1	Persistently high proportions of Plasmodium-infected Anopheles
2	funestus mosquitoes in two villages in the Kilombero valley, south-
3	eastern Tanzania
4	
5	Salum A. Mapua ^{1,3*} , Emmanuel E. Hape ^{1,4} , Japhet Kihonda ¹ , Hamis Bwanary ¹ ,
6	Khamis Kifungo ¹ , Masoud Kilalangongono ¹ , Emmanuel W. Kaindoa ^{1,5} , Halfan S.
7	Ngowo ^{1,4} and Fredros O. Okumu ^{1,2,4,5} .
8	
9	1. Environmental Health and Ecological Sciences Department, Ifakara Health
10	Institute, P. O. Box 53, Morogoro, Tanzania.
11	2. School of Public Health, Faculty of Health Sciences, University of the
12	Witwatersrand, Johannesburg, South Africa.
13	3. Centre for Applied Entomology and Parasitology, School of Life Sciences,
14	Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK.
15	4. Institute of Biodiversity, Animal Health and Comparative Medicine, University
16	of Glasgow, Glasgow G12 8QQ, UK.
17	5. School of life science and bioengineering, The Nelson Mandela African
18	Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania.
19	
20	* Corresponding author at: Department of Environmental Health and Ecological
21	Sciences, Ifakara Health Institute.
22	Email address: smapua@ihi.or.tz
23	
24	
25	

It is made available under a CC-BY-NC-ND 4.0 International license .

26 Abstract

27	Background: In south-eastern Tanzania where insecticide-treated nets have been
28	widely used for more than 20 years, malaria transmission has greatly reduced but
29	remains highly heterogenous over small distances. This study investigated the
30	seasonal prevalence of Plasmodium sporozoite infections in the two main malaria
31	vector species, Anopheles funestus and Anopheles arabiensis for 34 months,
32	starting January 2018 to November 2020.
33	
34	Methods: Adult mosquitoes were collected using CDC-light traps and Prokopack
35	aspirators inside local houses in Igumbiro and Sululu villages, where earlier surveys
36	had found very high densities of An. funestus. Collected females were sorted by
37	taxa, and the samples examined using ELISA assays for detecting Plasmodium
38	circumsporozoite protein in their salivary glands.
39	
40	Results: Of 7,859 <i>An. funestus</i> tested, 4.6% (n = 365) were positive for <i>Pf</i>
41	sporozoites in the salivary glands. On the contrary, only 0.4% (n = 9) of the 2,382
42	An. arabiensis tested were positive. The sporozoite prevalence did not vary
43	significantly between the villages or seasons. Similarly, the proportions of parous
44	females of either species were not significantly different between the two villages (p
45	> 0.05) but was slightly higher in An. funestus (0.50) than in An. arabiensis (0.42).
46	Analysis of the 2020 data determined that An. funestus contributed 97.7% of all
47	malaria transmitted in households in these two villages.
48	

49 **Conclusions:** In contexts where individual vector species mediate most of the
50 pathogen transmission, it may be most appropriate to pursue a species-specific

medRxiv preprint doi: https://doi.org/10.1101/2021.06.24.21259445; this version posted September 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

51	approach to better understand the ecology of the dominant vectors and target them
52	with effective interventions to suppress transmission. Despite the widespread use
53	and overall impact of insecticide-treated nets over the past two decades in the two
54	study villages, there is still persistently high Plasmodium infection prevalence in local
55	populations of An. funestus, which now carry ~97% of all malaria infections and
56	mediates intense year-round transmission. Further reduction in malaria burden in
57	these or other similar settings requires effective targeting of An. funestus.
58	
59	Keywords: Anopheles funestus, Kilombero valley, malaria transmission,
60	Plasmodium, sporozoite prevalence, Ifakara Health Institute, Tanzania
61	
62	1. Introduction
63	Starting two decades ago when more than a million lives were being lost to malaria
64	yearly [1], there have been significant gains, including ~60% reduction in deaths,
65	despite doubling of Africa's population [2]. Insecticide-treated nets (ITNs), indoor
66	residual spraying (IRS) and effective case management have contributed greatly to
67	these gains [3,4]. The persisting malaria transmission in most endemic settings is
68	now thought to be largely due to widespread insecticide resistance among major
69	malaria vectors [5-8], behavioral adaptation of malaria vectors to indoor
70	interventions [9–11], parasite resistance to anti-malarial drugs [12,13], certain human
71	behaviors and activities [14–16] and asymptomatic infections in older age groups
72	such as school-aged children [17]. Other factors such as inadequate environmental
73	sanitation, poor housing conditions and low household incomes may also be
74	perpetuating risk in many endemic villages [18,19], despite more than two decades
75	of widespread ITN use.

76	In rural south-eastern Tanzanian villages, where ITNs have been widely used for
77	more than 20 years, malaria transmission intensities have greatly reduced, in some
78	cases from highs of >300 infectious bites per person per year (ib/p/y) in early 2000s
79	to new averages below 30 ib/p/y [20]. These gains have been mostly attributed to
80	widespread use of ITNs and effective case management [20,21]. Today, malaria
81	transmission remains highly varied over small distances [20,22], and recent parasite
82	surveys have demonstrated ranges of <1% prevalence in urban centers of Ifakara
83	town (<150m above sea level) to highs of >40% in some higher altitude villages
84	(~300m above sea level) just 30km away (Swai <i>et al.</i> , unpublished).
85	
86	Recent studies in Ulanga and Kilombero districts, have demonstrated that Anopheles
87	funestus alone now contributes nearly nine in every ten new infections, even in
88	villages where it is outnumbered by Anopheles arabiensis [6,23]. The species is also
89	strongly resistant to pyrethroids used in the ITNs [24], survives much longer than its
90	counterparts [6,25] and is strongly adapted to primarily bite humans over other
91	vertebrates [26]. Historically, Anopheles gambiae sensu stricto dominated
92	transmission in Ulanga and Kilombero districts, with the An. funestus being another
93	important vector during the dry season [27]. However, An. gambiae s.s population
94	and contribution to the malaria transmission in these districts started to decline
95	following introduction of the ITNs [22,23], and reached undetectable level by 2012
96	[23]. Recent studies have confirmed absence of the An. gambiae s.s in these
97	districts, leaving the sibling species An. arabiensis at large [6,18,28,29]. While no
98	detailed analysis has been conducted, it is hypothesized that villages currently
99	having the greatest malaria prevalence are those with highest densities of An.
100	funestus. Moreover, given its preference for permanent and semi-permanent aquatic

It is made available under a CC-BY-NC-ND 4.0 International license .

- 101 habitats which last far longer than the rainy season [30], this species is thought to be
- 102 important for year-long transmission of malaria.
- 103
- 104 This current analysis was conducted in two villages, previously identified as having
- 105 high densities of *An. funestus* [31], and coincidentally having very high malaria
- 106 prevalence estimates (Swai et al., unpublished). The aim was to analyze and
- 107 compare seasonal prevalence of *Plasmodium* sporozoite infections in the main
- 108 malaria vectors, An. funestus and An. arabiensis following nearly two decades of
- 109 widespread ITN use.
- 110
- 111 **2. Methods**
- 112 **2.1. Study area**

113 The study was done in Ulanga and Kilombero districts, in the Kilombero valley in 114 south-eastern Tanzania (Figure 1). Mosquitoes were collected from two villages 115 namely Sululu in Kilombero district (8.00324°S, 36.83118°E) and Igumbiro in Ulanga 116 district (8.35021°S, 36.67299°E). Average annual rainfall was 1200 – 1600 mm and 117 mean annual temperatures were 20 – 32°C [28]. Most residents here are subsistence 118 farmers, cultivating mainly rice but also other crops such as maize, beans and sweet 119 potatoes [32]. According to 2012 national population census, Igumbiro and Sululu 120 villages are within wards with the population of 16,329 and 9,048 respectively [33]. 121 Sululu village sits on higher altitude above sea level compared to Igumbiro village 122 (Figure 1).

123

It is made available under a CC-BY-NC-ND 4.0 International license .

- 124 **Figure 1:** Map showing villages in the Kilombero valley, south-eastern
- 125 Tanzania where adult Anopheles funestus and Anopheles arabiensis
- 126 mosquitoes were collected.
- 127

128 **2.2. Mosquito collection and processing**

129 Mosquitoes were routinely collected from January 2018 to December 2020. In each 130 village, sampling was done in 10-20 houses for five nights each week from January 131 2018 to January 2020, as part of the ongoing project that focused mainly on An. 132 funestus mosquitoes. However, from March 2020 only three households were 133 sampled nightly for four nights each week to December 2020, as part of another 134 project focused on both An. funestus and An. arabiensis mosquitoes. Herein, data 135 from both aforementioned projects were combined and analysed. All collections were 136 done indoors, CDC light traps [34] and Prokopack aspirators [35] were used to

137 sample host-seeking and resting mosquitoes respectively. Female mosquitoes were

138 identified and sorted by taxa and physiological state [36], after which An. arabiensis

139 and An. funestus were packed in batches of ten mosquitoes in 1.5 ml

140 microcentrifuge tubes for circumsporozoite enzyme-linked immunosorbent assays

141 (ELISA) [37], of which only a pool of heads and thoraces were used. The ELISA

142 lysates were boiled for 10 minutes at 100 °C to eliminate heat-labile non Plasmodium

143 protozoan antigens that will render false positivity [38]. A sub-sample of the

144 mosquitoes collected from March 2020 to December 2020 were subjected to

dissection to assess parity status as described by Kaindoa *et al* [6]. Recent studies

146 in the area had determined that indoor collections of *An. gambiae* s.l. consisted only

147 of An. arabiensis (100%), and those of An. funestus group were mainly An. funestus

148 s.s [6,28].

It is made available under a CC-BY-NC-ND 4.0 International license .

149 **2.3. Statistical analysis**

150	R statistical software version 3.6.0 [39] was used to execute a simple generalized
151	linear model (GLM) with binomial distributions to examine odds of sporozoite-
152	infected Anopheles and also parous mosquitoes. Generalized linear mixed models
153	(GLMM) were used to model the abundance of different mosquito species. Here the
154	number of mosquitoes caught were modelled as a response variable using a
155	negative binomial variate to account for the over-dispersion in the number of
156	catches. Sampling location and season were included as the fixed terms. To account
157	for the unexplained variation between sampling days, sampling dates nested within
158	a month of the collection was included as random term. Relative risk and their
159	corresponding 95% CI were reported. Entomological inoculation rate (EIR) was
160	estimated as a function of a biting rate and a proportion of mosquitoes tested
161	positive with Plasmodium sporozoite. The annual EIR is estimated by multiplying a
162	daily EIR with 365 (Annual EIR = daily biting rate 2 sporozoite rate 2 365). The
163	adjusted annual EIR was estimated by the same function except that, the corrected
164	biting rate was used in the place of daily biting rate as described by Kaindoa et al [6].
165	Herein, the dry season comprises of months from January to May, and from June to
166	December for the rainy season.

167

168 **3. Results**

169 A total of 306,589 mosquitoes were collected with 53.8% (n = 165,058) being *An*.

170 *funestus* mosquitoes. A sub-sample of the collected mosquitoes (n = 10,241) were

analyzed for *Plasmodium* sporozoite infections, of which 23.3% (n = 2,382) were *An*.

172 *arabiensis* and 76.7% (n = 7859), *An. funestus*. Of 7,859 *An. funestus* tested, 4.6%

173 (n = 365) were positive for *Plasmodium* sporozoites in the salivary glands. On the

174	contrary, only 0.4% (n = 9) of the 2,382 An. arabiensis tested were positive. Though
175	the sporozoite prevalence in Sululu appeared slightly higher than in Igumbiro village
176	(Table 1), this analysis showed no statistically significant difference in the sporozoite
177	prevalence for An. funestus between villages or seasons ($p > 0.05$). The An.
178	arabiensis mosquitoes however had higher sporozoite prevalence in Sululu than in
179	Igumbiro village (Table 1).
180	
181	The parity dissections determined that 50.3% of the An. funestus ($n/N = 80/159$) and
182	41.8% of the An. arabiensis females ($n/N = 66/158$) were parous (Table 2). There
183	was no statistical difference in parity between villages for either species (Table 2).
184	Proportion of An. funestus positive for Pf sporozoite was high in both seasons (Table
185	1), and both villages recorded high densities of both vector species throughout the
186	year (Table 3). Analysis of the year-to-year data showed that in 2020, 97.7% of all
187	malaria transmission events were mediated by An. funestus, and that An. arabiensis
188	played only a minor role (Table 4).

189 **Table 1:** Results of the multivariate analysis of *Plasmodium falciparum* sporozoites infectivity in *Anopheles funestus* and *Anopheles*

Species	Variable		Total (N)	Sporozoite prevalence n (%)	OR (95% LC-UC)	p-value
	Casaar	Dry	4425	199 (4.5)	1	0.54
Anopheles funestus	Season	Rainy	3434	166 (4.8)	1.07 (0.86-1.32)	
		Igumbiro	3914	175 (4.5)	1	
	Village	Sululu	3945	190 (4.8)	1.07 (0.86-1.32)	0.56

190 arabiensis mosquitoes by village and season

	Season	Dry	2172	8 (0.4)	1	
Anonholog probiongia		Rainy	210	1 (0.5)	0.93 (0.11-7.70)	0.95
Anopheles arabiensis	\/illogo	Igumbiro	1851	4 (0.2)	1	0.02
	Village	Sululu	531	5 (0.9)	4.41 (1.17-16.69)	0.03

*Percentage sporozoite-prevalence = Sporozoite positive (n)/Total number of mosquitoes analysed (N)

192

193 **Table 2:** Results of the multivariate analysis of parity in *Anopheles funestus* and *Anopheles arabiensis* mosquitoes by village

1	9	4

Species	Village	Total (N)	Parous n (%)	OR (95% LC-UC)	p-value
	Igumbiro	79	39 (49.4)	1	0.04
Anopheles funestus	Sululu	80	41 (51.3)	1.08 (0.58-2.01)	0.81
	Igumbiro	78	35 (44.9)	1	0.44
Anopheles arabiensis	Sululu	80	31 (38.8)	0.78 (0.41-1.46)	0.44

*Percentage parous = parous (n)/Total number of mosquitoes examined (N)

195 196

197 **Table 3:** Results of the multivariate analysis of biting densities of *Anopheles funestus* and *Anopheles arabiensis* mosquitoes by

198 village and season

Species	Village/Season)	Total	Mean ± 2SE	RR (95% LC-UC)	p-value	
	. <i></i>	Igumbiro	88149	18 ± 0.5	1	0.004	
	Village	Sululu	51000	6.9 ± 0.3	0.26 (0.25-0.28)	<0.001	
Anopheles arabiensis	Season	Dry	74819	9.5 ± 0.4	1	<0.001	
		Rainy	64330	14.4 ± 0.5	2.54 (1.74-3.72)		
	Village	Igumbiro	55617	11.4 ± 0.3	1	0.400	
		Sululu	101582	13.7 ± 0.5	1.02 (0.97-1.07)	0.492	
Anopheles funestus	Season	Dry	83475	10.6 ± 0.3	1	0.074	
		Rainy	73724	16.5 ± 0.6	1.26 (0.76-2.07)	0.374	

Table 4: Infectious status of Anopheles funestus and Anopheles arabiensis mosquitoes collected from 2018 to 2020

19	9
20	0

	Anopheles funestus		Anopheles arabiensis	
	2018	2019	2020	2020
Total number of mosquitoes collected by CDC light trap	73237	72661	9795	12772
Total number of trap nights	6206	4287	476	476
Biting rate per night	11.8	16.95	20.58	3.08
Relative efficiency (CDC-LT) relative to HLC (derived from Okumu et al [40])	0.68	0.68	0.68	0.3
Corrected biting rate	17.35	24.93	30.26	10.27
Total number of mosquitoes analysed for <i>Plasmodium falciparum</i> circumsporozoite protein (CSP) - (S)	3641	1604	1228	1466
Total number of sporozoite positive mosquitoes (s)	178	64	77	6
Sporozoite prevalence (s/S)	0.05	0.04	0.06	0.0041
Annual EIR (adjusted)	316.63	363.98	662.69	15.37
% EIR contribution for the year 2020 (adjusted)		97.7%	2.3%	

*Annual EIR (adjusted) = Corrected biting rate 2 Sporozoite rate 2 365 *The data presented here excluded samples collected by Prokopack aspirators

202 203 An. arabiensis 0% (315) 0.6% (174) 0.8% (127) 0.5% (397) 0% (280) 0% (281) 0% (276) ÷ . ÷ . . . ÷ ÷ . ÷ . ÷ lgumbiro An. funestus 8.8% (217) 4.5% (313) 5.7% (159) 4.2% (262) 5.2% (250) 6.8% (44) 8.2% (403) 0% (413) 6.7% (150) 1.6% (569) 4.2% (120) 6.7% (15) 33.3% (6) 4.7% (106) 10% (10) 5.9% (153) 0% (15) 0% (16) 13% (23) 3.7% (82) 0% (22) 7.1% (85) 0% (140) 8% (237) 0% (10) 0% (50) 0% (19) 0% (23) 0% (1) 0% (1) ÷ . An. arabiensis 0.9% (106) 1.7% (59) 4.2% (72) 0% (11) 0% (88) 0% (107) 0% (83) . Sululu An. funestus 15.1% (126) 11.1% (144) 5.8% (365) 5.7% (88) 2.3% (129) 3.9% (127) 5.9% (85) 1.6% (131) 2.2% (46) 4.9% (61) 4.8% (42) 6.6% (76) 3.5% (666) 5.4% (184) 7% (172) 22.2% (9) 6% (332) 4% (125) 2.6% (389) 7.7% (26) 8.8% (170) 0% (126) 0% (204) 0% (25) 0% (40) 0% (1) 0% (3) 8% (50) 0% (2) . . Jan-18 %(N) Mar-19 %(N) May-18 %(N) Aug-18 %(N) May-19 %(N) Aug-19 %(N) Jul-20 %(N) Aug-20 %(N) Sep-20 %(N) Dec-18 %(N) Nov-20 %(N) Feb-18 %(N) Mar-18 %(N) Apr-18 %(N) Jun-18 %(N) Jul-18 %(N) Sep-18 %(N) Oct-18 %(N) Nov-18 %(N) Jan-19 %(N) Feb-19 %(N) Apr-19 %(N) Jun-19 %(N) Jul-19 %(N) Sep-19 %(N) Oct-19 %(N) Nov-19 %(N) Dec-19 %(N) Jan-20 %(N) Mar-20 %(N) Jun-20 %(N) Oct-20 %(N) Month

Table 5: Plasmodium sporozoite infectivity by village, mosquito species and month.
 201

medRxiv preprint doi: https://doi.org/10.1101/2021.06.24.21259445; this version posted September 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

It is made available under a CC-BY-NC-ND 4.0 International license .

204 **4. Discussion**

205	Recent evidence has shown that An. funestus now mediates most of the ongoing
206	malaria transmission in many countries in East and Southern Africa [6,41,42]. In rural
207	south-eastern Tanzania, this species carries more than 85% of all malaria infections
208	even in villages where it occurs at lower frequencies than An. arabiensis [6,21,43].
209	malaria transmission has declined significantly in the Kilombero valley since 2000,
210	mostly due to the wide coverage of ITNs and effective case management [20,22].
211	
212	This short report presents an analysis of mosquitoes collected between 2018 and
213	2020 in two villages previously identified as having very high densities of An.
214	funestus. It had been hypothesized that the proven dominance of An. funestus in the
215	valley, coupled with the high densities of this vector species, as well as its strong
216	pyrethroid-resistance status and greater survival in nature may lead to high residual
217	transmission burden in the relevant villages, and that this situation may make
218	malaria transmission control much more difficult than elsewhere. This analysis
219	confirms the high parity rates but further presents two surprising findings. First is the
220	extremely high Plasmodium infection prevalence in the An. funestus mosquitoes
221	over the three years of sampling, averaging 4.6% despite high ITN use in the areas.
222	Given the nightly mosquito catches by CDC light traps, this translates to 447.8
223	infectious bites/person/year, which is considerably higher than most recent estimates
224	[6,21]. The second finding was that the high infection prevalence rates were
225	consistent throughout dry and rainy season for the entire duration of the study. This
226	suggests that An. funestus not only plays an important role in transmission but also
227	that it mediates transmission throughout the whole year. There were months with
228	very high transmission and months with very low transmission, but when data was

It is made available under a CC-BY-NC-ND 4.0 International license .

229 aggregated by season, there was no significant difference in transmission intensities. 230 Additional studies will be necessary to understand the dry season ecology of An. 231 funestus and the factors driving transmission at different times of the year, so as to 232 design effective tools towards reducing malaria transmission. Additionally, the higher 233 sporozoite prevalence observed in An. arabiensis in one of the village (i.e. Sululu) 234 corroborate recent finding (Swai et al., unpublished) that indicate geographical 235 heterogeneity in transmission over small distances. Thus, understanding local 236 vectors' ecology is crucial for control measures. Polymerase chain reaction (PCR) 237 may have greater sensitivity in detection of *Plasmodium* sporozoite, however, these 238 improvements are marginal and practically irrelevant in areas with moderate to high 239 transmission such as south-eastern Tanzanian districts of Ulanga and Kilombero. 240 241 Kaindoa et al. [6] reported An. funestus mosquitoes carrying 86% of malaria 242 infections in Kilombero valley. Lwetoijera et al. also demonstrated significant role of 243 An. funestus following the decline of An. gambiae, formerly the most important vector 244 in the valley [23]. Since then, several other studies have confirmed the dominance of 245 An. funestus in this area [20]. In addition, reports of higher entomological inoculation 246 rates by An. funestus have also been documented elsewhere [44–46], however, the 247 rates were not as high. Other studies have also shown the strong pyrethroid 248 resistance, and that while its aquatic ecology is still poorly understood, it occupies 249 perennial habitats which remain water-filled most of the year [30]. This ecological 250 characteristic may explain its dominance in densities and transmission activity 251 throughout the year. It is clear therefore that efforts to further reduce malaria 252 transmission by this vector must consider specific measures targeting An. funestus 253 so as to strongly diminish its potential.

It is made available under a CC-BY-NC-ND 4.0 International license .

254	Opportunities for improved control of An. funestus in the area may include new
255	generation ITNs with synergists or multiple actives [47–50], or use of larval source
256	management, which would be effective even against the pyrethroid-resistant
257	populations. Fortunately, the current National Malaria Strategic Plan (NMSP) of
258	Tanzania encourage implementation of larviciding in rural settings [51]. Coupled with
259	recent findings of Nambunga et al. [30] which indicate that aquatic habitats of An.
260	funestus mosquitoes in Kilombero valley falls within few, fixed and findable criterion
261	of World Health Organization [52]. Thus, provide possibilities of a cost-effective and
262	plausible species-specific intervention to significantly reduce malaria transmission in
263	this valley. Additionally, susceptibility of An. funestus towards organophosphate
264	notably pirimiphos methyl poses a potential opportunity for control. Pirimiphos methyl
265	is already approved and used for IRS in Tanzania [53,54], thus there is a need to
266	design cost-effective tools that may exploit the possibility of using pirimiphos methyl.
0.67	

267

268 **5. Conclusion**

269 This study demonstrates that despite the widespread use and overall impact of ITNs, 270 there is still persistently high *Plasmodium* infection prevalence in the dominant 271 malaria vector, An. funestus, causing intense year-round malaria transmission in the 272 study villages. Further reduction in malaria burden in this and similar settings thus 273 requires effective targeting of An. funestus. The study also demonstrates that in 274 certain contexts such as these, where one species is mediating most of the 275 pathogen transmission, there could be significant potential in pursuing a species-276 specific approach for vector control by investigating and targeting the dominant 277 vector species to suppress transmission.

278

It is made available under a CC-BY-NC-ND 4.0 International license .

279 Abbreviations

- 280 CDC: Centers for Diseases Control and Prevention; LLINs: Long-Lasting Insecticidal
- 281 Nets; NMSP: National Malaria Strategic Plan; ITN: Insecticide-Treated Net; IRS:
- 282 Indoor Residual Spraying; ELISA: Enzyme-Linked Immunosorbent Assay; GLM:
- 283 Generalized Linear Model; GLMM: Generalized Linear Mixed Model; *Pf*-CSP:
- 284 Plasmodium falciparum Circumsporozoite Protein; PCR: Polymerase Chain Reaction

285

286 **Declarations**

287 Ethical approval and consent to participate

- 288 Ethical approvals for this project were obtained from Ifakara Health Institute's
- Institutional Review Board (Ref. IHI/IRB/No: 007 2018) and the Medical Research
- 290 Coordinating Committee (MRCC) at the National Institute for Medical Research, in
- 291 Tanzania (Ref: NIMR/HQ/R.8a/Vol. IX/2895). Written consents were sought from all
- 292 participants of this study, after they had understood the purpose and procedure of
- the discussions.

294

295 **Consent for publication**

- 296 Permission to publish this study was obtained from National institute for Medical
- 297 Research, in Tanzania (NIMR/HQ/P.12 VOL XXXII/144).

298

299 Data availability

- 300 Data used to generate our findings can be accessed upon reasonable request to the
- 301 corresponding author.

302

303 **Competing interest**

It is made available under a CC-BY-NC-ND 4.0 International license .

304 Authors declare no conflict of interest.

305

Funding statement

- 307 This work was supported by the Wellcome Trust International Masters Fellowship in
- 308 Tropical Medicine & Hygiene (Grant No. 212633/Z/18/Z) awarded to SAM. This work
- 309 was also supported by Bill and Melinda Gates Foundation (Grant Number:
- 310 OPP1177156) and Howard Hughes Medical institute (Grant number: OPP1099295)
- both awarded to FOO.
- 312

313 Authors contributions

314 SAM, FOO, HSN and EEH were involved in study design. SAM, EEH, HSN, JK, HB,

315 KK and MK were involved in data collection. SAM and HSN conducted data analysis.

316 SAM wrote the manuscript. FOO, HSN, EWK and EEH provided thorough review of

317 the manuscript. All authors read and approved the final manuscript.

318

319 Acknowledgments

- 320 We would like to thank village leaders and community members in Igumbiro and
- 321 Sululu Villages for allowing their houses and areas to be used during mosquito
- 322 collection. We also extend our gratitude to Joseph Mgando, Neema Nombo, Dickson
- 323 Mwasheshi and Godfrey Matanila for their assistance during mosquito samples'
- 324 processing. We are also grateful to Najat Kahamba, Doreen Siria, Rukiyah
- 325 Njalambaha, Augusto Mwambaluka, Jonael Msangi, Said Abbasi, Swaleh Masoud
- 326 and Francis Tumbo for their valuable assistance in making this work feasible.
- 327

328 **Reference**

It is made available under a CC-BY-NC-ND 4.0 International license .

- 329 1. World Health Organization. WHO expert committee on malaria [Internet].
- 330 World Health Organization Technical Report Series. 2000. Available:
- 331 https://apps.who.int/iris/handle/10665/42247
- 332 2. World Health Organization. World Malaria Report 2019. Geneva. [Internet].
- 333 2019. Available: https://www.who.int/publications-detail/world-malaria-report-
- 334 2019
- 335 3. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The
- 336 effect of malaria control on Plasmodium falciparum in Africa between 2000 and
- 337 2015. Nature. 2015; doi:10.1038/nature15535
- 338 4. Steketee, Richard W. and CCC. Impact of national malaria control scale-up
- 339 programmes in Africa: magnitude and attribution of effects. Malar J. 2010;299.
- 5. Matowo NS, Munhenga G, Tanner M, Coetzee M, Feringa WF, Ngowo HS, et
- 341 al. Fine-scale spatial and temporal heterogeneities in insecticide resistance
- 342 profiles of the malaria vector, Anopheles arabiensis in rural south-eastern
- 343 Tanzania [version 1; referees: 2 approved]. Wellcome Open Res. 2017;
- doi:10.12688/wellcomeopenres.12617.1
- 345 6. Kaindoa EW, Matowo NS, Ngowo HS, Mkandawile G, Mmbando A, Finda M,
- 346 et al. Interventions that effectively target Anopheles funestus mosquitoes could
- 347 significantly improve control of persistent malaria transmission in south-eastern

348 Tanzania. PLoS One. 2017;12. doi:10.1371/journal.pone.0177807

- 349 7. Casimiro S, Coleman M, Mohloai P, Hemingway J, Sharp B. Insecticide
- 350 resistance in Anopheles funestus (Diptera: Culicidae) from Mozambique. J
- 351 Med Entomol. 2006; doi:10.1603/0022-2585(2006)043[0267:IRIAFD]2.0.CO;2
- 8. Cuamba N, Morgan JC, Irving H, Steven A, Wondji CS. High level of pyrethroid
- 353 resistance in an Anopheles funestus population of the chokwe district in

354		mozambique. PLoS One. 2010;5. doi:10.1371/journal.pone.0011010
355	9.	Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF.
356		Increased proportions of outdoor feeding among residual malaria vector
357		populations following increased use of insecticide-treated nets in rural
358		Tanzania. Malar J. 2011;10. doi:10.1186/1475-2875-10-80
359	10.	Sougoufara S, Diédhiou SM, Doucouré S, Diagne N, Sembène PM, Harry M,
360		et al. Biting by Anopheles funestus in broad daylight after use of long-lasting
361		insecticidal nets: A new challenge to malaria elimination. Malar J. 2014;
362		doi:10.1186/1475-2875-13-125
363	11.	Moiroux N, Gomez MB, Pennetier C, Elanga E, Djènontin A, Chandre F, et al.
364		Changes in anopheles funestus biting behavior following universal coverage of
365		long-lasting insecticidal nets in benin. J Infect Dis. 2012;
366		doi:10.1093/infdis/jis565
367	12.	Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, et al.
368		Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J
369		Med. 2014; doi:10.1056/NEJMoa1314981
370	13.	Dondorp AM, Yeung S, White L, Nguon C, Day NPJ, Socheat D, et al.
371		Artemisinin resistance: Current status and scenarios for containment. Nature
372		Reviews Microbiology. 2010. doi:10.1038/nrmicro2331
373	14.	Matowo NS, Moore J, Mapua S, Madumla EP, Moshi IR, Kaindoa EW, et al.
374		Using a new odour-baited device to explore options for luring and killing
375		outdoor-biting malaria vectors: A report on design and field evaluation of the
376		Mosquito Landing Box. Parasites and Vectors. 2013;6. doi:10.1186/1756-
377		3305-6-137
378	15.	Finda MF, Moshi IR, Monroe A, Limwagu AJ, Nyoni AP, Swai JK, et al. Linking

It is made available under a CC-BY-NC-ND 4.0 International license .

379	human behaviours and malaria vector biting risk in south-eastern Tanzania.

- 380 PLoS One. 2019; doi:10.1371/journal.pone.0217414
- 16. Monroe A, Monroe A, Monroe A, Moore S, Moore S, Moore S, et al. Methods
- 382 and indicators for measuring patterns of human exposure to malaria vectors.
- 383 Malar J. 2020; doi:10.1186/s12936-020-03271-z
- 17. Andolina C, Rek JC, Briggs J, Okoth J, Musiime A, Ramjith J, et al. Sources of
- 385 persistent malaria transmission in a setting with e ff ective malaria control in
- eastern Uganda : a longitudinal, observational cohort study. 2021;3099.
- 18. Kaindoa EW, Finda M, Kiplagat J, Mkandawile G, Nyoni A, Coetzee M, et al.
- 388 Housing gaps, mosquitoes and public viewpoints: A mixed methods
- 389 assessment of relationships between house characteristics, malaria vector
- biting risk and community perspectives in rural Tanzania. Malar J. 2018;
- 391 doi:10.1186/s12936-018-2450-y
- 392 19. Liu JX, Bousema T, Zelman B, Gesase S, Hashim R, Maxwell C, et al. Is
- 393 housing quality associated with malaria incidence among young children and
- 394 mosquito vector numbers? Evidence from Korogwe, Tanzania. PLoS One.

395 2014;9. doi:10.1371/journal.pone.0087358

- 396 20. Okumu F, Finda M. Key Characteristics of Residual Malaria Transmission in
- 397 Two Districts in South-Eastern Tanzania—Implications for Improved Control. J

398 Infect Dis. 2021;223: 15–17. doi:10.1093/infdis/jiaa653

- 399 21. Finda MF, Limwagu AJ, Ngowo HS, Matowo NS, Swai JK, Kaindoa E, et al.
- 400 Dramatic decreases of malaria transmission intensities in Ifakara, south-
- 401 eastern Tanzania since early 2000s. Malar J. 2018; doi:10.1186/s12936-018402 2511-2
- 403 22. Russell TL, Lwetoijera DW, Maliti D, Chipwaza B, Kihonda J, Charlwood JD, et

404		al. Impact of promoting longer-lasting insecticide treatment of bed nets upon
405		malaria transmission in a rural Tanzanian setting with pre-existing high
406		coverage of untreated nets. Malar J. 2010;9. doi:10.1186/1475-2875-9-187
407	23.	Lwetoijera DW, Harris C, Kiware SS, Dongus S, Devine GJ, McCall PJ, et al.
408		Increasing role of Anopheles funestus and Anopheles arabiensis in malaria
409		transmission in the Kilombero Valley, Tanzania. Malar J. 2014;13.
410		doi:10.1186/1475-2875-13-331
411	24.	Pinda PG, Eichenberger C, Ngowo HS, Msaky DS, Abbasi S, Kihonda J, et al.
412		Comparative assessment of insecticide resistance phenotypes in two major
413		malaria vectors, Anopheles funestus and Anopheles arabiensis in south-
414		eastern Tanzania. Malar J. 2020; doi:10.1186/s12936-020-03483-3
415	25.	Ngowo HS, Hape EE, Matthiopoulos J, Ferguson HM, Okumu FO. Fitness
416		characteristics of the malaria vector Anopheles funestus during an attempted
417		laboratory colonization. Malar J. 2021;20. doi:10.1186/s12936-021-03677-3
418	26.	Takken W, Verhulst NO. Host preferences of blood-feeding mosquitoes.
419		Annual Review of Entomology. 2013. doi:10.1146/annurev-ento-120811-
420		153618
421	27.	Charlwood JD, Vij R, Billingsley PF. Dry season refugia of malaria-transmitting
422		mosquitoes in a dry savannah zone of east Africa. Am J Trop Med Hyg.
423		2000;62. doi:10.4269/ajtmh.2000.62.726
424	28.	Ngowo, H. S., Kaindoa, E. W., Matthiopoulos, J., Ferguson, H. M., & Okumu
425		FO. Variations in household microclimate affect outdoor-biting behaviour of
426		malaria vectors. Wellcome open Res. 2017;2.
427	29.	Limwagu AJ, Kaindoa EW, Ngowo HS, Hape E, Finda M, Mkandawile G, et al.
428		Using a miniaturized double-net trap (DN-Mini) to assess relationships

It is made available under a CC-BY-NC-ND 4.0 International license .

429		between indoor-outdoor biting preferences and physiological ages of two
430		malaria vectors, Anopheles arabiensis and Anopheles funestus. Malar J. 2019;
431		doi:10.1186/s12936-019-2913-9
432	30.	Nambunga IH, Ngowo HS, Mapua SA, Hape EE, Msugupakulya BJ, Msaky
433		DS, et al. Aquatic habitats of the malaria vector Anopheles funestus in rural
434		south-eastern Tanzania. Malar J. 2020; doi:10.1186/s12936-020-03295-5
435	31.	Kaindoa EW, Ngowo HS, Limwagu AJ, Tchouakui M, Hape E, Abbasi S, et al.
436		Swarms of the malaria vector Anopheles funestus in Tanzania. Malar J. 2019;
437		doi:10.1186/s12936-019-2660-y
438	32.	Swai JK, Finda MF, Madumla EP, Lingamba GF, Moshi IR, Rafiq MY, et al.
439		Studies on mosquito biting risk among migratory rice farmers in rural south-
440		eastern Tanzania and development of a portable mosquito-proof hut. Malar J.
441		2016; doi:10.1186/s12936-016-1616-8
442	33.	National Bureau of Statistics. 2012 population and housing census, population
443		distribution by administrative areas. 2013.
444	34.	Mboera LEG, Kihonda J, Braks MAH, Knols BGJ. Short report: Influence of
445		centers for disease control light trap position, relative to a human-baited bed
446		net, on catches of Anopheles gambiae and Culex quinquefasciatus in
447		Tanzania. Am J Trop Med Hyg. 1998;59: 595–596.
448		doi:10.4269/ajtmh.1998.59.595
449	35.	Maia MF, Robinson A, John A, Mgando J, Simfukwe E, Moore SJ. Comparison
450		of the CDC Backpack aspirator and the Prokopack aspirator for sampling
451		indoor- and outdoor-resting mosquitoes in southern Tanzania. Parasites and
452		Vectors. 2011;4. doi:10.1186/1756-3305-4-124

453 36. Gillies MT, De Meillon B. The Anophelinae of Africa south of the Sahara

454		(Ethiopian zoogeographical region). Sahara Ethiop Zoogeographical. 1968;
455	37.	Beier JC, Perkins P V., Koros JK, Onyango FK, Gargan TP, Wirtz RA, et al.
456		Malaria sporozoite detection by dissection and ELISA to assess infectivity of
457		afrotropical Anopheles (Diptera: Culicidae). J Med Entomol. 1990;
458		doi:10.1093/jmedent/27.3.377
459	38.	Durnez L, Van Bortel W, Denis L, Roelants P, Veracx A, Trung HD, et al. False
460		positive circumsporozoite protein ELISA: A challenge for the estimation of the
461		entomological inoculation rate of malaria and for vector incrimination. Malar J.
462		2011; doi:10.1186/1475-2875-10-195
463	39.	R Development Core Team R. R: A Language and Environment for Statistical
464		Computing [Internet]. R Foundation for Statistical Computing. 2019. p. 409.
465		doi:10.1007/978-3-540-74686-7
466	40.	Okumu FO, Kotas ME, Kihonda J, Mathenge E, Killeen GF, Moore SJ.
467		Comparative Evaluation of Methods Used for Sampling Malaria Vectors in the
468		Kilombero Valley, South Eastern Tanzania. Open Trop Med J. 2008;
469		doi:10.2174/1874315300801010051
470	41.	Burke A, Dahan-Moss Y, Duncan F, Qwabe B, Coetzee M, Koekemoer L, et al.
471		Anopheles parensis contributes to residual malaria transmission in South
472		Africa. Malar J. 2019; doi:10.1186/s12936-019-2889-5
473	42.	McCann RS, Ochomo E, Bayoh MN, Vulule JM, Hamel MJ, Gimnig JE, et al.
474		Reemergence of Anopheles funestus as a vector of Plasmodium falciparum in
475		Western Kenya after long-term implementation of insecticide-treated bed nets.
476		Am J Trop Med Hyg. 2014; doi:10.4269/ajtmh.13-0614
477	43.	Swai JK, Mmbando AS, Ngowo HS, Odufuwa OG, Finda MF, Mponzi W, et al.
478		Protecting migratory farmers in rural Tanzania using eave ribbons treated with

- 479 the spatial mosquito repellent, transfluthrin. Malar J. 2019;
- 480 doi:10.1186/s12936-019-3048-8
- 481 44. Cohuet A, Simard F, Wondji CS, Antonio-nkondjio C, Awono-ambene P,
- 482 Fontenille D. High Malaria Transmission Intensity Due to Anopheles funestus (
- 483 Diptera : Culicidae) in a Village of Savannah Forest Transition Area in
- 484 Cameroon. 2004; 901–905.
- 485 45. Trape JF, Tall A, Sokhna C, Ly AB, Diagne N, Ndiath O, et al. The rise and fall
- 486 of malaria in a west African rural community, Dielmo, Senegal, from 1990 to
- 487 2012: A 22 year longitudinal study. Lancet Infect Dis. 2014;14.
- 488 doi:10.1016/S1473-3099(14)70712-1
- 489 46. Antonio-Nkondjio C, Awono-Ambene P, Toto JC, Meunier JY, Zebaze-Kemleu
- 490 S, Nyambam R, et al. High malaria transmission intensity in a village close to
- 491 Yaounde, the capital city of Cameroon. J Med Entomol. 2002;39.
- 492 doi:10.1603/0022-2585-39.2.350
- 493 47. Gleave K, Lissenden N, Richardson M, Choi L, Ranson H. Piperonyl butoxide
- 494 (PBO) combined with pyrethroids in insecticide-treated nets to prevent malaria
- in Africa. Cochrane Database of Systematic Reviews. 2018.
- 496 doi:10.1002/14651858.CD012776.pub2
- 497 48. Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et
- 498 al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net
- and indoor residual spray interventions, separately and together, against
- 500 malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised
- 501 controlled, two-by-two factorial design trial. Lancet. 2018;391.
- 502 doi:10.1016/S0140-6736(18)30427-6
- 49. Pennetier C, Bouraima A, Chandre F, Piameu M, Etang J, Rossignol M, et al.

It is made available under a CC-BY-NC-ND 4.0 International license .

- 504 Efficacy of Olyset® Plus, a New Long-Lasting Insecticidal Net Incorporating
- 505 Permethrin and Piperonil-Butoxide against Multi-Resistant Malaria Vectors.
- 506 PLoS One. 2013;8. doi:10.1371/journal.pone.0075134
- 507 50. Corbel V, Chabi J, Dabiré RK, Etang J, Nwane P, Pigeon O, et al. Field
- 508 efficacy of a new mosaic long-lasting mosquito net (PermaNet® 3.0) against
- 509 pyrethroid-resistant malaria vectors: A multi centre study in Western and
- 510 Central Africa. Malar J. 2010;9. doi:10.1186/1475-2875-9-113
- 511 51. Ministry of Health and Social Welfare. Tanzania national Malaria Strategic Plan
- 512 2014-2020 [Internet]. Available: https://www.out.ac.tz/wp-
- 513 content/uploads/2019/10/Malaria-Strategic-Plan-2015-2020-1.pdf
- 514 52. World Health Organization. Larval source management: a supplementary
- 515 malaria vector control measure [Internet]. 2013. Available:
- 516 https://apps.who.int/iris/handle/10665/85379
- 517 53. Mashauri FM, Manjurano A, Kinung'hi S, Martine J, Lyimo E, Kishamawe C, et
- al. Indoor residual spraying with microencapsulated pirimiphos-methyl
- 519 (Actellic® 300CS) against malaria vectors in the Lake Victoria basin, Tanzania.
- 520 PLoS One. 2017; doi:10.1371/journal.pone.0176982
- 521 54. Haji KA, Thawer NG, Khatib BO, Mcha JH, Rashid A, Ali AS, et al. Efficacy,
- 522 persistence and vector susceptibility to pirimiphos-methyl (Actellic®
- 523 300CS) insecticide for indoor residual spraying in Zanzibar. Parasites and
- 524 Vectors. 2015;8. doi:10.1186/s13071-015-1239-x

525