. Any disagreement was resolved by mutual discussion or consensus from the third reviewer (VJ). The charted data were synthesized using the tabulation method by DP and verified by KK and JR.
Patient and Public Involvement:

Being a secondary data-based analysis, our study did not directly involve any patient.
Results

Study selection
The literature search based on the final search strategy yielded 4148 records from the aforementioned multiple databases including 754 duplicate records. Following de-duplication, 270 records were sought for full-text retrieval. However, due to 184 conference abstracts, only 86 records were shortlisted to assess eligibility. After excluding records that did not meet eligibility criteria for various reasons, total 20 records were included in the final analysis. A detailed description of the study selection process is shown in Figure 1 (PRISMA-ScR flow diagram).

Study characteristics
The population in the included studies belonged to the age group ≥18 years. A higher proportion of males compared to females was observed from the charted data.[29–32] Studies on both types of tinnitus patients (acute and chronic) were included. The patients with Chronic tinnitus were further categorized as subjective, non-pulsatile, unilateral, bilateral, and idiopathic types.

Tinnitus Severity Measurement Tools
The majority of the studies used Tinnitus Handicap Inventory (THI)[30,32–39] and Tinnitus Handicap Questionnaire (THQ).[32,38,40,41] Other tools used for assessment of tinnitus outcome included Tinnitus Functional Index (TFI)[29,34] Visual-Analog Scale (VAS),[34,36,42] Beck Depression Inventory (BDI)[32,38,39] Tinnitus Reaction Questionnaire (TRQ)[32,38] Clinical Global Impression (CGI)[36] Tinnitus Severity Index (TSI).[39,43] One study each used Pittsburgh Sleep Quality Index (PSQI)[39] to assess sleep disturbance and Hamilton Depression Rating Scale (HDRS)[38] to assess depression.

Interventions
The interventions included three major categories: non-pharmacological (ten studies),[29,30,32–34,36,37,42–44] pharmacological (five studies),[31,40,41,45,46] and miscellaneous (five studies).[35,38,39,47,48] Non-pharmacological interventions, specifically
stimulation techniques (rTMS, tDCS, VNS) described reduced tinnitus loudness and severity in 14\%-64\% patients, depending on the region applied and polarity (anode/cathode).[30,32,36,42,43] Furthermore, 78\% patients had reduced tinnitus annoyance while using hearing aids, as obtained by one study.[37] Pharmacological and miscellaneous interventions such as zinc, melatonin, anti-depressant, anti-convulsant, AM-101 (NMDA receptor antagonist), and *Ginkgo biloba* extract, were able to achieve surrogate effects e.g., reduction in tinnitus-specific depression, improved sleep disturbance; however, inconclusive.[31,35,39–41,46,47] The charted data with study-specific details is depicted in Appendix-2.
Discussion

The complex nature of tinnitus has deterred researchers and clinicians from studying the root cause or mechanisms, rendering the patients’ suffering intact. Moreover, a limited number of research studies with the majority of them showing zero to non-significant clinical benefit causes an evidence gap with a lesser likelihood of access to novel therapies for tinnitus patients.

To overcome these challenges, we adopted an emerging method known as “Scoping Review” to create an evidence map about tinnitus therapies known so far. This scoping review intended to check if any updated information that published after a similar study by Makar S et al. 2017.[21] The purpose behind such an objective was to connect the missing dots in the trajectories of tinnitus care with a holistic approach. Also, a broad spectrum of information covering both HICs and LMICs introduced comprehensiveness in the data charting process.

Secondly, recency of the information was ensured through limiting studies between the timeframe 2010-2021 (from last 10 years). This also helped to understand current vistas in the therapeutic management of tinnitus as well as the progress directions for tinnitus research.

Our review included only SLRs, meta-analyses, and RCTs – the topmost parts of the evidence pyramid. The interventions for tinnitus from our findings could be broadly put in three major categories: i) Non-pharmacological, ii) Pharmacological, and iii) Miscellaneous. Majority of evidence corresponded to non-pharmacological interventions for tinnitus, indicating continued research interest for innovative therapeutic modalities for tinnitus.[49] However, it is even more important to consider the inherent risk associated with such seemingly promising invasive therapies like tDCS.[50] The studies from our review reported transient treatment effects from the use of various stimulation techniques, which was corroborated by the similar short-term reduction in tinnitus loudness after application of tDCS as reported in scoping reviews by Elyssa et al.[25] and Shekhawat et al.[28] Another deterministic factor for technologies like rTMS that determines the efficacy of the respective stimulation technique includes the
consideration of technical parameters. A systematic review by Schoisswohl S et al.[51] evaluated the same and recommended exhaustive reporting of rTMS technical parameters for better outcomes.

On the other side, pharmacological interventions focused on secondary outcomes like effects on depression, anxiety, and sleep disturbance. None of the reviewed studies included any pharmacological intervention directly targeting the root cause of tinnitus, partially attributable to a lack of sound knowledge about potential mechanisms.

Miscellaneous therapies studied in our review also included herbal preparation - Ginkgo biloba. Interestingly, no safety-related information was researched for the study on Ginkgo Biloba despite proven efficacy outcomes. Also, only a specific extract (EGb 761®) was successful in demonstrating its efficacy in tinnitus over the other Ginkgo Biloba preparations due to poor methodology.[47] This may serve as a strong impetus to strengthen the methodological framework for miscellaneous therapies in tinnitus research. Another emerging trend that could be seen amongst clinicians includes multidisciplinary tinnitus management. However, no evidence has been found to date that could advocate such a practice.

A scoping review by Makar et al.[21] described the interventions with intended cognitive effect on tinnitus, including counseling, tinnitus masking, TRT, CBT, relaxation, and attention diversion in tinnitus patients. Complementing the same, our study described the role of non-pharmacological as well as adjuvant pharmacological treatment modalities which may play little to moderate role in tinnitus management. Additionally, unlike previous scoping review(s) which either focused on interventions with surrogate effect or specific to individual interventions,[22–28] our study demonstrated uniqueness by providing comprehensive yet simple information. In other words, our scoping review data charting included every detail about study interventions, severity scales, outcomes, and recommendations from respective...
studies. Thus, it helped better understand the methodological quality of the included records. Albeit it is to be noted that scoping review does not emphasize on critical appraisal of collected evidence.

Despite a well-devised search strategy, our study remained to demonstrate any actionable insights based on collected evidence. This could be partially attributable to limited access to subscription journals. Besides, although our study aimed to include both HIC and LIC, the majority of our data belonged to HICs [29,30,32,42,43,45,46], indicating an evidence gap in developing countries to be bridged using even robust search strategy with broadened access. We also acknowledge several significant changes to the registered protocol version on the OSF platform, which were deemed mandatory to be implemented during project execution (Appendix-3).

To conclude, strong recommendation for the effectiveness of any therapy in tinnitus is still far from reality. Invasive stimulation techniques have demonstrated moderate efficacy when applied to a specific region of tinnitus patients. Existing pharmacological interventions focus only on cognitive outcomes and no drug has been discovered to target the root cause of tinnitus to date. Multidisciplinary, combinational therapy or polypharmacy approach has gained recent clinical attention despite the low quality of evidence in the light of patient values and preferences. Therefore, the authors recommend considering patient-reported outcomes in tinnitus as the potential research area given the lack of QoL measures in current evidence.
References:

33 Sereda M, Xia J, el Refaie A, *et al.* Sound therapy (using amplification devices and/or sound generators) for tinnitus. *Cochrane Database of Systematic Reviews* Published Online First: 27 December 2018. doi:10.1002/14651858.CD013094.pub2

Data availability: Data sharing is not applicable. All data are from publicly available resources. The same could be accessed through the links/information given in the bibliography.

Patient consent for publication: Not required

Contributors: VC and KK conceptualized the topic and prepared a detailed methodology to perform the review. DP and PS collected the data. DP and VC drafted the manuscript and performed data synthesis and analysis. VJ and PS performed the data validation. KK supervised
the whole project. JR, SM, PS, and KK gave editorial support and reviewed the manuscript. All the authors read and approved the final manuscript.

Conflicts of Interest: The authors for this paper have no conflicts of interest to declare.

Funding: This study received no funding from any agency in public, commercial or not-for-profit sectors.
Appendix-1: Final search strategy

Eligibility Criteria

Inclusion Criteria:

- Systematic reviews, meta-analysis, and clinical trials in last 10 years
- Studies containing information about Tinnitus and its management therapy(ies)

Exclusion Criteria:

The review will exclude the following:

- Review article, observational studies, qualitative notes, case studies, case reports
- Studies not focusing on tinnitus and its management therapy(ies)
- Studies older than 2010 (1 Feb 2021)
- Studies for which full-text not available
- Studies not published in English

Example Search strategy (Cochrane):

#1 MeSH descriptor: [Tinnitus] this term only and with qualifier(s): [diagnosis - DI, drug therapy - DT, epidemiology - EP, physiopathology - PP, radiotherapy - RT, surgery - SU, therapy - TH]

#2 multidisciplinary AND tinnitus AND outcome

#3 stimulation AND tinnitus AND invasive

Search date: 1 Feb 2021

Time frame: last 10 years (2010-2021)
Appendix-2: Charted data from included studies

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Primary Author</th>
<th>Publication year</th>
<th>Evidence type</th>
<th>Population</th>
<th>Type of tinnitus</th>
<th>Study period</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Study region</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Garin et al.</td>
<td>2011</td>
<td>RCT (sham controlled, double-blinded)</td>
<td>n = 20 Age = 18-80 y</td>
<td>chronic tinnitus</td>
<td>42 days</td>
<td>Stimulation: Transcranial direct current stimulation (tDCS); anodal, cathodal, sham</td>
<td>No information found</td>
<td>Effect on tinnitus intensity: VAS score improvement in 35% patients (anodal tDCS). Non-significant changes through cathodal tDCS</td>
<td>Europe</td>
</tr>
<tr>
<td>2</td>
<td>Forogh et al.</td>
<td>2015</td>
<td>RCT (sham controlled, double-blinded)</td>
<td>n = 22 Age = ≥18 y</td>
<td>chronic tinnitus</td>
<td>14 days</td>
<td>Stimulation: tDCS; anodal, cathodal, sham</td>
<td>No information found</td>
<td>Effect on tinnitus loudness and distress: Reduction in 3 patients (anodal tDCS) and 2 patients (sham) at 14 days follow-up. VAS reduction: not significant for both the groups Safety outcomes: worsening of symptoms in 36.4% of patients in the experimental group</td>
<td>Middle East</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Primary Author</td>
<td>Publication year</td>
<td>Evidence type</td>
<td>Population</td>
<td>Type of tinnitus</td>
<td>Study period</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Study region</td>
<td>Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>3</td>
<td>Yuan et al.</td>
<td>2018</td>
<td>Systematic Review</td>
<td>No information found</td>
<td>No information found</td>
<td>No information found</td>
<td>Stimulation: tDCS current intensity: 1-2 mA, session: single or repeated for 15-20 min</td>
<td>Effect on Tinnitus Percept via Neuromodulation: moderate to a significant reduction</td>
<td>Global</td>
<td>Given the heterogeneity of studies, tDCS can be recommended as an adjunct/complementary therapy for non-tractable tinnitus</td>
</tr>
<tr>
<td>4</td>
<td>Menne meier et al.</td>
<td>2011</td>
<td>RCT (sham-controlled, crossover)</td>
<td>n = 21. Age: 28-75 y</td>
<td>chronic bilateral tinnitus</td>
<td>7 days</td>
<td>Stimulation: Repetitive transcranial magnetic stimulation (rTMS); active, sham Frequency: 1Hz Duration: 30 minutes session for 5 days</td>
<td>Effect on tinnitus loudness: 43% of patients (active rTMS) reduced tinnitus loudness as reflected in Visual Analogue Ratings of Tinnitus Loudness (VARL), however, this could not correlate with PET scan findings, No information found</td>
<td>USA</td>
<td>Use of PET scan is questionable to target rTMS</td>
</tr>
<tr>
<td>Sr. No</td>
<td>Primar y Author</td>
<td>Publication year</td>
<td>Evidence type</td>
<td>Population</td>
<td>Type of tinnitus</td>
<td>Study period</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Study region</td>
<td>Remarks</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>5</td>
<td>Folmer et al.</td>
<td>2015</td>
<td>RCT (sham controlled)</td>
<td>n = 64 M:80% F:20%</td>
<td>chronic tinnitus</td>
<td>182 days</td>
<td>Stimulation: rTMS (active or placebo rTMS) Session: 2000 pulses per session for 10 days Frequency: 1 Hz Follow-up: 1,2,4,13,and 26 weeks after last session</td>
<td>No information found</td>
<td>Europe</td>
<td>Although sustained improvements were observed, larger studies are required for effectively practising rTMS</td>
</tr>
<tr>
<td>6</td>
<td>Formanek</td>
<td>2018</td>
<td>RCT (sham controlled, double-blinded)</td>
<td>n = 53, M:62% F:38%</td>
<td>chronic subjective unilateral or bilateral nonpulsatile primary tinnitus</td>
<td>No information found</td>
<td>Stimulation: rTMS (group 1); Sham stimulation (Group 2); Frequency: DPFLC: 25Hz,300 pulses, 80% resting motor threshold (RMT) on left side Primary AC: 1 Hz, 1000 pulses; 110% RMT on both sides Duration: 5 consecutive days Follow-up: After 1 month and 6 months from the previous session</td>
<td>medicament therapy: Ginkgo Biloba extract (group 3)</td>
<td>Europe</td>
<td>No significant effect of bilateral low-frequency rTMS of the primary auditory cortex and high-frequency stimulation of the left dorsolateral prefrontal cortex was demonstrated</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Primary Author</td>
<td>Publication year</td>
<td>Evidence type</td>
<td>Population</td>
<td>Type of tinnitus</td>
<td>Study period</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Study region</td>
<td>Remarks</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
<td>--------------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 7 | Londero et al. | 2018 | Systematic Review | No information found | Subjective tinnitus | No information found | Stimulation: rTMS; with or without Sham stimulation group
Range of frequency: 1-20 Hz
Range of number of stimuli: 200-4000 per session | No information found | Effect on Tinnitus Severity (not exclusively mentioned though)
Subjective measures: Tinnitus Handicap Inventory, Tinnitus Functional Index, and anxiety, depression, or quality of life questionnaires) or visual analog scales (VAS);
Objective measures: intracortical activation/inhibition, PET-scan | No information found | Global | Low frequency(1Hz) r-TMS may demonstrate clinical efficacy for the short term when applied on tempo-parietal regions; high degree of heterogeneity |
| 8 | Tyler et al. | 2017 | RCT (double-blinded) | n = 30 M:83% F:17% | Chronic sensorineural tinnitus | 84 days | Stimulation: Vagus nerve stimulation (VNS)
Paired VNS vs. Unpaired VNS during 2.5 hours | No information found | Effect on tinnitus severity: >20% improvement in 50% participants (VNS paired) after 42 days (p=0.0012) compared to that in 28% participants from the control group using THI.
improvement in 56% participants after 12 weeks in paired VNS vs. 28% in control.
Safety Outcome: Mild AE well | No information found | USA | 90% of participants kept the device and the rest had the device explanted |
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Primary Author</th>
<th>Publication year</th>
<th>Evidence type</th>
<th>Population</th>
<th>Type of tinnitus</th>
<th>Study period</th>
<th>Intervention</th>
<th>Concept</th>
<th>Outcomes</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Sereda et al.</td>
<td>2018</td>
<td>Systematic Review</td>
<td>n = 590, >=18 years</td>
<td>acute or chronic subjective idiopathic tinnitus</td>
<td>No information found</td>
<td>Devices: Hearing Aid (HA) only vs. Sound Generator only; Combinational hearing aid (CHA) vs. HA only</td>
<td>No information found</td>
<td>Effect on Tinnitus Symptom Severity
HA vs. SG - Clinically significant reduction with no statistical difference in THI for both groups at 3,6, and 12 months
CHA vs HA - no difference in THI/Tinnitus Functional Index between both groups (standardized mean difference -0.15, 95% confidence interval -0.52 to 0.22;)
Safety outcomes: No safety outcomes were assessed in any of included studies</td>
<td>Not assessed
(Depression, Anxiety, Health-related QoL, tinnitus intrusiveness, ability to ignore, concentration, quality of sleep, and sense of control)</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Primary Author</td>
<td>Publication year</td>
<td>Evidence type</td>
<td>Population</td>
<td>Type of tinnitus</td>
<td>Study period</td>
<td>Intervention</td>
<td>Concept</td>
<td>Outcomes</td>
<td>Remarks</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>10</td>
<td>Dos Santos et al.</td>
<td>2014</td>
<td>RCT (blinded)</td>
<td>n = 49</td>
<td>No information found</td>
<td>No information found</td>
<td>Devices used: HA, CHA</td>
<td>Pharmacological</td>
<td>No information found</td>
<td>Effect on tinnitus annoyance: Reduction in 62.5% patients (HA+SG) and 78% patients (HA group) however not significant p=0.24.</td>
</tr>
<tr>
<td>11</td>
<td>Fornaro and Martino</td>
<td>2010</td>
<td>Systematic Review</td>
<td>No information found</td>
<td>Subjective tinnitus</td>
<td>No information found</td>
</tr>
<tr>
<td>12</td>
<td>Hockstra et al.</td>
<td>2011</td>
<td>Systematic Review</td>
<td>n = 453</td>
<td>Chronic tinnitus</td>
<td>No information found</td>
<td>Drug: Anti-convulsant (gabapentin, carbamazepine, flunarizine and lamotrigine)</td>
<td>Pharmacological</td>
<td>No specific information is available except general claims without reference.</td>
<td>Global</td>
</tr>
</tbody>
</table>

Remarks:
- Superiority over using CHA and HA was not found
- Poor quality of evidence
- Presence of high risk of bias in given evidence; small effect (of doubtful clinical significance) has been demonstrated in case of anticonvulsants for tinnitus
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Primary Author</th>
<th>Publication year</th>
<th>Evidence type</th>
<th>Population</th>
<th>Type of tinnitus</th>
<th>Study period</th>
<th>Intervention</th>
<th>Outcomes</th>
<th>Study region</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Baldo et al.</td>
<td>2012</td>
<td>Systematic Review</td>
<td>n = 610</td>
<td>No information found</td>
<td>No information found</td>
<td>Drug: Anti-depressants (amitriptyline, nortriptyline and trimipramine)</td>
<td>Effect on tinnitus severity and disability: No significant changes in THQ score due to antidepressants</td>
<td>Quality of life (QoL): Improved QoL reported for trazodone (atypical anti-depressant), however not statistically significant</td>
<td>Global</td>
</tr>
</tbody>
</table>

Effect on depressive symptoms: Nortriptyline showed to reduce depression in Hamilton. Other studies showed non-significant.
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Primary Author</th>
<th>Publication year</th>
<th>Evidence type</th>
<th>Population</th>
<th>Type of tinnitus</th>
<th>Study period</th>
<th>Intervention</th>
<th>Non-pharmacological</th>
<th>Pharmacological</th>
<th>Miscellaneous</th>
<th>Primary outcome</th>
<th>Secondary outcome</th>
<th>Study region</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>P. vAN De Heyning et al.</td>
<td>2014</td>
<td>RCT (placebo-controlled, double-blinded)</td>
<td>n = 248 Age 18-65 y</td>
<td>acute inner-ear tinnitus</td>
<td>90 days</td>
<td>No information found</td>
<td>Drug: AM-101</td>
<td>Dose: low dose-0.27 mg/ml, high dose-0.81 mg/ml; or placebo</td>
<td>Duration: 3-consecutive days</td>
<td>Assessment: Day 0,1,2,7,30, and 90</td>
<td>Effect on minimum masking level (MML): No significant change</td>
<td>Effect on tinnitus loudness, annoyance, and sleep difficulties: significant improvement in the high-dose group (p<0.001)</td>
<td>Safety outcomes: non-fatal serious adverse events in the high-dose group were that led to discontinuation of study drug administration.</td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Primar y Author</td>
<td>Publication year</td>
<td>Evidence type</td>
<td>Population</td>
<td>Type of tinnitus</td>
<td>Study period</td>
<td>Intervention</td>
<td>CONCEPT</td>
<td>Outcomes</td>
<td>CONTEXT</td>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Staekker et al.</td>
<td>2017</td>
<td>RCT (double-blinded, multisite)</td>
<td>n = 343 M:77% F:23% Age = ≥18 y</td>
<td>acute tinnitus</td>
<td>84 days</td>
<td>No information found</td>
<td>Drug: AM-101 (3 intratympanic doses with 0.87 mg/mL per dose)</td>
<td>Effect on hearing threshold: transient increase in < 7% patients</td>
<td>Safety outcome: mild AE in 4-6% patients</td>
<td>North America, Europe, Asia</td>
<td>The repeated dose can be used for 3 to 5 days for acute tinnitus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Hoare et al.</td>
<td>2011</td>
<td>Systematic Review</td>
<td>No information found</td>
<td>No information found</td>
<td>No information found</td>
<td>Intervention (matching our ScR scope): Hearing Aids and Sound Enrichment Therapy</td>
<td>Antidepressants, Anxiolytics, Melatonin(Neurohormone Sedative)</td>
<td>No specific information is available due to the old study.</td>
<td>No information found</td>
<td>Global</td>
<td>No recommendations on the therapeutic potential of any therapy could be made</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Zenner et al.</td>
<td>2017</td>
<td>Systematic Review</td>
<td>No information found</td>
<td>chronic idiopathic tinnitus</td>
<td>No information found</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Multidisciplinary</td>
<td>No specific information found</td>
<td>Global</td>
<td>Lack of strong, actionable evidence from this review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr. No.</td>
<td>Primary Author</td>
<td>Publication year</td>
<td>Evidence type</td>
<td>Population</td>
<td>Type of tinnitus</td>
<td>Study period</td>
<td>Intervention</td>
<td>Concept</td>
<td>Outcomes</td>
<td>Context</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>------------------</td>
<td>---------------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Boetticher</td>
<td>2011</td>
<td>Systematic Review</td>
<td>n = 1199</td>
<td>No information found</td>
<td>No information found</td>
<td>Non-pharmacological</td>
<td>Pharmacological</td>
<td>Miscellaneous</td>
<td>Drug: Ginkgo Biloba extract (EGb 761®)</td>
<td>Effect on tinnitus severity: Not all but trials investigating EGb 761 showed significant improvement, found superior to placebo</td>
<td>No information found</td>
<td>Global</td>
<td>Efficacy of other Ginkgo Biloba preparations cannot be proven (might be attributable to methodological bias).</td>
</tr>
<tr>
<td>19</td>
<td>Miroddi et al.</td>
<td>2015</td>
<td>Systematic Review</td>
<td>n = 356</td>
<td>Subjective tinnitus</td>
<td>No information found</td>
<td>Non-pharmacological</td>
<td>Pharmacological</td>
<td>Miscellaneous</td>
<td>Melatonin combined with sulpiride, combined with sulodexide</td>
<td>Effect on tinnitus severity: No pooled estimate available on THI and Pittsburgh Sleep Quality Index (PSQI)</td>
<td>No information found</td>
<td>Global</td>
<td>Despite clinical efficacy is demonstrated, the generalizability of findings and practice recommendations are questionable due to biased evidence.</td>
</tr>
</tbody>
</table>
Figure 1 PRISMA flow diagram for scoping reviews

Records identified from Multiple Databases (n = 4148)

Records removed before screening (n = 754 duplicate records)

Records screened (n = 3394)

Records excluded based on title/abstract or relevance (n = 3124)

Records sought for full-text retrieval (n = 270)

Records excluded (conference abstracts) (n = 184)

Records assessed for eligibility (n = 86)

Full-text articles excluded for various reasons (n = 66)

Observational Study (18)
Not related to Tinnitus Management (11)
Supportive therapy (22)
Review (13)
Non-English (1)
Pre-clinical (1)

Studies Included in final review (n = 20)