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tuberculosis and other polymicrobial infections, identifying resistance genes and mobile 13 

genetic elements, and monitoring treatment and its effect on the host’s microbiome” 14 

Author summary 15 

Tuberculosis (TB), one of the major killers of mankind, continually remains elusive as 16 

challenges with early diagnosis and treatment monitoring remain. Herein, we use a single 17 

portable sequencer from Oxford Nanopore, the minION, to diagnose TB and monitor its 18 

treatment with antibiotics using routine sputum samples. In addition, the presence of other 19 

pathogens, important commensals, antibiotic resistance genes, mobile genetic elements, and 20 

the effect of the antibiotic treatment on the sputum microbiota were determined from the 21 

same data. This makes the minION an important tool that can be used in clinical laboratories 22 

to obtain data that can inform live-saving decisions.   23 
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Abstract 24 

Background. Diagnostics for tuberculosis (TB) and treatment monitoring remains a 25 

challenge, particularly in less-resourced laboratories. Further, the comprehensive sputum 26 

microbiota of TB patients during treatment are less described, particularly using long-read 27 

sequencers. 28 

Methods. DNA from sputum samples collected from newly-diagnosed TB patients were 29 

sequenced with Oxford Nanopore’s MinION. MG-RAST and R packages (Phyloseq, 30 

Microbiome) were used to determine the OTUs abundances, α/β diversities, functional 31 

components, OTUs networks and ordination plots. Statistical significance of the generated 32 

data was determined using GraphPad.  33 

Results & conclusion. Antibiotics reduced the abundance and functional subsystems of each 34 

samples’ microbiota from baseline until day 7, when persistent, tolerant, and resistant 35 

microbiota, including fungi, grew back again. Variations in microbiota abundance and 36 

diversity were patient-specific. Closer microbiome network relationships observed in baseline 37 

samples reduced until day 7, when it became closer again. Bacterial microbiota networks and 38 

spatial ordination relationships were closer than that of other kingdoms. Actinobacteria 39 

phylum and Mycobacterium were more affected by antibiotics than other phyla and genera. 40 

Parasites, viruses, and fungi were less affected by antibiotics than bacteria in a descending 41 

order. Resistance genes/mechanisms to important antibiotics, plasmids, transposons, insertion 42 

sequences, integrative conjugative elements were identified in few samples.  43 

MinION can be adopted clinically to monitor treatment and consequent dysbiosis, and 44 

identify both known and unknown pathogens and resistance genes to inform tailored 45 

treatment choices, specifically in TB.    46 
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Introduction 49 

Tuberculosis (TB), shall we ever overcome it? This question has been ringing through the 50 

annals of history over several millennia among diverse cultures and regions as the ‘white 51 

plague’ continues to devastate humanity and elude total eradication; a conundrum that still 52 

baffles clinicians, particularly with the current advancements in modern medicine 1–3. 53 

Tuberculosis remains the deadliest infectious disease caused by a single aetiological agent, 54 

Mycobacterium tuberculosis (MTB), which is an acid-fast bacilli and intracellular bacterial 55 

pathogen 4–6. In 2019, 1.4 million people died from TB alone, including 208,000 who had 56 

HIV 7. Whereas TB is treatable and curable with first-line drugs such as isoniazid (INH) and 57 

rifampin (RFP), multidrug-resistant TB (MDR-TB), which was found in 206 030 people 58 

globally in 2019, requires more toxic, expensive, and scarce second-line chemotherapeutic 59 

agents that are taken for two years 5,7–9.  60 

Until recently, the lung microbiome was believed to be sterile. However, the advent of non-61 

culture-based techniques has shown the presence of a stable microbiota in the lung 6,10. 62 

Furthermore, increasing evidence suggests that the intestinal microbiome modulates the lung 63 

microbiome through immune system regulation, development and inducement 11,12. Several 64 

studies have shown that TB antibiotics, although taken orally, affect the upper and lower 65 

airways microbiome 4,6. This interaction between the gut-lung microbiome is mediated 66 

through the immune system, and is being harnessed to enhance the treatment of asthma, 67 

cystic fibrosis, chronic obstructive pulmonary diseases (COPD) through the administration of 68 

probiotics and prebiotics that confers a microbiota than regulates inflammatory responses in 69 

the lungs 11–14. Specifically, Lactobacillus plantarum, a gut commensal, has been shown to 70 

reverse TB progression and pathologies in the lungs 6.  A few studies have proposed the 71 
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presence and possible adoption of signature microbiota species that are indicative of the 72 

presence of TB and can be used for detection and treatment monitoring 15,16. However, this is 73 

yet to be established and adopted as some studies also suggest otherwise 17.  74 

The emergence and declining costs of whole-genome sequencing (WGS), with its varied 75 

applications in metagenomics 18,19, and meta-transcriptomics 20,21, are revolutionizing 76 

molecular biology research. Particularly, metagenomics promises a faster and more efficient 77 

detection of MTB infections and mixed infections, resistance profile, lineage of MTB strains, 78 

and epidemiological spread of TB outbreaks for efficient management and control of TB 79 

1,18,22,23. Thus, several propositions have been made to adopt WGS as a diagnostic tool for 80 

MTB in the clinical microbiology laboratory 1,18,22,23. Of the 14 studies describing the 81 

microbiome of sputum samples from TB patients at the time of writing, none have so far used 82 

long-read sequencers such as Oxford Nanopore Technology’s (ONT) MinION. All the 83 

reported studies either used Roche’s 454/GS FLX-Titanium (pyrosequencing) or Illumina’s 84 

Miseq/Hiseq to sequence the 16s rRNA 24–28. Only one study has so far undertaken a shot-gun 85 

metagenomic analysis of bronchoalveolar lavage (BAL) samples of TB patients 29.  86 

Hence, this study is the first to use a long-read sequencer to describe the sputum microbiota 87 

of TB patients. We show that the MinION can be adopted in clinical laboratories as a 88 

diagnostic tool to detect pathogens, monitor treatment outcomes and microbiota changes, and 89 

identify resistance genes/mutations and mobile genetic elements (MGEs). 90 

Methods 91 

Study design and sampling 92 

This was a prospective study carried out at a TB clinic based at Stanza Bopape, Pretoria, 93 

South Africa, in 2019. Twenty-one patients were recruited between June and August 2019 for 94 

the study. Participants were persons newly confirmed to have pulmonary TB (using 95 
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GeneXpert), but who were not yet on treatment. Sputum samples were collected from each 96 

participant at four different timepoints: baseline (day 0), day 1, day 2, and day 7. Baseline 97 

samples were collected prior to the beginning of antibiotic therapy whilst days 1, 2, and 7 98 

samples were collected one day, two days, and seven days after starting antibiotic treatment. 99 

As the patients were all newly diagnosed with TB, they were placed on fixed-dose 100 

combination (FDC) treatment involving first-line anti-TB drugs i.e., rifampicin, isoniazid, 101 

pyrazinamide, and ethambutol. Demographic data of the patients viz., age and sex, were also 102 

collected. 103 

Sample treatment and sequencing 104 

The collected sputum samples were transferred into the mycobacteriology laboratory 105 

(University of Pretoria) in wrapped sputum containers and stored at -4 ° Celsius. The samples 106 

were divided into two and one part was immediately dissolved in PrimeStore® Molecular 107 

Transport Medium (MTM) for long-term storage. Another part was immediately used for 108 

DNA extraction using the Ultra-Deep Microbiome Prep kit (Molzym GmbH & Co. KG, 109 

Bremen, Germany), which depletes host DNA and enriches microbial DNA. The extracted 110 

DNA was analysed using a NanoDrop spectrophotometer and gel electrophoresis to 111 

determine their quality, quantity, and length.  112 

ONT’s Rapid Barcoding Sequencing kit, SQK-RBK004, was used to prepare the DNA 113 

libraries for MinIon sequencing, following the recommended protocol. Briefly, the DNA 114 

(~400ng) of 12 samples were transferred into 12 DNA LoBind tube and adjusted with 115 

nuclease-free water up to 7.5µL; 2.5µL of Fragmentation Mix RB01-12 was added to make 116 

up to 10µL. The tubes were flicked gently to mix the contents and incubated at 30 °C (for1 117 

min) and at 80 °C (for 1 min) to simultaneously fragment and tag the DNA with unique 118 

barcodes. The barcoded samples were then pooled into one 2 mL Eppendorf tubes and 119 

washed with AMPure XP beads and a magnetic rack to purify the barcoded DNA. 120 
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Subsequently, 1 µL of RAP was added to 10 µL of pooled barcoded DNA, incubated for 5 121 

minutes, and mixed with 34 µL of sequencing buffer, 25.5 µL of loading beads, and 4.5 µL 122 

of nuclease-free water prior to loading into an already primed MinION FLO-MIN 106D 123 

R9/R10 flow cell. The sequencing was done for 12 hours per batch of 12 pooled barcoded 124 

samples. This was repeated for the other samples in batches of 12.  125 

Bioinformatics and statistical analysis 126 

The generated Fast5 sequences reads were de-barcoded into individual sample DNA and 127 

converted into FastQ files using the MinKNOW and EPI2ME applications provided by ONT. 128 

Sequence reads with coverage below 10X were deleted/removed. Initial taxonomy and 129 

resistance determinants in each sample were provided by EPI2ME. The FastQ files were 130 

assembled into FastA files using Canu 2.1 on Ubuntu 18.04LTS using default parameters. 131 

The assembled FastA files were uploaded to ResFinder 132 

4.1(https://cge.cbs.dtu.dk/services/ResFinder/) /ResFinderFG 1.0 133 

(https://cge.cbs.dtu.dk/services/ResFinderFG/), PlasmidFinder 2.1 134 

(https://cge.cbs.dtu.dk/services/PlasmidFinder/), and Mobile Element Finder 135 

(https://cge.cbs.dtu.dk/services/MobileElementFinder/) databases to determine resistance 136 

mechanisms, plasmids, and mobile genetic elements respectively in the assembled reads.  137 

The FastQ files were uploaded to MG-RAST 30, from where the distribution of functional 138 

categories for COGs, KOs, NOGs, and Subsystems, alpha diversities, rarefaction curves, 139 

taxonomies, sequence length histogram, and sequence GC contents per sample were obtained. 140 

Operational taxonomic units (OUT), metadata, and taxonomy tables were built from the MG-141 

RAST data and used for downstream analyses in R using Phyloseq31 and Microbiome 142 

(http://microbiome.github.com/microbiome) packages. The Chao1 and Shannon indices 143 

(alpha diversity), abundance of each taxonomy per sample, non-metric multidimensional 144 

scaling (NMDS), and ordination of the various taxa per sample were obtained using 145 
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Microbiome, Phyloseq31, tidyr (https://tidyr.tidyverse.org/), dplyr (https://cran.r-146 

project.org/web/packages/dplyr/vignettes/dplyr.html), and ggplot2 147 

(https://ggplot2.tidyverse.org/ ) packages in R.  148 

Beta diversities were manually calculated using the formula β = (S1-c) + (S2-c), where β is 149 

the beta diversity, S1 is the total number of species in the first environment, S2 is the total 150 

number of species in the second environment, and c is the number of species that the two 151 

environments have in common. β diversities between samples from the same and different 152 

patients were thus calculated.  153 

The significance of each taxa abundance across samples, of alpha and beta diversities per 154 

sample and between samples, and of archaea, bacterial phyla, viral, fungal, and parasitic taxa 155 

across samples were determined using Wilcoxon’s signed rank test, one sample t test, and 156 

one-/two-way ANOVA. Descriptive statistics, row means, and variance were also determined 157 

using column statistics. All statistical analysis were carried out using GraphPad Prism 9.1.0 158 

(221); p-values of <0.05 were defined as significant.  159 

Ethical clearance 160 

Ethical approval was provided by the Human Research Ethics Committee, Faculty of Health 161 

Sciences, University of Pretoria, South Africa. All protocols and consent forms were 162 

executed according to the agreed ethical approval terms and conditions. All clinical samples 163 

were obtained directly from patients, who agreed to our using their specimens for this 164 

research. The guidelines stated by the Declaration of Helsinki for involving human 165 

participants were followed in the study. 166 

Data availability 167 

This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank 168 
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under the Bioproject accession PRJNA673633 and Biosample accessions JAFMQ-169 

JAFJNR000000000. The versions described in this paper is version JAFMQ-JAFJNR 170 

010000000. 171 

Results  172 

Demographics and Sequencing reads 173 

The study recruited 21 patients, aged between 23 and 55 years with an average age of 37.41 174 

years and median age of 38 years. Six of the patients were females whilst 15 were males, 175 

with the females and males having a respective mean age of 30.60 and 40.25 years (Figure 176 

1A; Dataset 1). Only 11 out of the 21 patients provided sputum samples within the time 177 

frame of the study. Complete sputum samples i.e., sputum samples collected at baseline, day 178 

1, day 2, and day 7, were obtained from seven patients whilst three patients provided samples 179 

at baseline, day 1, and day 2. One patient provided only baseline and day 7 sputum samples 180 

(Fig. 1C). Only nine of the 11 sequenced reads qualified for inclusion in downstream analysis 181 

owing to their higher coverage (>10X) (Fig. 1D; Dataset 1). The sequence lengths ranged 182 

from 1529±738bp to 3396±1305bp whilst the mean GC contents ranged from 40±5% to 183 

50±10% (Dataset 1). 184 

Taxonomy, abundance, & diversities 185 

A of total 40 phyla comprising 347 genera, belonging to Bacteria (n=258), Fungi (n= 50), 186 

Eukaryota (n=11), Animalia/Metazoa (n=8), Archaea (n=4), Plantae (n=3), Protista (n=2), 187 

and Chromista (n=1) were identified in the sputum samples (Dataset 2); variations in 188 

abundance for these kingdoms across samples were statistically significant. A core 189 

microbiota of 56 genera, which were present in at least 70% of all samples, was identified. 190 

The count of each genus for all the samples, categorised into abundances above 1000, 191 

between 100 and 1000, between 10 and 100, and below 10, showed that most genera fell 192 
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below a total abundance of 10 whilst a few fell above a total abundance of 1000. 193 

Streptococcus (p-value: 0.0078; <0.0001), Actinomyces (p-value: 0.1245; <0.0001), 194 

Mycobacterium (p-value: 0.1149; <0.0001), Granulicatella (p-value: 0.0432; <0.0001), 195 

Atopobium (p-value: 0.0078|<0.0001), Meyerozyma (p-value: 0.318;|<0.0313), Rothia (p-196 

value: 0.1853|<0.0001), Catonella (p-value: 0.0884; <0.0001), Penicillium (p-value: 0.3076; 197 

<0.0078), Lactobacillus (p-value: 0.0272|<0.0001), Gemella (p-value: 0.0902; <0.0001), 198 

Veillonella (p-value: 0.2216; <0.0001), Candida (p-value: 0.0612; <0.0001), Pseudomonas 199 

(p-value: 0.0147; <0.0001), and Propionibacterium (p-value: 0.1174; <0.0001) were among 200 

the most dominant genera, with OTU abundance above 1000, in all samples (Figure S1). 201 

The abundance of each OTU differed per sample, with baseline samples (D0) from patient 202 

104 having the highest abundance. Notably, baseline samples from patients 104, 105, 107, 203 

108, and 112 were higher than subsequent samples from days 1, 2, and 7 except in samples 204 

from patients 109 and 117 where baseline samples had lower genera abundance than samples 205 

from subsequent days (Fig. 2A; p-value: 0.005; <0.0001). Interestingly, samples from day 7 206 

had higher OTU abundance than those from days 1 and 2, except in patients 107 (Fig. 2A). 207 

The absolute counts of the genera (diversity) per sample showed unique characteristics per 208 

patient. For instance, there were more diverse kinds of genera in baseline samples than 209 

samples from days 1 and 2 in patients 104 and 108, as well as than day 1 samples in patients 210 

105, 107, 112, and 117. However, baseline samples were lower than samples from 211 

subsequent days in patient 109 (Fig. 2B). The highest genera count was in sample 108D0 (p-212 

value: <0.0001).  213 

Alpha and Beta diversities 214 

The variation in alpha diversity (provided by MG-RAST) in samples from each patient was 215 

not consistent across patients; each patient had a unique variation in alpha diversity (p-value: 216 
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<0.0001). Specifically, there were variations in alpha diversities between samples from the 217 

same patient, but in patients 105, 108, 109, 111, 112, and 117, there was an increase in alpha 218 

diversities from either baseline or day 1 up to days 2 or 7 (Fig. 2C). The alpha-diversities 219 

were different from the absolute count of genera types per samples, which tended to follow a 220 

u-shaped pattern per patient (Figure 2B-C).  221 

The Chao1 and Shannon alpha diversities (provided by Phyloseq) of each sample were not 222 

the same and also differed within patients (Figure S1). Whereas the alpha diversities between 223 

samples of the same patient were very close in the Chao1 index, they varied widely from 224 

each other in the Shannon index.  Using the Chao1 index, there was a general reduction in 225 

alpha diversity of samples from baseline to days 1 and 2, except in patient 109. However, 226 

there was a rise in alpha diversity of the samples at day 7 after a drop in days 1 and 2. In 227 

patient 109, there was a rise in alpha diversity from baseline to day 1, after which the alpha 228 

diversity dropped from day 2 to day 7. Furthermore, in patient 117, the baseline diversity was 229 

higher than that on day 7. Patient 107 had a higher alpha diversity on day 2 than days 0 230 

(baseline) and 1. 231 

A similar pattern was observed in the Chao1 alpha diversity of bacterial genera in the 232 

samples. Generally, there was a drop in Chao1 alpha-diversity from baseline to days 1 and 2 233 

samples whilst day 7 samples had higher alpha-diversity than baseline, day 1, and day 2 234 

samples, suggesting a growing of drug-resistant/tolerant species during the 7th day. The 235 

exception was observed in patient 117 where day 7 samples had lower alpha-diversity than 236 

baseline samples. Similarly, patient 107 had days 1 and 2 samples having higher alpha-237 

diversities than baseline samples (Figure S2). However, the Chao1 and Shannon alpha-238 

diversities of fungi, parasites/protozoa, and virus in the various samples showed relatively 239 

minor, little or no differences at all (Fig. S2.vii-ix). 240 
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A comparison of both Chao1 and Shannon alpha diversities of baseline and days 1, 2, and 7 241 

samples from all patients are also shown in Fig. S2(iii-vi). For samples collected at any given 242 

timepoint (baseline, days 1, 2, and 7), there were variations between patients, highlighting 243 

personal microbiome diversity.  244 

Figure 2B shows the β-diversities (differences in genera diversities) between different 245 

samples from the same patient (p-values: < 0.0001). The chart shows that there were 246 

variations in genera diversity between samples from different time points i.e., baseline (S1), 247 

day 1 (S2), day 2 (S3), and day 7 (S4), in all patients. Particularly, β-diversities of samples 248 

from patients 108 and 107 were very high, followed by that of patients 111, 109, 112, 117, 249 

105, and 104. In patient 107, the β-diversity between days 0 and 1 (S1|S2) samples were very 250 

low compared to that of days 0 and 2 (S1|S3), days 0 and 7 (S1|S4), days 1 and 2 (S2|S3), and 251 

days 2 and 7 (S3|S4). However, in patient 108, inter-sample β-diversity was highest between 252 

days 0/baseline and 7 (S1|S4), days 0 and 1 (S1|S2), and days 0 and 2 (S1|S3). The inter-253 

sample β-diversities variation per patient were not as relatively vast as that of patients 107 254 

and 108. 255 

The inter-patient samples β-diversities showed that the largest variations occurred in baseline 256 

samples from the different patients (blue bars in Fig. 2C). Specifically, β-diversity variations 257 

between samples of patient 108 and other patients were distinctly wide (p-value: <0.0001). 258 

Also notable were variations between days 2 (S3|S3) and 7 (S4|S4) samples’ genera (Fig. 259 

2C).  260 

Kingdom-specific abundances 261 

Analysis of the proportion of each kingdom in each collected sputum microbiota is presented 262 

in Figures 3A and S3. There were five main kingdoms viz. archaea, bacteria, virus, fungi, and 263 

parasites (protista), and minor kingdoms such as eukaryota, and animalia (metazoa). Bacteria 264 
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was the most dominant kingdom across all samples (p-value: <0.0086; < 0.0001) except in 265 

107D2, 109D1, and 109D2, where fungi was most dominant (p-value: 0.2068; <0.0001). 266 

Parasites were also found in substantial proportions in 104D1, 105D2, 107D7, 108D1, 267 

108D2, 109D1, 109D2, and 112D2 (p-value: <0.0047; <0.0001), but viruses (p-value: 268 

0.0332; <0.0001) and archaea (p-value: 0.3277; >0.999) were very minor in abundance in all 269 

the samples (Fig. 3A & S3). A detailed breakdown of each phylum, class, order, family, and 270 

genus in each sample across all time points and in only baseline, day 1, 2, and 7 samples are 271 

shown in Figure S3. 272 

Among Bacteria, the most common phyla were Firmicutes (p-value: 0.0069; <0.0001), 273 

Actinobacteria (p: 0.0348; <0.0001), Proteobacteria (p: 0.0066; <0.0001), and Bacteriodetes 274 

(p: 0.0037; <0.0001) (Fig. 4). In almost all the samples, the bacterial phylum Firmicutes was 275 

the most dominant, except in 105D2, 107D2, 108D1, and 112D2 where it was almost absent. 276 

Actinobacteria was the next dominant phylum, with Proteobacteria, Bacteroidetes and the 277 

other phyla occupying a relatively small portion of the microbiota. A reduction in bacterial 278 

phyla abundance was seen after the baseline until day 7, when a rise in abundance was 279 

observed again in all the samples (Fig. 3B). The most abundant genera were Streptococcus, 280 

followed by Mycobacteria (sea-blue bar), Actinomyces (orange bar), Pseudomonas (purple 281 

bar), and Rothia (mauve). Bacilli, Alphaproteobacteria, Actinobacteria, 282 

Epsilonproteobacteria, and Gammaproteobacteria were common bacterial classes whilst 283 

Clostridiales, Actinomycetales, Lactobacillales, Burkholderiales, and Micrococcales were the 284 

commonest bacterial orders that changed in abundance over the different time points (Fig. 285 

S4).  286 

A u-shaped pattern was observed among bacterial genera in the various phyla (Fig. 4): the 287 

abundance of the genera reduced from baseline and rose gradually from day 2 to day 7. 288 

Genera diversity were not consistent from baseline to day 7; it was patient specific (Fig. 4). 289 
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This decline in abundance among the genera is more clearly observed in Figure 5; but 290 

Mycobacterium continued declining after the baseline value (p: <0.0001). Detailed 291 

breakdown of all bacterial taxonomic ranks and OTUs per sample collection time are 292 

provided in Fig. S4. 293 

Archaea was only present in 108D0 (baseline sample) and included only four genera: 294 

Ferroglobus, Methanocaldococcus, Methanococcus, and Methanosaeta (Fig. 6A); none of the 295 

abundance variations of these genera were statistically significant. Fifteen genera were 296 

identified in all samples as parasites, with Codonosigidae (p: 0.0612; <0.0001) and 297 

Schistosoma (p: 0.0014; <0.0001) being the most abundant and common. Notably, the 298 

variations in abundance in parasitic genera were not consistent between baseline and days 1, 299 

2, and 7; most of these genera had non-significant variations in abundance (Dataset 3). In 300 

patient 104, there was a reduction in abundance in parasitic genera from baseline to day 7, but 301 

this was not the case in other patients. In 105, there was a rise in parasitic genera on day 2 302 

and a fall on day 7. In 107, there was a sharp fall in parasitic genera abundance on day 1, a 303 

gradual rise on day 2, and a sharp rise on day 7, which was higher than that of the baseline. 304 

Similarly, a sharp rise in parasitic genera was observed on days 1 and 7 in 109. However, a 305 

gradual rise in parasitic genera was observed in 108 up to day 2, when it dropped 306 

significantly on day 7 (Figure 6B). 307 

Under parasites were kingdoms such as Animalia, Chromista, Eukaryota, Metazoa, and 308 

Protista, which varied across the different time points after commencement of antimicrobial 309 

chemotherapy. Further breakdown of the various taxonomic ranks under these kingdoms per 310 

sample is shown in Figure S5. 311 

Unlike parasites, fungi were not found in all samples although there were 51 fungal genera, 312 

making them the second most common kingdom after bacteria. Specifically, fungi were 313 
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absent from patient 104, and in samples 105D0, 107D0, 107D1,108D1, 108D2, 109D7 and 314 

117D7. Saccharomyces (p: 0.0821; 0.0078) was a common fungi genus in the samples, 315 

particularly in 105D2, 105D7 and 106D7. Other common fungi genera were Penicillium (p: 316 

0.3076; 0.0078), Meyerozyma (p: 0.318; 0.0313), and Debaryomyces (p: 0.163; 0.0625). 317 

Variations in abundance and diversity of fungal genera were observed across different time 318 

points in some samples, but none of the genera had significant variations in abundance across 319 

the samples (Dataset 3). Particularly, there was a sharp rise in Saccharomyces in 105D2 and 320 

105D7, albeit there was none in the baseline, suggesting that it increased in the microbiota 321 

after antibiotics were introduced. There was a drop in abundance of Penicillium from 107D2 322 

to 107D7 whilst several fungal genera such as Meyerozyma and Saccharomyces emerged, 323 

increasing the diversity. Changes in fungal abundance and diversity were also observed in 324 

patients 108, 109, and 111 (Fig. 6C). Detailed breakdown of fungal genera per sample 325 

according to taxonomic rank is shown in Figure S6. 326 

Viruses from Siphoviridae were the commonest and most abundant in all samples, 327 

particularly baseline samples from patients 104, 107, 108, 112, and 117 as well as day 7 328 

samples from patients 105, 106, 107, 108, 109, and 117. Notably, viruses, including 329 

Siphoviridae, were almost absent in days 1 and 2 samples, except in 105D2, 107D2, and 330 

111D1. Myoviridae, Podoviridae, and T4-like viruses were also present in mainly baseline 331 

samples and to a lesser extent, day 7 samples, from patients 105, 106, 107, 108, 112, and 117; 332 

107D2 was the only day 2 sample with these viruses (Fig. 6D). None of the viral OTUs had 333 

significant variations in abundance across the samples (Dataset 3). Detailed viral OTUs per 334 

taxonomic rank in each sample is detailed in Figure S7. 335 

Functional subsystems components 336 

A functional subsystem component analyses (generated by MG-RAST) showed the 337 

proportional changes in key cellular processes and components in each sputum sample from 338 
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baseline through days 1, 2, to 7. Instructively, the functional component of each sample was 339 

strongly/significantly associated with its abundance in that sample (Dataset 3). The major 340 

functional subsystems in all the microbiota samples were clustering-based subsystems, 341 

carbohydrates, protein metabolism, DNA and RNA metabolism, cofactors, vitamins, 342 

prosthetic groups & pigments, and cell wall and capsules. Baseline and to some extent, day 7, 343 

samples had the most abundant and diverse functional subsystems compared to those of days 344 

1 and days 2. The functional components of the sputum microbiota decreased from baseline 345 

to day 2 and increased gradually on day 7. An exception was observed in samples 109 and 346 

117, in which day 7 samples had higher abundance and diversity of functional components 347 

than the baseline samples (Fig. 7). 348 

Network and ordination analysis  349 

The spatial relationship and networking between the microbiota in the sputum samples 350 

collected at different time points showed a reduction in the microbial networks from baseline 351 

to day 7, with a thickening of the networks on day 7. The closer connection seen in the 352 

networks shows the close interactions between the microbiota. Compared to bacteria, 353 

network analyses for parasites were relatively less busy and interconnected. The changing 354 

diversity of the phyla or classes (OTUs) in the collected samples at different time points is 355 

also seen in the widening network distances and reducing interconnections between the 356 

various classes (OTUs) (Figures 8, S9 and S10).  357 

In the nonmetric multidimensional scaling (NMDR) ordination plots, a closer spatial 358 

relationship existed between bacteria than fungi, virus, and parasite OTUs. 359 

Gammaproteobacteria, Bacilli, Erysipelotrichia, Clostridia, and Actinomycetes, filled distinct 360 

spaces distant from other classes that clustered together. The greatest change in ordination 361 

was seen in bacterial classes. The day 1 ordination was closer to each other than the baseline 362 
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plots. Virtually no change was observed between the classes of other kingdoms in day 1 and 363 

baseline (Fig. S10). 364 

Resistance genes and mobile genetic elements 365 

Resistance determinants to tetracyclines (tet), aminoglycosides (aph, aac(2’), aac(3’)), 366 

macrolides (erm, mef, msr), quinolones (qnrD, unknown gyrAB mutations), isoniazid (katG: 367 

N138T, K143T, Y155S), capreomycin (tlyA: A67E), para-aminosalicylic acid (ribD: G8R), 368 

rifampicin (rpoC: F6V, F7A, L10H, W23R, S24*), ethionamide (ethR: R19?, D96G, R164?, 369 

T165?), pyrazinamide (pncA mutations), and ethambutol (embR mutations) were found in 370 

only eight sputum samples. Mobile genetic elements such as plasmids (ColRNAI, repUS38, 371 

repUS43, rep5e, repUS34), transposons (Tn253), integrative conjugative element (ICE) and 372 

insertion sequences (IS30, ISL, IS3, IS4, IS1182) were also found either alone or in 373 

association with antibiotic resistance determinants in 13 samples (Dataset 2).  374 

Discussion 375 

In this work, we show how ONT’s MinION can be used to monitor the treatment outcome of 376 

TB, detect MTB and other associated bacterial, fungal, parasitic, and viral pathogens, identify 377 

antimicrobial resistance determinants and mobile genetic elements, and monitor microbiota 378 

changes (dysbiosis) during antimicrobial chemotherapy using sputum. Hence, the importance 379 

of using this portable technology in clinical settings to diagnose infections, inform 380 

antimicrobial treatment choices, monitor the effects of antimicrobials on the gut, oral, upper 381 

airways and lungs microbiota, despite its inherent challenges, cannot be gainsaid.  382 

Using sputum samples from patients freshly diagnosed with tuberculosis, it was observed that 383 

the microbiota of the sputum samples collected prior to the initiation of antibiotic therapy 384 

(baseline samples) comprised of more diverse and abundant microbial genera (OTUs) than 385 

that observed in days 1, 2, and 7 (Fig. 2-6). Albeit there were a few exceptions to this pattern, 386 
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the higher abundance and diversity of microbiota in the sputum of untreated patients testify to 387 

the effect of antitubercular drugs on the sputum microbiota. Thus, although the antibiotics are 388 

taken orally, they become bioavailable in the sputum through the blood.  389 

It is interesting to note that the microbial abundance and diversity began to increase on day 7 390 

after onset of treatment, suggesting the regrowth of persistent, tolerant or resistant microbiota 391 

after day 7 of treatment. However, this was not observed with Mycobacterium, which 392 

continued declining even after day 7. This is expected because the antibiotics given to the 393 

patients, i.e. isoniazid, rifampicin, pyrazinamide, and ethambutol, are narrow-spectrum 394 

antibiotics targeting Mycobacterium. Notwithstanding the narrow spectrum nature of these 395 

antibiotics, they did affect the abundance and diversity of the microbiota, including bacteria, 396 

fungi, parasites, and viruses, although their effect on non-bacterial microbiota were relatively 397 

limited (Figure 2-5). Recently, Kateete et al. (2021) observed a significant mean reduction in 398 

the microbiotia biomass in the sputum of TB patients 2 months after onset of treatment. 399 

Further, Sala et al. (2020) found non-significant changes in microbiota diversity in sputum of 400 

TB patients up to 7 months. As the authors did not collect and analyse samples at day 7, a 401 

comparative analysis cannot be made 17,32. 402 

The change in microbial abundance and diversity after antibiotic treatment reflected in the 403 

functional components subsystems dynamics, ordination plots and network analyses (Fig. 7-404 

8; S8-S10). Particularly, the abundance of each functional subsystem in samples collected 405 

from the same patient from baseline to day 7 also dropped on days 1 and 2, and rose on day 7 406 

whilst the network relationship between the microbiota reduced from baseline samples until 407 

they increased on day 7. This is expected, as the biocidal action of the antibiotics on the 408 

microbiota will definitely reduce the number of microbes and their functions in the upper air 409 

ways (Fig. 7). Hence, any beneficial effect of the microbial activity in the upper airways, 410 

including the production of metabolites important to the host, will be negatively affected. 411 
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Further, the regrowth of the microbiota and the increase in their metabolic functions from day 412 

7 suggests the evolution and emergence of tolerance, persistence, and resistance, which 413 

numbs the effects of the antibiotics on these microbes. Further, the reducing microbial 414 

abundance also reduced the spatial interrelationship between the microbes until day 7, when 415 

they grew back and strengthened the networks between them again (Fig. S9-S10). This shows 416 

the short-term effect of antibiotics in generating resistance and demonstrates why it is 417 

inadvisable to use antibiotics beyond a week for normal infections. 418 

The functional components and subsystems of the microbiota (Fig. 7) gives a comprehensive 419 

overview of the cellular activities (metabolic pathways), components, and metabolites 420 

produced by the microbiota. Notably, most of the samples were dominated by clustering-421 

based subsystems (contain functions such as proteosomes, ribosomes and recombination-422 

related clusters), carbohydrates, protein metabolism, RNA & DNA metabolism, amino acids 423 

and derivates, co-factors, vitamins, prosthetic groups and pigments, cell wall and capsule, 424 

fatty acids, lipids and isoprenoids, nucleotides and nucleosides, membrane transport, 425 

virulence, disease and defence, phages, prophages, transposable elements and plasmids, and 426 

regulation and signaling. Obviously, all these subsystems are necessary for the normal 427 

functional activities of the cell, except prophages, transposable elements and plasmids, and 428 

virulence, disease, and defence. Hence, most of the metabolic activities of the sputum 429 

microbiota were focused on maintaining cellular life.  430 

Other studies characterising microbial communities in termite mound soils33, grassland soils 431 

34, and water reservoirs 35, also found a similar composition and abundance in the microbial 432 

communities, confirming that these processes are basic to cellular life irrespective of the 433 

ecological niche. It’s interesting that dormancy and sporulation structures were reduced to the 434 

basic minimum on day 1 and rose on day 7, limiting the possibility that antibiotic exposure 435 

could have increased dormancy and sporulation among the microbiota. Sharma et al. (2017) 436 
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observed a downregulation of MTB genes involved in ATP synthesis, aerobic respiration, 437 

translational and section machinery, etc. whilst there was no differential expression in 438 

dormancy genes (dosRS), suggestive of a low energy, low metabolism, and low replication 439 

state in the sputum 36. 440 

The α-diversities show that each patient had a unique microbiome with different microbiota 441 

composition and metabolic/functional subsystems that reacted quite similarly to antibiotics 442 

(Fig. 2C & 7). The changing within-host α-diversities show that antibiotics affect the 443 

microbial diversity (Fig. 2C). This is further corroborated by the inter-sample diversity within 444 

and between hosts (Fig. 2D). In particular, samples from patients 107 and 108 were very 445 

diverse from each other as well as from other samples. In all patients, changes between 446 

baseline and days 1 and 2 samples were substantial (Fig. 2D-E), representing the significant 447 

shift in diversity from baseline to days 1 and 2 after antibiotic treatment. A change in α-448 

diversity was also noticed recently in MTB+ patients BAL microbiome 29. Notably, some 449 

authors have observed little or no differences in sputum microbiome diversity between TB 450 

and non-TB patients from non-Africa settings 17,28. Specifically, the sampling points, 16s 451 

rRNA and pyrosequencing used were different from that used herein. Hu et al. (2020) argue 452 

that 16s rRNA-based analysis of TB-microbiome provides lower resolution than whole-453 

genome shot-gun metagenomics 29.  454 

The sputum microbiota was dominated by bacteria, followed by fungi and a few parasites, 455 

viruses, and archaea. Firmicutes was the most abundant phylum among bacteria, followed by 456 

Actinobacteria and Proteobacteria. Similar microbiota compositions, albeit with little shifts in 457 

relative abundance, have been reported in other studies using 16s rRNA or shot-gun 458 

metagenomics on either sputum or BAL from TB patients 15–17,25–29,32,36–41. Compared to the 459 

dysbiosis in all the microbiota (Fig. 2), the bacterial dysbiosis was most pronounced, with a 460 

substantial drop in abundance being observed on day 1 (Fig. 3). Streptococcus was the most 461 
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dominant genera in Firmicutes (Fig. 4)28,32,39,40, whose abundance was also affected by the 462 

antibiotic-mediated dysbiosis. In patient 105, Leuconostoc replaced Streptococcus as the 463 

most dominant genera on days 1 and 2. In patient 104, Gemella, Clostridium, 464 

Staphylococcus, Solobacterium, and Erysipelotrichaceae increased on day 1. Coprobacillus 465 

increased in abundance in 108D1 and 108D2. Similar patterns were observed in almost all 466 

samples, in which different genera emerged after a reduction in Streptococcus abundance 467 

(Fig. 4A). 468 

Unlike Firmicutes, no single genera dominated the phylum Proteobacteria, albeit 469 

Pseudomonas was common in many samples (Fig. 4B) 16,29,39. Specifically, baseline and day 470 

7 samples were dominated by Pseudomonas, suggesting that Pseudomonas was affected by 471 

the antibiotics, but grew back on day 7. Neisseria was very common in 104D0, but virtually 472 

absent in subsequent days, which also suggest that it was affected by the antibiotics. There 473 

was a notable rise in Achromobacter in 107D1, but it diminished again on 107D1-D7, where 474 

it was replaced by Pseudmonas, Klebsiella, and Proteus. These dynamics only confirm that 475 

susceptible genera were giving way to more tolerant, persistent, and resistant Proteobacterial 476 

genera.  477 

The phylum Actinobacteria was dominated by Mycobacterium, Atopobium, Actinomyces, 478 

and Rothia, which has been found by Hong et al. (2018) to be always co-occurring with MTB 479 

15,16,29. Unlike the phyla Firmicutes and Proteobacteria, the effect of the antibiotics on 480 

Actinobacteria were more drastic. This is not surprising as Mycobacterium, which these 481 

antibiotics mainly target, are found within this phylum (Fig. 4C). Moreover, compared to the 482 

other phyla, the members of this phyla did not grow back on day 7; except 108D7. Thus, anti-483 

mycobacterial drugs were more effective against Actinobacteria than other phyla (Fig. 4).  484 
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Other bacterial phyla, including Aquificae, Bacteroidetes, Fusobacteria, Fibrobacteres, 485 

Chlorflexi, Cyanobacteria, Deinococcus-Thermus, Nitrospirae, Planctomycetes, Spirochaetes, 486 

Synergistetes, Tenericutes, and Verrucomicrobia were also found in the sputum 487 

microbiota28,29,32,39. Among these phyla, the commonest were Bacteroidetes (Bacteroides, 488 

Prevotella), Fusobacteria (Fusobacterium), Synergistetes, Spirochaetes (Treponema), 489 

Tenericutes (Candidatus phytoplasmsa), and Cyanothece (Cyanobacteria). These phyla were 490 

also affected by the antibiotics as their abundance and diversity dropped after baseline and 491 

rose on day 7. However, in patients 107 and 108, these phyla increased in abundance on days 492 

1 and/or 2 than on day 7, with shifts in genera diversity/composition, suggesting the 493 

proliferation of resistant and/or persistent genera (Fig. 5). 494 

An example of the MinION’s ability to identify other potentially pathogenic genera is shown 495 

in Fig. 5 where genera such as Streptococcus (Fig. 5A), Mycobacterium (Fig. 5B), 496 

Clostridium, Schistosoma, Neisseria, Enterococcus, and Staphylococcus (Fig. 5E-F) were 497 

detected. This makes the MinION a potential diagnostic tool that can be used to detect not 498 

only Mycobacterium tuberculosis using sputum samples, but also other pathogens that inhabit 499 

the oral and pharyngeal cavities. Particularly in polymicrobial or secondary infections, this 500 

tool can help clinicians identify all pathogens in the patient’s sample, informing appropriate 501 

antimicrobial choices. Further, it can be used to monitor treatment in patients by measuring 502 

the abundance of any pathogen over time. In this case, the efficacy of the antimicrobial 503 

agents could be seen in the declining abundance of the various genera, including 504 

Mycobacterium. When there is a regrowth of the targeted pathogen, in this case M. 505 

tuberculosis, the clinician can see it and change the antibiotics used. Finally, the shifts in the 506 

microbiota can also inform the clinician of the extent of antibiotics-mediated dysbiosis and its 507 

potential effects on the immunity and emergence of other non-susceptible and diarrhoeagenic 508 
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pathogens such as Clostridium difficile, Shigella, Escherichia coli etc. that can complicate or 509 

prolong healing 6,24.  510 

There was a more significant effect of the antibiotics on parasites than on fungi and viruses 511 

(Fig. 6; Dataset 3). Interestingly, in patients 105 and 107, the identified fungi genera only 512 

grew after days 2 and 7, suggesting their proliferation after the decline in the bacterial 513 

population. Similarly, in patient 108, the fungi found in the baseline samples all diminished 514 

on days 1 and 2, only to be replaced with different fungi on day 7 whilst patients 109 and 112 515 

had different genera replacing those found in their baseline samples. These observations 516 

show that the antibiotics provided advantage to other fungal genera to outgrow others. 517 

Codonosigidae and Cryptosporidium seemed tolerant and more resistant to the antibiotics 518 

than the other parasites as they were able to grow on days 1 to 7 with little or no reductions 519 

and substantial increments (Fig. 6; Dataset 3). Fungi belonging to Ascomycota and 520 

Basidiomycota (Fig. S6) were detected in both sputum and oropharyngeal TB samples with 521 

similar community structures 26; however the effect of antibiotics on these phyla were not 522 

described. 523 

Although antibiotics have no effect on viruses, reductions were seen in the abundance of 524 

Siphoviridae, Myoviridae, and Podoviridae. This could be an indirect effect through 525 

antibiotics action on bacteria, fungi, and parasites, which could be serving as cellular hosts to 526 

the viruses, which cannot exist outside of living cells. Therefore, the reducing abundance of 527 

bacteria, fungi, and parasites could be ridding the viruses of important hosts in which they 528 

can multiply, affecting their abundance as well. This demonstrates that antibiotics-mediated 529 

microbiota dysbiosis can also affect the virome population. Hence, as the bacteria, fungi, and 530 

parasites populations increased on day 7, that of the viruses also increased in tandem (Fig. 6; 531 

Dataset 3).  532 
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The network analysis and ordination plots show that there is a closer interaction between 533 

bacterial genera, including Mycobacterium, than between non-bacterial ones. This closer 534 

association was affected by antibiotics, evincing the effect of dysbiosis on the ecology of the 535 

microbiome 4,6,24. The effect of such an interaction, or its lack thereof, on the pathogenesis of 536 

M. tuberculosis is yet to be established, although dysbiosis has been associated with 537 

increased TB pathologies. Obviously, the beneficial effects of the microbiota and their 538 

interactions on the immune system, including their production of metabolites, indirectly 539 

affects the pathogenesis of M. tuberculosis 4,6,24.  540 

Analysis of the microbiota across the samples shows the presence of external genera that are 541 

not commonly found in or part of the core oral microbiome. Examples include 542 

Stenotrophomonas, Cupriavidus, Sphingomonas, Brevibacillus, and the anaerobe, Lautropia 543 

24,27. Except for Lautropia and Brevibaccilus, the others were found in day 1 or 7 samples. 544 

Whereas Naidoo et al. (2021) found an enrichment of Lautropia in sputa microbiota of 545 

treatment-naïve TB patients, this was not the case in our data 24. However, these observations 546 

shows the invasion of external microbiota in the upper airway microbiome due to TB or 547 

antibiotics therapy. 548 

The antibiotic resistance mechanisms and MGEs of the microbiota in the sputum samples 549 

were determined and found to be relatively few. It is noteworthy that all the recruited patients 550 

were newly diagnosed with TB and were not found to have rifampicin or multidrug resistance 551 

by GeneXpert and the line probe 5,6,8,9,42. However, an analysis of the microbiota identified 552 

resistance-mediating mutations in genes that confer resistance to TB drugs such as 553 

aminoglycosides, quinolones, isoniazid, capreomycin, rifampicin, ethambutol, ethionamide, 554 

and pyrazinamide as well as to non-TB antibiotics in a few of the samples; particularly, 555 

108D0 5,8,9. The absence of these mutations in subsequent samples could suggest that these 556 

mutations were not enough to withstand the effect of all four antibiotics combined. Moreover, 557 
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this evidence shows that the MinION can not only detect the presence of Mycobacterium but 558 

also its resistance profiles, and possibly lineage, in sputum samples, particularly when 559 

sequenced at a higher coverage. The resistance mechanisms of the other microbiota and their 560 

MGEs can also be determined to inform important clinical decisions.  561 

Finally, the data suggests that age and sex had little to do with the outcome of the findings as 562 

same or similar patterns were observed in samples from different ages and sexes; findings by 563 

Wu et al. (2013) also concur 39. Larger cohorts may be necessary in future studies to confirm 564 

the absence of any effect of age and/or sex on the sputum microbiota and its response to anti-565 

tubercular therapy. 566 

Conclusion 567 

ONT’s MinION sequencer is a portable device that can be used to detect Mycobacterium in 568 

sputum samples of patients newly diagnosed with TB, monitor their response to treatment, 569 

detect the presence of other pathogens (polymicrobial infections) in the sputum samples, 570 

identify resistance genes and MGEs, and monitor the effect of administered antibiotics on the 571 

sputum microbiota. With the introduction of advanced flow cells and kits that can multiplex 572 

at most 96 samples (https://store.nanoporetech.com/us/pcr-barcoding-expansion-1-96.html), 573 

it is even cheaper and faster to detect the presence of M. tuberculosis and other pathogens, 574 

their resistance and virulence mechanisms as well as their MGEs in clinical samples within 6-575 

48 hours. The presence of other pathogens that may not be targeted by routine 576 

microbiological assays, can be easily detected by the MinION, helping clinicians treat 577 

polymicrobial and idiopathic infections. The sequence lengths produced by the MinION, 578 

which ranged from 1500-4000bp, coupled with higher coverage, can enhance its sensitivity 579 

and specificity for detecting all commensals and pathogens as well as their clones/lineages. 580 
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The comprehensive data provided by this new technology makes it ideal for clinical 581 

microbiology laboratories to detect all pathogens with little laboratory accoutrements. We 582 

show that the oral administration of anti-tubercular chemotherapy affects the sputum 583 

microbiota by reducing their abundance and shifting their diversity from onset of treatment 584 

(day 1) until day 7, when persistent, tolerant, and resistant microbiota, including fungi, begins 585 

to grow back to replenish the microbiome. Hence, antibiotics usage after one week should be 586 

done with caution as it can result in drug-resistant infections.  587 
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Figure 1. Demographic information and sputum sampling of recruited patients. The patients 693 

were aged between 23 and 55 years, with a median age of 38 years and average age of 37.41 694 

years (A). Six of the patients were females whilst 15 were males, with the females and males 695 

having a respective mean age of 30.60 and 40.25 years (B). Sputum samples collected at 696 

baseline, day 1, day 2, and day 7 were obtained from 7 patients whilst three patients provided 697 

samples at baseline, day 1, and day 2, and one patient provided only baseline and day 7 698 

sputum samples (C). Only nine of the 11 sequenced reads qualified for inclusion in 699 

downstream analysis owing to their higher coverage (>10X) (D).  700 

Figure 2. Count and abundance of genera OTU per sample, and alpha and beta 701 

diversities. The total abundance of genera OTUs across all samples shows that 104D0 and 702 

108D0 had the highest OTU abundance. Only a few genera had significant (t-test) abundance 703 

variation across each sample: 104D1 (p: 0.031), 105D2 (p: 0.2376), 107D2 (p: 0.007), 108D2 704 

(p: 0.0114), 109D2 (p: 0.0178) (A). Wilcoxon’s test found all genera abundance to be 705 

significant (p: <0.0001), but they were insignificant by t-test; one- & two-way ANOVA were 706 

both significant. The count of all genera (OTUs) per sample shows sample 108D0 had the 707 

highest number of genera; count per genera was statistically significant (p: <0.0001) (B). 708 

Alpha-diversity of each sample is shown in C and they were all significant (p: <0.0001). The 709 

β-diversities between samples of the same patient are shown in D, with the variations 710 

between β-diversities varying per patient (p: <0.0001). β-diversity between baseline (S1) and 711 

day 1 (S2) is shown as blue bars, between baseline and day 2 (S3) is shown as orange bars, 712 

between baseline and day 7 (S4) is shown as grey bars, between days 1 (S2) and 2 (S3) is 713 

shown as yellow bars, between days 1 and 7 is shown as light blue bars, and between days 2 714 

and 7 are shown as green bars. The β-diversity variations between samples collected at the 715 

same time point (days 0, 1, 2, and 7) from different patients is shown in E (p: 0.0821; 716 

<0.0001). S1, S2, S3, and S4 represent days 0 (baseline), 1, 2, and 7 respectively. The β-717 
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diversity variation between samples collected at the same time points, but from different 718 

patients, are shown as coloured bars: blue (baseline), orange (day 1), grey (day 2) and yellow 719 

(day 7).  720 

Figure 3. Total abundance of taxonomic Kingdoms per sample. Bacteria was most 721 

dominant across all samples except in 107D2, 109D1, 109D2, where Fungi was most 722 

dominant. Parasites were also found in substantial proportions in 104D1, 105D2, 107D7, 723 

108D1, 108D2, 109D1, 109D2, and 112D2, but viruses and archaea were very minor in 724 

abundance in all the samples. Wilcoxon’s test showed significance (p: <0.0001) for all 725 

kingdoms and 2-Way ANOVA was significant for the samples (A). Among almost all the 726 

samples, the bacterial phylum Firmicutes was the most dominant, except in 105D2, 107D2, 727 

108D1, and 112D2 where it was almost absent. Actinobacteria was the next dominant 728 

phylum, with Proteobacteria, Bacteroidetes and the other phyla occupying a relatively small 729 

portion of the microbiota. A reduction in bacterial phyla abundance was seen after the 730 

baseline until on day 7, when a rise in abundance was observed again in all the samples (B).  731 

Figure 4. Abundance and diversity of OTUs in Firmicutes, Proteobacteria, 732 

Actinobacteria, Bacteroides and other bacterial orders in sputum samples. A u-shaped 733 

pattern was observed among genera in the various phyla: they reduced in abundance after day 734 

0 and rose gradually from day 2 to day 7. The diversities reduced or increased depending on 735 

the patient. The abundance and diversity of genera found in the phylum Firmicutes is shown 736 

in A; Streptococcus was the commonest genus and reduced after baseline but rose gradually 737 

from day 2 unto day 7. This u-shaped pattern was observed in other genera under Firmicutes. 738 

Abundance and diversity of genera under Proteobacteria are shown in B, in which 739 

Pseudomonas was the most abundant. Among Actinobacteria (C), Mycobacterium was 740 

common, but also reduced drastically after the baseline and hardly rose again, making it the 741 

genera most affected by the antibiotics. Bacteroidetes, Cyanobacteria, Tenericutes and other 742 
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Phyla with relatively little abundance are shown in D. Within these phyla, the u-shaped 743 

pattern was also observed from baseline to day 7, with days 1 and 2 having lower 744 

abundances. 745 

Figure 5. Abundance of selected genera in all samples across different sampling-time 746 

points. The abundance of Streptococcus (A), Mycobacterium (B), and different sets of 747 

selected genera (C, D, E, and F) across different sampling-time points (baseline, day 1, day 748 

2, and day 7) showed a reduction in abundance after baseline on days 1 and 2, and a rise on 749 

day 7. However, Mycobacterium declined after the baseline and continued declining 750 

afterwards. The variations in abundance over sampling time was significant for Streptococcus 751 

(p: 0.0078) Granulicatella (p: 0.0432), Clostridium, Lactobacillus (p: 0.0272), 752 

Bifidobacterium (p: 0.0071), Bacillus (0.0141) etc. by one-sample t-test, and was significant 753 

for almost all the selected genera, including Mycobacterium (p: <0.0001). One-/two-way 754 

ANOVA matching of the genera to their abundance were significant (Dataset 3). 755 

Figure 6. Abundance of archaea, parasite, fungi, and viral OTUs per sample. The 756 

abundance of archaeal OTUs is shown in A, where only 108D0 had 4 archaeal genera; Two-757 

way ANOVA was significant for only the row factor. Both Wilcoxon’s and one-sample t-758 

tests were insignificant. Abundance of parasites per sample is shown in B; parasites were 759 

found in all samples with non-consistent variations in abundance across different sampling-760 

time points per patient. Two-way ANOVA column factor was significant. Schistosoma 761 

(p:0.0014), Moniezia (p:0.0187), Drosophila (p:0.0406), Plasmodium (p:0.0404), & 762 

Monosiga (p:0.0256) were significant by one-sample & Wilcoxons’ tests; Noniella (p:0.0005) 763 

& Codonosigidae (p:<0.0001) were only significant with Wilcoxon’s test. The abundance and 764 

variations of 51 fungal OTUs across different sampling-times per patient is shown in C; 2-765 

Way ANOVA of fungi genera with abundance was insignificant. Also, none of the 766 

abundance variations in any of the fungal genera were significant except Saccharomyces 767 
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(p:0.0078) & Penicillium (p:0.0078).  Siphoviridae, Podoviridae, Myoviridae, Retroviridae, 768 

Anelloviridae, T4-like, Muromegalovirus, Caudovirales, and Lymphocryptovirus viruses 769 

were the viruses found in mainly baseline and day 7 samples, with 107D2 and 111D1 being 770 

the only samples from days 2 and 1, respectively (D). Although the presence of viruses in the 771 

samples were significant (2-Way ANOVA), none of the variations in abundance for every 772 

virus OTU was significant. 773 

Figure 7. Functional component subsystem distribution per sample. The functional 774 

composition of each sample is shown in A, where clustering-based subsystems, 775 

carbohydrates, protein metabolism etc., dominated the samples. The samples with the most 776 

abundant functional subsystems components were mainly baseline and day 7 samples such as 777 

104D0, 108D0, 108D7, 111D7, 112D0, 109D7, 107D7, and 107D0 (B). A sampling time-778 

point grouping shows that baseline and day 7 samples had the most functional components 779 

whilst days 1 and 2 samples had lower functional components (C). U-shaped patterns were 780 

observed across the sampling points, with abundance of functional components reducing 781 

from baseline to days 1 and 2, and increasing on day 7 (D). Functional subsystems 782 

components with the most substantial proportion in all the samples shows that clustering-783 

based subsystems, carbohydrates, protein metabolism, RNA metabolism, amino acids and 784 

derivates, and DNA metabolism were common subsystems. These varied across the samples 785 

at different sampling points: baseline, day 1, day 2, and day 7 (E).  The variations in 786 

abundance for the functional components of each sample was statistically significant; two-787 

way ANOVA was significant. 788 

Figure 8. Nonmetric multidimensional scaling (NMDS) and ordination plots. The 789 

microbiota were closely related to each other at baseline, but became less related/connected at 790 

days 1 and 2; the networks between the microbiota increased at day7. The network analysis 791 

of the microbiota between baseline and day 2 is shown in A and B respectively. The 792 
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ordination plots showing the spatial relationship between the microbiota are shown in C and 793 

D respectively.  794 

Dataset 1. Patient demographics, sputum sampling, and sputum characteristics 795 

Dataset 2. Operational taxonomic units (OTU) abundance per sputum sample, taxonomy, 796 

metadata, resistance mechanisms and mobile genetic elements in each sputum sample. 797 

Dataset 3. Statistical analyses of microbiome OTU data per sample. 798 

Figure S1. Total OTU abundance of the various genera across all samples. The total 799 

abundance of each OTU genera across all samples are categorised into four: above 1000 (A), 800 

between 1000-100 (B), between 100-10 (C), and below 10 (D). Most genera were below 10 801 

and a few were above 1000. 802 

Figure S2. Chao1 and Shannon alpha diversities of samples according to daily 803 

collections and OTU genera categorisation. The Chao1 and Shannon indices differed from 804 

each other for the same sample and patient.  805 

Figure S3. Abundance of each taxonomic rank, from kingdom to genus, in each sample. 806 

A detailed breakdown of each kingdom, phylum, class, order, family, and genus in each 807 

sample across all time points and in only baseline, day 1, 2, and 7 samples are shown in i to 808 

xxx. 809 

Figure S4. Abundance of bacterial OTUs per taxonomic rank and sampling-time point 810 

per sample. Common bacterial genera included Streptococci, Mycobacterium, Veillonella, 811 

and Pseudomonas. Abundance of each OTU per taxonomic rank and sampling time-points 812 

shows antibiotic-mediated variations from baseline to day 7.  813 

Figure S5. Abundance of parasite OTUs per taxonomic rank and sampling-time point 814 

per sample.  815 
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Figure S6. Abundance of fungi OTUs per taxonomic rank and sampling-time point per 816 

sample. 817 

Figure S7. Abundance of viral OTUs per taxonomic rank and sampling-time point per 818 

sample. 819 

Figure S8. Functional components and subsystems of the various samples. The functional 820 

components and subsystems shifted in proportion per sample for the different sampling 821 

points.  822 

Figure S9. Network analysis showing the spatial interactions and networking of the 823 

various microbial components in the sputum microbiota. 824 

Figure S10. Non-metric multidimensional scaling (NMDS) of the various OTUs showing 825 

their ordination plots and spatial orientation per kingdom. 826 
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