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Abstract 

Background: All-cause mortality (ACM) scores are a useful tool for identifying individuals with 

decreased life expectancy. An interpretable score consisting of smartphone-obtainable variables could 

allow for long-term management of individual health and support the next generation of healthcare 

monitoring and preventative practices. The aim of this study was to develop a 10-year ACM risk score 

using the UK Biobank dataset, using only digitally-obtainable variables. 

 

Methods: The models were developed using the full UK Biobank cohort comprising nearly 500,000 

individuals. We extracted 399 features from the dataset and, through a data-driven feature selection 

process with subsequent clinical review, identified 34 features for the final model. As part of the 

study, we compared two survival analysis approaches: Cox proportional hazards model and 

DeepSurv, a deep learning-based survival analysis algorithm.  

 

Results: Before feature selection, Cox performed similarly to DeepSurv, achieving a c-index of 0.771 

(95% CI 0.770–0.772) and 0.774 (95% CI 0.772–0.775) on the test dataset, respectively. Using the 

selected 34 features, the c-index of Cox decreased slightly to 0.770 (95% CI 0.769–0.770) and 

DeepSurv to 0.758 (95% CI 0.755–0.762). The models show excellent calibration at 10 years.  

 

Conclusions: This study improves on a previous smartphone-compatible score, C-Score, by 

incorporating non-modifiable factors in addition to variables which can be actively modified to reduce 

risk. This score is comprehensive, easily interpretable and actionable, and as such, could provide a 

powerful tool for preventative healthcare. 
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Introduction 

The rapid increase in life expectancy and decrease in birth rates in many countries around the world in 

recent decades has brought about a change in demographic landscape 1,2. Populations are ageing, 

conferring increased healthcare expenditure due to the higher number of morbidities in the elderly and 

the average higher cost per morbidity in this demographic 3. Being able to identify individuals who 

have decreased life expectancy has important implications for policy and clinical practice, as well as 

for the individuals themselves, particularly if they are supported in identifying any pathways to reduce 

this risk, such as by changing certain lifestyle factors. Prognostic models of death from any cause 

(‘all-cause mortality’, ACM) over a specified time period have been a helpful tool for evaluation of 

overall health status. 

 

The National Institute for Health Care and Excellence (NICE) reviewed 41 existing tools for mortality 

predictions in 2016. It recommended that, owing to ubiquitous, shared limitations, further research 

should be undertaken to develop reliable tools for use in clinical practice 4. Many of these predictive 

models were developed using cohorts of older individuals (>65 years) with a prediction horizon 

between one and five years 5–8. The UK Biobank (UKB) 9, a cohort study of ~500,000 UK participants 

aged 38-73, provides a unique opportunity to study risk factors for a broader age range over a longer 

time period. 

Implementing an ACM score in a smartphone application would maximise access to tools that could 

support individuals’ long-term health management. Such a score should be easily interpretable, 

actionable, and visibly dynamic to incentivise sustained lifestyle changes. Indeed, modifiable risk 

factors such as tobacco use, activity, and diet have been shown to be strongly associated with 

mortality 10–12 and subsequently used in other risk models 13. Our previous effort to build a risk score 

within a smartphone application, named C-Score 14, incorporated heart rate, sleep duration, waist-to-

height ratio, number of cigarettes per day, alcohol intake, reaction time, and self-rated health for 
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predictions of 10-year ACM. This score deliberately included only modifiable predictors, resulting in 

a concordance index (c-index) of 0.66. 

Here, we aim to build from this proof of concept and expand potential predictors to medical history, 

family history, sociodemographic and environmental factors, physical activity, mental health, and 

diet; many of which are known predictors of mortality 7,15,16. All variables available for most UKB 

participants will be used in the initial set, following the exclusion of those that are not easily acquired 

by smartphone (via user input or passive recording) or are country-specific. Contrary to previous 

studies, we aim to use an entirely data-driven approach to select the most significant predictors from 

this initial set of variables, with a clinical review of the final predictor selection. Our modelling 

approach comprises traditional Cox proportional hazards modelling alongside a machine learning 

approach to survival analysis, the Cox proportional hazards deep neural network (DeepSurv) 17. 

This study aims to develop a data-driven prognostic model for 10-year ACM using the UK Biobank 

dataset that can be implemented in a smartphone setting to support user engagement with their health. 

Methods 

Study Population 

Data comes from the UKB 9, approved under UKB application number 55668. UKB participants were 

recruited for a prospective cohort study from the general population between 2006 and 2010. Data up 

to the 30th September 2020 update were used, which we further consider as the end of the follow-up 

period. 

Input Features 

We selected 77 fields based on literature review and clinical plausibility, ensuring that the information 

could be collected on a smartphone and applied to different geographies. This initial set included 

basic demographics (age, sex, education level), anthropometrics (body measurements, weight, BMI), 
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biometrics (heart rate), alcohol and smoking habits, sleep habits, self-rated health, medical and family 

history, physical activity habits, dietary habits, UV exposure and protection, and environmental 

variables (air pollution, proximity to roads).  

Preprocessing 

ACM outcome was defined as death from any cause during the follow-up period as per UKB field 

40000. Additional insights were obtained analysing the underlying causes of death, field 40001. The 

length of follow-up was defined as the period between assessment date and either date of death or the 

end date of the study. 

 

Main data transformations were: mean-imputation of missing values; merging groups of highly 

specific fields into a summary field (e.g. average weekly alcohol consumption was derived from a 

sum of consumption of different drink types); merging sex-specific fields (e.g. male-only and female-

only fields for various medications); or deriving ratios of original features (e.g. waist-to-height ratio). 

Lastly, all categorical information was one-hot encoded, followed by excluding categories occurring 

less than 0.1%. Processing steps are summarised in Supplementary Table 1.  

Experimental Settings 

The dataset was split into training (75%) and test (25%) sets; the latter was used only for the final 

model’s validation.  

 

Two survival analysis approaches were tested, the Cox Proportional Hazard (CPH) model 18 and its 

deep learning variant, DeepSurv 17, which exploits artificial neural networks to model the relationship 

between prognostic factors and survival time. In the first instance, we used CPH to minimise the 

number of features without significant performance degradation. Both CPH and DeepSurv were then 

trained and evaluated using the resulting set of features. 
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CPH Model and Feature Selection 

As CPH models are semi-parametric, the model’s selection phase practically reduces to feature 

selection only. 

 

Using the lifelines package19 an initial model was obtained by adjusting for age only. A baseline 

model with all the features was then trained and a stepwise variable selection process employed to 

remove features which do not have significant impact on performance. A set of six features (nine 

following one-hot encoding of self-rated health) was manually fixed within the model to extend the 

previously developed C-Score 14.  

 

We trained a univariate model for each feature during forward selection, keeping only those with p-

value <0.10. A model was trained with all the remaining candidate variables during backward 

selection and its performance assessed using 5-fold cross-validation. Models excluding features in 

decreasing p-value order were then tested and if performance did not significantly degrade, the feature 

was eliminated. The process was continued until all variables were tested for removal. Features were 

initially tested in chunks of decreasing size in order to accelerate the process.  

 

The final step of feature selection involved manual review in which features were eliminated where 

they were deemed clinically insignificant and where there was minimal performance contribution 

among the initially fixed features. 

DeepSurv 

DeepSurv models 17, in contrast to the CPH model, require extensive hyperparameter optimisation. 

The focus, at first, was finding the best hyper-parameterisation for the replete baseline model to assess 

whether the problem involved non-linear components that the CPH model would not capture. A 

separate set of optimal hyperparameters was defined for the final reduced model using the same 

procedure. Since results suggested no significant improvement could be achieved by using DeepSurv 
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on the baseline input space, no further experiments for features selection using DeepSurv were 

performed.  

 

Models were trained employing an extension of the deep learning library PyTorch 20,21. 

Hyperparameter space was explored through a Tree-Structured Parzen Estimator (TPE) 22, as provided 

by the Optuna library 23. Each model was tested employing three-fold cross-validation. Feed-forward 

neural networks with up to three hidden layers were tested, details of methods and search space are 

provided in Supplementary Table 2.  

Statistical analysis 

Statistical analysis of baseline characteristics and train and test datasets were performed using Python 

tableone library 24. The discrimination metric for all models was the concordance index (c-index), 

while the Integrated Calibration Index (ICI), implemented in the lifelines library19, was used to 

evaluate calibration at the 10-year timepoint. Confidence intervals (CIs) were obtained using 

percentile bootstrap resampling with 50 resampling rounds.  

Results 

Population characteristics 

The entire UKB cohort was used in this study. After excluding participants with missing data, the 

dataset contained 497,712 participants. There were 29,615 (5.96%) participants who died during 

follow-up (Figure 1a). There were no statistical differences between train and test datasets among the 

features included in the final model (Supplementary Table 3). 

 

The analysis of mortality causes in the studied cohort is summarised in Supplementary Table 4 and 

revealed that 53.3% of the deaths resulted from cancers (most commonly lung, breast, and pancreas 

cancers) and 20.3% from diseases of the cardiovascular system (particularly chronic ischaemic heart 
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disease, myocardial infarction, and stroke). The remainder of the top-5 are diseases of the respiratory 

(7.3%), nervous (4.9%), and digestive system (3.8%). All other causes each contributed <3% of the 

total deaths. 

 

The demographic analysis of the cohort is presented in Supplementary Table 5, both in the overall 

sample and separated by outcome. Among the participants, 54.4% were women, with a median age of 

58 at recruitment, and predominantly white (>94%). The median follow-up time was 11.6 years (IQR 

10.87–12.33). 

 

 
Figure 1: Flow diagram of participants and input variables in the study. (a) Participant numbers 
used in the study, including breakdown of the recorded death outcomes in the train and test datasets. 
(b) Size of the input space before and after processing and after feature selection. 
 

Feature selection and CPH model 

Model performance is reported in Table 2. The CPH model comprising only age obtained 0.690 c-

index on the training dataset and 0.694 on the test dataset. The model trained with all 399 input 

features led to a c-index of 0.779 (95% CI 0.778–0.779) on the training dataset and 0.771 (95% CI 

0.770–0.772) in the test dataset. 
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Supplementary Table 1 outlines the features selected according to the stepwise variable selection 

procedure. Numbers of input features in the individual steps of the feature selection process are also 

summarised in Figure 1b. 80 features were removed from the candidate set without any measurable 

degradation of performance following forward selection. Following backward elimination, 37 features 

were selected. These features were further subjected to manual review, excluding initially ‘fixed’ 

features with negligible impact (sleep duration and cigarettes-per-day) or those with problematic 

clinical explanation (experienced headaches in the past month being a protective feature), resulting in 

34 features. The performance after manual review remained equivalent: 0.772 on the training dataset 

and 0.770 on the test dataset. The contribution of individual features to the overall performance is 

shown in Supplementary Figure 1, while the plot of coefficients for individual features is presented 

in Figure 2 (detailed results in Supplementary Table 6). 

 

Table 2: CPH models results reported for different sets of input features. Shown are 
concordance indices obtained during training and internal validation on the test dataset, along with 95 
% bootstrap confidence intervals. 
 

Features Set 
Number of 

input features 
Train C-Index Test C-Index 

Age  1 0.6900 [0.6900–0.6900] 0.6940 [0.6940–0.6940] 

All Features 399 0.7786 [0.7783–0.7790] 0.7712 [0.7702–0.7719] 

Step-Wise Selected 37 0.7724 [0.7721–0.7727] 0.7697 [0.7694–0.7700] 

Manually Reviewed 34 0.7722 [0.7719–0.7725] 0.7695 [0.7691–0.7697] 
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Figure 2: Plot of Cox Proportional Hazards model coefficients. Points show log(HR) ± 95% CI. 
HR = hazard ratio, CI = confidence interval. 
 
While the baseline model slightly overestimated the predicted risk (ICI 0.10%), the final model 

showed excellent calibration (ICI 0.03%, Supplementary Figure 2). The mean observed 10-year risk 

in the cohort was 4.79% (95% CI 4.75–4.82), while the 10-year risk predicted by the final model was 

4.82% (95% CI 4.78–4.85). 

DeepSurv 

Optimal hyperparameters for baseline (399 features) and final (34 features) model were selected using 

three-fold cross-validation. Performance comparable to the CPH model was obtained in fewer than 50 

iterations of the TPE algorithm (Supplementary Figure 3). Subsequently, only negligible 

performance improvement was achieved. Hence, we limited the number of trials to 200 to avoid 

potential overfitting. 
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The resulting hyperparameters for the baseline model led to a c-index of 0.774 (95% CI 0.772–0.775; 

trial 85) in the test dataset. For the final model with 34 features, the best performance was 0.758 (95% 

CI 0.755–0.762; trial 181). There was minimal difference between performance on the training and 

test datasets for both models, indicating no overfitting (Table 2). 

 

 
Table 2: Best baseline and reduced models selected within first 200 trials. Median concordance 
indices with 95% bootstrap confidence intervals shown. 
 

 Trial # Hyper-Parameters Train C-Index  Test C-Index 

Baseline model 

(399 features) 
85/200 

Activation: SELU 

Batch Normalization: Yes  

Dropout: 0.1311 

Weight Decay: 0.0402 

Learning Rate: 0.010119 

Optimizer: SGD 

Momentum: 0.3650 

Hidden Layers Shape: 128x128 

0.7795 
[0.7785–0.7806] 

0.7736 
[0.7724–0.7746] 

Final model  

(34 features) 
181/200 

Activation: ReLU  

Batch Normalization: Yes 

Dropout: 0.1585 

Weight Decay: 12.8300 

Learning Rate: 0.000550 

Optimizer: Adam 

Hidden Layers Shape: 256 

0.7620 
[0.7571–0.7652] 

0.7584 
[0.7546–0.7618] 

Discussion 

By virtue of the UKB’s comprehensive and diverse data, coupled with a long follow-up period, we 

were able to create a 10-year ACM CPH model with excellent predictive capability. Age and age-

related conditions such as Parkinson’s disease, which is known to contribute to ACM 25, were 

predictably identified as both having high importance to the model alongside high hazard ratios (HR). 

Additionally, a number of pre-existing conditions, including cardiovascular (stroke and myocardial 

infarction), respiratory (COPD, emphysema, and bronchitis), diabetes, cancer, and psychiatric and 
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neurological disorders, significantly contribute to ACM in our model. All retained pre-existing 

conditions are known to affect life expectancy 26–30. The majority of these conditions are non-

communicable diseases, which are largely preventable through appropriate modifications in lifestyle 

and behavioural aspects of health 31, as well as early medical intervention.  

 

Besides pre-existing conditions, the features with the highest HR in our model — alcohol 

dependency, slow usual walking pace, active smoking, higher waist-to-height ratio, and increased 

resting heart rate — have all previously been shown to contribute to ACM 32. These features point to 

the fundamental aspects of one’s health and their relationship with ACM, specifically physical 

activity, nutrition, alcohol intake, and smoking status 32. Interestingly, never or rarely using UV 

protection was another lifestyle factor that is significantly associated with increased risk for ACM in 

our model. The relationship between UV exposure and development of skin cancers has been 

established in the literature 33, but the exact long-term effects of sunscreen protection are yet to be 

fully understood 34.  

 

Contrastingly, the bulk of protective factors are common knowledge — brisk walking pace, positive 

self-reported health, and a never-smoker status or history of smoking cessation. Again, this points to 

the preventable aspect of disease occurrence, and emphasising again the well known benefit of 

smoking cessation even after years of smoking 35. Lastly, regular glucosamine use was identified as 

protective in our model. Often used for treatment of joint pain, glucosamine’s beneficial effect on 

ACM has been established in literature by reducing one’s risk of developing several age-related 

diseases 36.  

 

In addition to the CPH model, we tested the deep learning approach to survival analysis, DeepSurv. 

This model achieved comparable performance for the baseline model with all 399 features but slightly 

underperformed CPH for the final model. The lack of significant improvement when implementing 

deep learning is not uncommon with ACM, as was shown in 17, seemingly as minimal contribution of 

non-linear associations between factors; thus DeepSurv’s ability to take advantage of non-linear 
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relationships has not been exploited in this setting. Additionally, there is limited interpretability of the 

individual feature contributions in black-box models such as DeepSurv, making them less suitable for 

clinical translation.  

Our model significantly improves on the previously published smartphone-compatible algorithm, C-

Score, achieving a c-index of 0.77 vs. 0.66, respectively 14. Among other studies using UKB, Ganna 

and Ingelsson (2015) built a CPH model for the prediction of 5-year ACM, achieving a c-index of 

0.80 for men and 0.79 for women 8. Separately, Weng et al. employed both a traditional statistical 

approach (c-index 0.75) and machine learning (0.78–0.79) to train models for prediction of 10-year 

premature ACM 37. Unlike these studies, we employed survival analysis in both traditional statistical 

and machine learning modeling which allowed us to account for length of survival rather than binary 

outcome at a single time point. Compared to our results, these models contain notable differences in 

the final features, likely due to different methodological approaches to feature selection. Our selection 

process allowed us to create a geographically-agnostic model (e.g. absence of UK-specific ‘Townsend 

deprivation Index’), which requires at the minimum only an internet connection to complete, while 

still maintaining good predictive capability.  

The value in such a model is two-fold: first, if used on an individual level, accessible ACM models 

can form the backbone of behaviour-change programmes by presenting the user with interactable, 

dynamic health forecasts based on their lifestyle choices; second, if used on a regional or population 

level, such models could be used to inform local funding initiatives targeted to the most prevalent risk 

factors within their sub-population. 

The primary limitation of this study concerns the UKB dataset. First, the majority of the UKB 

population is of White ethnicity (94%), which can lead to poor replicability when implemented across 

other ethnic groups. Second, the cohort’s age range is restricted to 37-73 years, which may impart a 

similar impact on generalisability. Third, the UKB population is considered to be healthier and 

wealthier than the general population 38. These limitations mean external validation is needed to 

solidify its applicability both in the UK and across other populations. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.23.21259387doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259387
http://creativecommons.org/licenses/by-nc-nd/4.0/


We have developed a 10-year ACM model with very good predictive capability that can be readily 

accessible through smartphones by the general population. A focus on factors that are modifiable 

either by an individual or at a population level further supports the needed shift towards preventative 

healthcare and promotes longevity. Future studies on more diverse samples should be carried out to 

enable its widespread use. 
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Supplementary information 
 
 

 

Supplementary Figure 1: Contribution of features to the final model concordance index. 
Features were added stepwise from the top, in the order of permutation importance (i.e. age, being 
the most important feature, was added first, self-reported COPD last to complete the feature set and 
achieve the final concordance index). 
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Supplementary Figure 2: Model calibration at 10 years. Results from the baseline (a) and final (b) 
CPH models evaluated on the test dataset are shown. Smoothed calibration curve is shown in solid 
line. Histogram of the predicted probabilities of incident death at 10 years for the participants in the 
test dataset are shown in blue. 
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Supplementary Figure 3: Performance achieved in the 200 trials of TPE hyperparameter search 
for the baseline (a) and final (b) model. Trials with the best overall results are indicated with a cyan 
cross. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.23.21259387doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259387
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 1: List of features selected during the data-driven feature selection process. Source 
UK Biobank field along with any data preprocessing methods are shown. Features fixed during the feature 
selection process are marked with an asterisk. Three features were removed during manual review and the 
reasons are summarised in the last column. 
 

Feature UKB Field Processing Manual review 

Age 21022 - - 

Average weekly alcohol intake* 1558, 1568, 1578, 
1598, 5364 

Missing values were imputed with 
mean, summary variable created by 

summing all variables 
- 

Brisk usual walking pace 924 One-hot encoded (value 3) - 

Current smoker 20116 One-hot encoded (value 2) - 

Excellent self-reported health* 2178 One-hot encoded (value 1) - 

Experienced headache in the past month 6159 One-hot encoded (value 1) 
No clear clinical explanation 

for negative coefficient 

Fair self-reported health* 2178 One-hot encoded (value 3) - 

Glasses of water drunk per day 1528 Value -10 (less than 1) changed to 0.5, 
mean imputation for missing values - 

Good self-reported health* 2178 One-hot encoded (value 2) - 

Heart rate* 102 Mean of two measurements taken, 
mean imputation for missing values - 

Height 50 
Participants with missing values 

excluded - 

Hip circumference 49 Participants with missing values 
excluded - 

Just tried smoking once or twice 1249 One-hot encoded (value 3) - 

Lost weight compared to 1 year ago 2306 One-hot encoded (value 3) - 

Never smoked 1249 One-hot encoded (value 4) - 

Never/rarely uses sun/UV protection 2267 One-hot encoded (value 1) - 

Number of cigarettes per day* 3456 Missing values converted to 0 Not contributing (Cox 
coefficient -close to 0) 

Number of self-reported cancers 134 - - 

Pack years of smoking 20161 Missing values converted to 0 - 

Poor self-reported health* 2178 One-hot encoded (value 4) - 

Regularly takes blood pressure medications 6177, 6153 Sex-specific fields merged, one-hot 
encoded (value 2) - 

Regularly takes glucosamine 6179 One-hot encoded (value 2) - 

Regularly takes insulin 6177, 6153 Sex-specific fields merged, one-hot 
encoded (value 3) - 

Self-reported COPD 20002 One-hot encoded (value 1112) - 

Self-reported Parkinson's disease 20002 One-hot encoded (value 1262) - 

Self-reported alcohol dependency 20002 One-hot encoded (value 1408) - 

Self-reported diabetes 20002 One-hot encoded (value 1220) - 

Self-reported emphysema/chronic bronchitis 20002 One-hot encoded (value 1113) - 

Self-reported epilepsy 20002 One-hot encoded (value 1264) - 

Self-reported heart attack 20002 One-hot encoded (value 1075) - 

Self-reported mania/bipolar disorder/manic depression 20002 One-hot encoded (value 1291) - 

Self-reported stroke 20002 One-hot encoded (value 1081) - 

Sleep duration* 1160 
Participants with missing values 

excluded 
Not contributing (Cox 
coefficient close to 0) 

Slow usual walking pace 924 One-hot encoded (value 1) - 

Smoked occasionally in the past 1249 One-hot encoded (value 2) - 

Smoked on most or all days in the past 1249 One-hot encoded (value 1) - 

Waist to height ratio* 48, 50 Ratio of waist and height taken - 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.23.21259387doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259387
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplementary Table 2: DeepSurv hyperparameter search space. Tree-Structured Parzen Estimator 
algorithmA from the Optuna libraryB was used to find the optimal set of parameters within the search space. 

 

Hyper-Parameter Search Space 

Hidden Layers topology* 8, 32, 256, 32x32, 64x64, 128x128, 64x16, 256x32, 32x32x32, 64x64x64 

Activation LeakyReLUC, ReLUD and SELUE 

Drop-Out*F [0, 0.9] 

Weight-Decay*G [0, 20] 

Batch NormalisationH Yes/No 

Optimizer Stochastic Gradient Descent (SGD), AdamJ 

Momentum*K [0,1] 

Learning Rate Log distribution on [1e-5, 1] 

 

 *Uniform distributions 
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Supplementary Table 3: Statistical comparison of the train and test datasets. Features selected into the 
final model are shown in alphabetical order. Last column shows p-value after comparing the incident death group 
with the no-death group. Comparisons were performed using the Chi-squared test for categories and Kruskal-
Wallis test for continuous variables.  
 

 Overall Train dataset Test dataset p-value 
(adjusted) 

n 497712 373284 124428  

Death (outcome), n (%) 29615 (5.95) 22211 (5.95) 7404 (5.95) 1.000 

Follow-up time, median [Q1, Q3] 11.60 
[10.88,12.32] 

11.60 
[10.88,12.32] 

11.60 
[10.88,12.32] 

1.000 

Age, median [Q1,Q3] 58.00 
[50.00,63.00] 

58.00 
[50.00,63.00] 

58.00 
[50.00,63.00] 

0.298 

Average weekly alcohol intake, median [Q1,Q3] 11.48 [6.04,12.00] 11.48 [6.04,12.00] 11.48 [6.04,12.00] 1.000 

Brisk usual walking pace, n (%) 193135 (38.80) 144893 (38.82) 48242 (38.77) 1.000 

Current smoker, n (%) 52401 (10.53) 39320 (10.53) 13081 (10.51) 1.000 

Excellent self-reported health, n (%) 81486 (16.37) 61223 (16.40) 20263 (16.28) 1.000 

Fair self-reported health, n (%) 104277 (20.95) 78037 (20.91) 26240 (21.09) 1.000 

Glasses of water drunk per day, median [Q1,Q3] 2.00 [1.00,4.00] 2.00 [1.00,4.00] 2.00 [1.00,4.00] 1.000 

Good self-reported health, n (%) 287268 (57.72) 215412 (57.71) 71856 (57.75) 1.000 

Heart rate, median [Q1,Q3] 69.00 
[62.00,75.50] 

69.00 
[62.00,75.50] 

69.00 
[62.00,75.50] 

1.000 

Height, median [Q1,Q3] 168.00 
[162.00,175.00] 

168.00 
[161.50,175.00] 

168.00 
[162.00,175.00] 

1.000 

Hip circumference, median [Q1,Q3] 
102.00 

[97.00,108.00] 
102.00 

[97.00,108.00] 
102.00 

[97.00,108.00] 0.278 

Just tried smoking once or twice, n (%) 72575 (14.58) 54525 (14.61) 18050 (14.51) 1.000 

Lost weight compared to 1 year ago, n (%) 75218 (15.11) 56147 (15.04) 19071 (15.33) 0.542 

Never smoked, n (%) 199306 (40.04) 149424 (40.03) 49882 (40.09) 1.000 

Never/rarely uses sun/UV protection, n (%) 50190 (10.08) 37600 (10.07) 12590 (10.12) 1.000 

Number of self-reported cancers, median [Q1,Q3] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 1.000 

Pack years of smoking, median [Q1,Q3] 0.00 [0.00,7.12] 0.00 [0.00,7.00] 0.00 [0.00,7.50] 1.000 

Poor self-reported health, n (%) 22209 (4.46) 16745 (4.49) 5464 (4.39) 1.000 

Regularly takes blood pressure medications, n (%) 102974 (20.69) 77097 (20.65) 25877 (20.80) 1.000 

Regularly takes glucosamine, n (%) 93995 (18.89) 70339 (18.84) 23656 (19.01) 1.000 

Regularly takes insulin, n (%) 5482 (1.10) 4108 (1.10) 1374 (1.10) 1.000 

Self-reported COPD, n (%) 1644 (0.33) 1219 (0.33) 425 (0.34) 1.000 

Self-reported Parkinson's disease, n (%) 840 (0.17) 628 (0.17) 212 (0.17) 1.000 

Self-reported alcohol dependency, n (%) 737 (0.15) 542 (0.15) 195 (0.16) 1.000 

Self-reported diabetes, n (%) 21387 (4.30) 16055 (4.30) 5332 (4.29) 1.000 

Self-reported emphysema/chronic bronchitis, n (%) 6744 (1.36) 5087 (1.36) 1657 (1.33) 1.000 

Self-reported epilepsy, n (%) 3975 (0.80) 2977 (0.80) 998 (0.80) 1.000 

Self-reported heart attack, n (%) 11352 (2.28) 8473 (2.27) 2879 (2.31) 1.000 

Self-reported mania/bipolar disorder/manic 
depression, n (%) 

1400 (0.28) 1030 (0.28) 370 (0.30) 1.000 

Self-reported stroke, n (%) 6546 (1.32) 4905 (1.31) 1641 (1.32) 1.000 

Slow usual walking pace, n (%) 40144 (8.07) 30131 (8.07) 10013 (8.05) 1.000 

Smoked occasionally in the past, n (%) 64998 (13.06) 48888 (13.10) 16110 (12.95) 1.000 

Smoked on most or all days in the past, n (%) 120108 (24.13) 89981 (24.11) 30127 (24.21) 1.000 

Waist to height ratio, median [Q1,Q3] 0.53 [0.48,0.58] 0.53 [0.48,0.58] 0.53 [0.48,0.58] 0.149 
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Supplementary Table 4: Analysis of the most common causes of death in the dataset. ICD10 codes 
belonging in each group are listed in the second column. Number and percentage of participants who died during 
follow-up are shown, along with 3 most common ICD10 codes in each group. 
 

 ICD10 codes Number (%)  of 
participants Top 3 ICD10 codes 

Any cause any 
29615 

(100 %) 

C34 Malignant neoplasm of bronchus and lung 
I25 Chronic ischaemic heart disease 
I21 Acute myocardial infarction 

Neoplasms 
C00–C97 
D10–D48 

15790 
 (53.32 %) 

C34 Malignant neoplasm of bronchus and lung 
C50 Malignant neoplasm of breast 
C25 Malignant neoplasm of pancreas 

Diseases of the circulatory system I05–I89 6085 
 (20.55 %) 

I25 Chronic ischaemic heart disease 
I21 Acute myocardial infarction 
I64 Stroke, not specified as haemorrhage or infarction 

Diseases of the respiratory system J09–J99 
2157 

 (7.28 %) 

J44 Other chronic obstructive pulmonary disease 
J84 Other interstitial pulmonary diseases 
J18 Pneumonia, organism unspecified 

Diseases of the nervous system G00–G99 1442 
 (4.87 %) 

G30 Alzheimer's disease 
G12 Spinal muscular atrophy and related syndromes 
G20 Parkinson's disease 

Diseases of the digestive system K20–K93 1125  
(3.80 %) 

K70 Alcoholic liver disease 
K55 Vascular disorders of intestine 
K74 Fibrosis and cirrhosis of liver 

External causes of morbidity and mortality 

V01–V97 
W00–W99 
X00–X99 
Y10–Y89 

861 
 (2.91 %) 

X70 Intentional self-harm by hanging, strangulation and 
suffocation 
W19 Unspecified fall 
Y83 Surgical operation and other surgical procedures as the 
cause of abnormal reaction of the patient, or of later 
complication, without mention of misadventure at the time of 
the procedure 

Mental and behavioural disorders F00–F89 568 
 (1.92 %) 

F03 Unspecified dementia 
F01 Vascular dementia 
F10 Mental and behavioural disorders due to use of alcohol 

Other unknown or unspecified causes R00–R99 
U00–U49 

460  
(1.55 %) 

U07 Emergency use of U07 
R99 Other ill-defined and unspecified causes of mortality 
U50 Level of care administered to neonates 

Endocrine, nutritional and metabolic diseases E00–E90 337  
(1.14 %) 

E11 Non-insulin-dependent diabetes mellitus 
E14 Unspecified diabetes mellitus 
E85 Amyloidosis 

Certain infectious and parasitic diseases A00–A99 
B00–B99 

264 
(0.89 %) 

A41 Other septicaemia 
A81 Atypical virus infections of central nervous system 
A09 Diarrhoea and gastro-enteritis of presumed infectious 
origin 

Diseases of the genitourinary system N00–N98 
189  

(0.64 %) 

N39 Other disorders of urinary system 
N18 Chronic renal failure 
N17 Acute renal failure 

Diseases of the musculoskeletal system and 
connective tissue M00–M90 168  

(0.57 %) 

M06 Other rheumatoid arthritis 
M35 Other systemic involvement of connective tissue 
M34 Systemic sclerosis 

Diseases of the blood and blood-forming 
organs and certain disorders involving the 
immune mechanism 

D55–D89 69 
 (0.23 %) 

D86 Sarcoidosis 
D70 Agranulocytosis 
D61 Other aplastic anaemias 

Diseases of the skin and subcutaneous tissue L00–L99 49 
 (0.17 %) 

L03 Cellulitis 
L97 Ulcer of lower limb, not elsewhere classified 
L08 Other local infections of skin and subcutaneous tissue 

Congenital malformations, deformations and 
chromosomal abnormalities Q00–Q99 48  

(0.16 %) 

Q87 Other specified congenital malformation syndromes 
affecting multiple systems 
Q24 Other congenital malformations of heart 
Q61 Cystic kidney disease 

Diseases of the ear and mastoid process H65–H75 2  
(0.01 %) 

H70 Mastoiditis and related conditions 

Pregnancy, childbirth and the puerperium O00–O99 
1 

 (0.00 %) O30 Multiple gestation 
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Supplementary Table 5: Summary of demographic characteristics of the studied cohort grouped by the 
outcomes. Features selected into the final model are shown in alphabetical order. Last column shows p-value 
after comparing the incident death group with the no-death group. Comparisons were performed using the Chi-
squared test for categories and Kruskal-Wallis test for continuous variables.  

 

 Overall No death during 
follow-up 

Death during 
follow-up 

p-value 
(adjusted) 

n 497712 468097 29615  

Age, median [Q1,Q3] 58.00 
[50.00,63.00] 

57.00 
[50.00,63.00] 

63.00 
[58.00,67.00] 

<0.001 

Average weekly alcohol intake, median [Q1,Q3] 
11.48 

[6.04,12.00] 
11.48 

[6.04,12.00] 
11.48 

[8.00,13.04] <0.001 

Brisk usual walking pace, n (%) 193135 (38.80) 185802 (39.69) 7333 (24.76) <0.001 

Current smoker, n (%) 52401 (10.53) 46615 (9.96) 5786 (19.54) <0.001 

Excellent self-reported health, n (%) 81486 (16.37) 78779 (16.83) 2707 (9.14) <0.001 

Fair self-reported health, n (%) 104277 (20.95) 95291 (20.36) 8986 (30.34) <0.001 

Glasses of water drunk per day, median [Q1,Q3] 2.00 [1.00,4.00] 2.00 [1.00,4.00] 2.00 [1.00,4.00] <0.001 

Good self-reported health, n (%) 287268 (57.72) 273596 (58.45) 13672 (46.17) <0.001 

Heart rate, median [Q1,Q3] 69.00 
[62.00,75.50] 

69.00 
[62.00,75.00] 

69.50 
[63.50,78.50] 

<0.001 

Height, median [Q1,Q3] 168.00 
[162.00,175.00] 

168.00 
[161.20,175.00] 

169.00 
[162.00,176.00] <0.001 

Hip circumference, median [Q1,Q3] 102.00 
[97.00,108.00] 

102.00 
[97.00,108.00] 

103.00 
[98.00,109.00] 

<0.001 

Just tried smoking once or twice, n (%) 72575 (14.58) 69887 (14.93) 2688 (9.08) <0.001 

Lost weight compared to 1 year ago, n (%) 75218 (15.11) 69944 (14.94) 5274 (17.81) <0.001 

Never smoked, n (%) 199306 (40.04) 190784 (40.76) 8522 (28.78) <0.001 

Never/rarely uses sun/UV protection, n (%) 50190 (10.08) 45305 (9.68) 4885 (16.50) <0.001 

Number of self-reported cancers, median [Q1,Q3] 0.00 [0.00,0.00] 0.00 [0.00,0.00] 0.00 [0.00,0.00] <0.001 

Pack years of smoking, median [Q1,Q3] 0.00 [0.00,7.12] 0.00 [0.00,6.00] 0.00 [0.00,27.30] <0.001 

Poor self-reported health, n (%) 22209 (4.46) 18246 (3.90) 3963 (13.38) <0.001 

Regularly takes blood pressure medications, n (%) 102974 (20.69) 92102 (19.68) 10872 (36.71) <0.001 

Regularly takes glucosamine, n (%) 93995 (18.89) 89125 (19.04) 4870 (16.44) <0.001 

Regularly takes insulin, n (%) 5482 (1.10) 4374 (0.93) 1108 (3.74) <0.001 

Self-reported COPD, n (%) 1644 (0.33) 1194 (0.26) 450 (1.52) <0.001 

Self-reported Parkinson's disease, n (%) 840 (0.17) 541 (0.12) 299 (1.01) <0.001 

Self-reported alcohol dependency, n (%) 737 (0.15) 562 (0.12) 175 (0.59) <0.001 

Self-reported diabetes, n (%) 21387 (4.30) 18143 (3.88) 3244 (10.95) <0.001 

Self-reported emphysema/chronic bronchitis, n (%) 6744 (1.36) 5353 (1.14) 1391 (4.70) <0.001 

Self-reported epilepsy, n (%) 3975 (0.80) 3551 (0.76) 424 (1.43) <0.001 

Self-reported heart attack, n (%) 11352 (2.28) 9065 (1.94) 2287 (7.72) <0.001 

Self-reported mania/bipolar disorder/manic depression, n 
(%) 

1400 (0.28) 1213 (0.26) 187 (0.63) <0.001 

Self-reported stroke, n (%) 6546 (1.32) 5314 (1.14) 1232 (4.16) <0.001 

Slow usual walking pace, n (%) 40144 (8.07) 33927 (7.25) 6217 (20.99) <0.001 

Smoked occasionally in the past, n (%) 64998 (13.06) 61624 (13.16) 3374 (11.39) <0.001 

Smoked on most or all days in the past, n (%) 120108 (24.13) 110119 (23.52) 9989 (33.73) <0.001 

Waist to height ratio, median [Q1,Q3] 0.53 [0.48,0.58] 0.53 [0.48,0.58] 0.56 [0.51,0.61] <0.001 
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Supplementary Table 6: Summary of the final Cox Proportional Hazards model. The table displays 
coefficients = log(HR) with 95% confidence intervals and -log2(p-value). All columns were statistically significant 
(where p < 0.05 and null hypothesis states that the coefficient is equal to 0) except “Poor self-reported health” 
where the p-value was 0.662. 
 

 

Covariate log(HR) 
CI log(HR) 
 lower 95% 

CI log(HR) 
 upper 95% 

-log2 
(p-value) 

Self-reported Parkinson's disease 1.134 0.999 1.27 198.556 

Self-reported alcohol dependency 0.73 0.558 0.901 53.581 

Age 0.711 0.693 0.729 inf 

Self-reported mania/bipolar disorder/manic depression 0.625 0.46 0.79 43.031 

Regularly takes insulin 0.47 0.391 0.549 101.393 

Self-reported heart attack 0.398 0.345 0.451 161.631 

Self-reported epilepsy 0.383 0.27 0.496 34.844 

Self-reported emphysema/chronic bronchitis 0.327 0.263 0.392 74.581 

Self-reported COPD 0.324 0.214 0.435 26.947 

Slow usual walking pace 0.32 0.281 0.359 191.24 

Self-reported stroke 0.293 0.225 0.361 55.281 

Current smoker 0.281 0.211 0.351 47.974 

Never/rarely uses sun/UV protection 0.191 0.154 0.228 78.043 

Number of self-reported cancers 0.185 0.177 0.194 inf 

Waist to height ratio 0.171 0.15 0.193 177.742 

Height 0.159 0.145 0.173 354.709 

Lost weight compared to 1 year ago 0.152 0.117 0.187 56.116 

Heart rate 0.122 0.109 0.134 277.067 

Self-reported diabetes 0.12 0.07 0.171 18.208 

Regularly takes blood pressure medications 0.101 0.07 0.132 32.753 

Pack years of smoking 0.092 0.081 0.102 213.582 

Average weekly alcohol intake 0.047 0.037 0.057 64.139 

Glasses of water drunk per day 0.041 0.027 0.054 29.596 

Poor self-reported health 0.031 -0.106 0.167 0.595 

Brisk usual walking pace -0.14 -0.173 -0.106 52.037 

Regularly takes glucosamine -0.173 -0.21 -0.137 67.106 
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Hip circumference -0.178 -0.198 -0.157 213.233 

Smoked on most or all days in the past -0.251 -0.325 -0.176 34.061 

Smoked occasionally in the past -0.305 -0.384 -0.226 44.52 

Fair self-reported health -0.342 -0.475 -0.208 20.855 

Never smoked -0.377 -0.457 -0.296 63.873 

Just tried smoking once or twice -0.447 -0.535 -0.359 75.06 

Good self-reported health -0.606 -0.74 -0.473 60.612 

Excellent self-reported health -0.741 -0.881 -0.601 81.447 
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